Abstract

We report on time-resolved coherent imaging of terahertz (THz) single-cycle pulses after reflection from or transmission through different types of multilayer systems. The multilayers are integrated into a single solid-state platform that permits THz generation, manipulation, and detection. The multilayer systems supplement the polaritonic toolkit of integrated functional THz devices.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D.Mittleman (Ed.), Sensing with Terahertz Radiation, Springer Series in Optical Sciences, Vol. 85, 2003.
  2. T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Res. 37, 317-350 (2007).
    [CrossRef]
  3. D. A. Kleinman and D. H. Auston, “Theory of electrooptic shock radiation in nonlinear optical media,” IEEE J. Quantum Electron. 20, 964-970 (1984).
    [CrossRef]
  4. A. G. Stepanov, J. Hebling, and J. Kuhl, “Thz generation via optical rectification with ultrashort laser pulse focused to a line,” Appl. Phys. B 81, 23-26 (2005).
    [CrossRef]
  5. A. Taflove and S. C. Hagness, Computational Electrodynamics (Artech House, 2000).
  6. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, 1995).
  7. K. Sakoda, Optical Properties of Photonic Crystals (Springer, 2005).
  8. W. Kuang, W. J. Kim, and J. D. O'Brien, “Finite-difference time domain method for nonorthogonal unit-cell two-dimensional photonic crystals,” J. Lightwave Technol. 25, 2612-2617 (2007).
    [CrossRef]
  9. M. L. M. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Local observations of phase singularities in optical fields in waveguide structures,” Phys. Rev. Lett. 85, 294-297 (2000).
    [CrossRef] [PubMed]
  10. M. L. M. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Phase mapping of optical fields in integrated optical waveguide structures,” J. Lightwave Technol. 19, 1169-1176 (2001).
    [CrossRef]
  11. E. Flück, M. Hammer, A. M. Otter, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Amplitude and phase evolution of optical fields inside periodic photonic structures,” J. Lightwave Technol. 21, 1-10 (2003).
    [CrossRef]
  12. P. Kramper, M. Kafesaki, C. M. Soukoulis, A. Birner, F. Müller, U. Gösele, R. B. Wehrspohn, J. Mlynek, and V. Sandoghdar, “Near-field visualization of light confinement in a photonic crystal microresonator,” Opt. Lett. 29, 1-10 (2004).
    [CrossRef]
  13. S. I. Bozhevolnyi, V. S. Volkov, T. Søndergaard, A. Boltasseva, P. I. Borel, and M. Kristensen, “Near-field imaging of light propagation in photonic crystal waveguides: explicit role of Bloch harmonics,” Phys. Rev. B 66, 235204 (2002).
    [CrossRef]
  14. H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
    [CrossRef] [PubMed]
  15. T. Feurer, J. C. Vaughan, and K. A. Nelson, “Spatiotemporal coherent control of lattice vibrational waves,” Science 299, 374-377 (2003).
    [CrossRef] [PubMed]
  16. T. Feurer, J. C. Vaughan, T. Hornung, and K. A. Nelson, “Typesetting of terahertz waveforms,” Opt. Lett. 29, 1802-1804 (2004).
    [CrossRef] [PubMed]
  17. N. S. Stoyanov, D. W. Ward, T. Feurer, and K. A. Nelson, “Terahertz polariton propagation in patterned materials,” Nature Mater. 1, 95-98 (2002).
    [CrossRef]
  18. D. W. Ward, J. D. Beers, T. Feurer, E. R. Statz, N. S. Stoyanov, and K. A. Nelson, “Coherent control of phonon-polaritons in a terahertz resonator fabricated with femtosecond laser machining,” Opt. Lett. 29, 2671-2673 (2004).
    [CrossRef] [PubMed]
  19. N. S. Stoyanov, T. Feurer, D. W. Ward, and K. A. Nelson, “Integrated diffractive terahertz elements,” Appl. Phys. Lett. 82, 674-677 (2003).
    [CrossRef]
  20. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2007).
  21. P. Peier, S. Pilz, F. Müller, K. A. Nelson, and T. Feurer, “Analysis of phase contrast imaging of terahertz phonon-polaritons,” J. Opt. Soc. Am. B 25, B70-B75 (2008).
    [CrossRef]
  22. D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semi-conductors,” J. Opt. Soc. Am. B 7, 2006-2015 (1990).
    [CrossRef]

2008 (1)

2007 (2)

W. Kuang, W. J. Kim, and J. D. O'Brien, “Finite-difference time domain method for nonorthogonal unit-cell two-dimensional photonic crystals,” J. Lightwave Technol. 25, 2612-2617 (2007).
[CrossRef]

T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Res. 37, 317-350 (2007).
[CrossRef]

2005 (2)

A. G. Stepanov, J. Hebling, and J. Kuhl, “Thz generation via optical rectification with ultrashort laser pulse focused to a line,” Appl. Phys. B 81, 23-26 (2005).
[CrossRef]

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

2004 (3)

2003 (3)

N. S. Stoyanov, T. Feurer, D. W. Ward, and K. A. Nelson, “Integrated diffractive terahertz elements,” Appl. Phys. Lett. 82, 674-677 (2003).
[CrossRef]

T. Feurer, J. C. Vaughan, and K. A. Nelson, “Spatiotemporal coherent control of lattice vibrational waves,” Science 299, 374-377 (2003).
[CrossRef] [PubMed]

E. Flück, M. Hammer, A. M. Otter, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Amplitude and phase evolution of optical fields inside periodic photonic structures,” J. Lightwave Technol. 21, 1-10 (2003).
[CrossRef]

2002 (2)

S. I. Bozhevolnyi, V. S. Volkov, T. Søndergaard, A. Boltasseva, P. I. Borel, and M. Kristensen, “Near-field imaging of light propagation in photonic crystal waveguides: explicit role of Bloch harmonics,” Phys. Rev. B 66, 235204 (2002).
[CrossRef]

N. S. Stoyanov, D. W. Ward, T. Feurer, and K. A. Nelson, “Terahertz polariton propagation in patterned materials,” Nature Mater. 1, 95-98 (2002).
[CrossRef]

2001 (1)

2000 (1)

M. L. M. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Local observations of phase singularities in optical fields in waveguide structures,” Phys. Rev. Lett. 85, 294-297 (2000).
[CrossRef] [PubMed]

1990 (1)

1984 (1)

D. A. Kleinman and D. H. Auston, “Theory of electrooptic shock radiation in nonlinear optical media,” IEEE J. Quantum Electron. 20, 964-970 (1984).
[CrossRef]

Auston, D. H.

D. A. Kleinman and D. H. Auston, “Theory of electrooptic shock radiation in nonlinear optical media,” IEEE J. Quantum Electron. 20, 964-970 (1984).
[CrossRef]

Balistreri, M. L. M.

M. L. M. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Phase mapping of optical fields in integrated optical waveguide structures,” J. Lightwave Technol. 19, 1169-1176 (2001).
[CrossRef]

M. L. M. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Local observations of phase singularities in optical fields in waveguide structures,” Phys. Rev. Lett. 85, 294-297 (2000).
[CrossRef] [PubMed]

Beers, J. D.

Birner, A.

P. Kramper, M. Kafesaki, C. M. Soukoulis, A. Birner, F. Müller, U. Gösele, R. B. Wehrspohn, J. Mlynek, and V. Sandoghdar, “Near-field visualization of light confinement in a photonic crystal microresonator,” Opt. Lett. 29, 1-10 (2004).
[CrossRef]

Bogaerts, W.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Boltasseva, A.

S. I. Bozhevolnyi, V. S. Volkov, T. Søndergaard, A. Boltasseva, P. I. Borel, and M. Kristensen, “Near-field imaging of light propagation in photonic crystal waveguides: explicit role of Bloch harmonics,” Phys. Rev. B 66, 235204 (2002).
[CrossRef]

Borel, P. I.

S. I. Bozhevolnyi, V. S. Volkov, T. Søndergaard, A. Boltasseva, P. I. Borel, and M. Kristensen, “Near-field imaging of light propagation in photonic crystal waveguides: explicit role of Bloch harmonics,” Phys. Rev. B 66, 235204 (2002).
[CrossRef]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, T. Søndergaard, A. Boltasseva, P. I. Borel, and M. Kristensen, “Near-field imaging of light propagation in photonic crystal waveguides: explicit role of Bloch harmonics,” Phys. Rev. B 66, 235204 (2002).
[CrossRef]

Engelen, R. J. P.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Fattinger, Ch.

Feurer, T.

P. Peier, S. Pilz, F. Müller, K. A. Nelson, and T. Feurer, “Analysis of phase contrast imaging of terahertz phonon-polaritons,” J. Opt. Soc. Am. B 25, B70-B75 (2008).
[CrossRef]

T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Res. 37, 317-350 (2007).
[CrossRef]

T. Feurer, J. C. Vaughan, T. Hornung, and K. A. Nelson, “Typesetting of terahertz waveforms,” Opt. Lett. 29, 1802-1804 (2004).
[CrossRef] [PubMed]

D. W. Ward, J. D. Beers, T. Feurer, E. R. Statz, N. S. Stoyanov, and K. A. Nelson, “Coherent control of phonon-polaritons in a terahertz resonator fabricated with femtosecond laser machining,” Opt. Lett. 29, 2671-2673 (2004).
[CrossRef] [PubMed]

N. S. Stoyanov, T. Feurer, D. W. Ward, and K. A. Nelson, “Integrated diffractive terahertz elements,” Appl. Phys. Lett. 82, 674-677 (2003).
[CrossRef]

T. Feurer, J. C. Vaughan, and K. A. Nelson, “Spatiotemporal coherent control of lattice vibrational waves,” Science 299, 374-377 (2003).
[CrossRef] [PubMed]

N. S. Stoyanov, D. W. Ward, T. Feurer, and K. A. Nelson, “Terahertz polariton propagation in patterned materials,” Nature Mater. 1, 95-98 (2002).
[CrossRef]

Flück, E.

E. Flück, M. Hammer, A. M. Otter, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Amplitude and phase evolution of optical fields inside periodic photonic structures,” J. Lightwave Technol. 21, 1-10 (2003).
[CrossRef]

Gersen, H.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Gösele, U.

P. Kramper, M. Kafesaki, C. M. Soukoulis, A. Birner, F. Müller, U. Gösele, R. B. Wehrspohn, J. Mlynek, and V. Sandoghdar, “Near-field visualization of light confinement in a photonic crystal microresonator,” Opt. Lett. 29, 1-10 (2004).
[CrossRef]

Grischkowsky, D.

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics (Artech House, 2000).

Hammer, M.

E. Flück, M. Hammer, A. M. Otter, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Amplitude and phase evolution of optical fields inside periodic photonic structures,” J. Lightwave Technol. 21, 1-10 (2003).
[CrossRef]

Hebling, J.

A. G. Stepanov, J. Hebling, and J. Kuhl, “Thz generation via optical rectification with ultrashort laser pulse focused to a line,” Appl. Phys. B 81, 23-26 (2005).
[CrossRef]

Hornung, T.

Joannopoulos, J. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, 1995).

Kafesaki, M.

P. Kramper, M. Kafesaki, C. M. Soukoulis, A. Birner, F. Müller, U. Gösele, R. B. Wehrspohn, J. Mlynek, and V. Sandoghdar, “Near-field visualization of light confinement in a photonic crystal microresonator,” Opt. Lett. 29, 1-10 (2004).
[CrossRef]

Karle, T. J.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Keiding, S.

Kim, W. J.

Kleinman, D. A.

D. A. Kleinman and D. H. Auston, “Theory of electrooptic shock radiation in nonlinear optical media,” IEEE J. Quantum Electron. 20, 964-970 (1984).
[CrossRef]

Korterik, J. P.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

E. Flück, M. Hammer, A. M. Otter, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Amplitude and phase evolution of optical fields inside periodic photonic structures,” J. Lightwave Technol. 21, 1-10 (2003).
[CrossRef]

M. L. M. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Phase mapping of optical fields in integrated optical waveguide structures,” J. Lightwave Technol. 19, 1169-1176 (2001).
[CrossRef]

M. L. M. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Local observations of phase singularities in optical fields in waveguide structures,” Phys. Rev. Lett. 85, 294-297 (2000).
[CrossRef] [PubMed]

Kramper, P.

P. Kramper, M. Kafesaki, C. M. Soukoulis, A. Birner, F. Müller, U. Gösele, R. B. Wehrspohn, J. Mlynek, and V. Sandoghdar, “Near-field visualization of light confinement in a photonic crystal microresonator,” Opt. Lett. 29, 1-10 (2004).
[CrossRef]

Krauss, T. F.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

Kristensen, M.

S. I. Bozhevolnyi, V. S. Volkov, T. Søndergaard, A. Boltasseva, P. I. Borel, and M. Kristensen, “Near-field imaging of light propagation in photonic crystal waveguides: explicit role of Bloch harmonics,” Phys. Rev. B 66, 235204 (2002).
[CrossRef]

Kuang, W.

Kuhl, J.

A. G. Stepanov, J. Hebling, and J. Kuhl, “Thz generation via optical rectification with ultrashort laser pulse focused to a line,” Appl. Phys. B 81, 23-26 (2005).
[CrossRef]

Kuipers, L.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

E. Flück, M. Hammer, A. M. Otter, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Amplitude and phase evolution of optical fields inside periodic photonic structures,” J. Lightwave Technol. 21, 1-10 (2003).
[CrossRef]

M. L. M. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Phase mapping of optical fields in integrated optical waveguide structures,” J. Lightwave Technol. 19, 1169-1176 (2001).
[CrossRef]

M. L. M. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Local observations of phase singularities in optical fields in waveguide structures,” Phys. Rev. Lett. 85, 294-297 (2000).
[CrossRef] [PubMed]

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, 1995).

Mlynek, J.

P. Kramper, M. Kafesaki, C. M. Soukoulis, A. Birner, F. Müller, U. Gösele, R. B. Wehrspohn, J. Mlynek, and V. Sandoghdar, “Near-field visualization of light confinement in a photonic crystal microresonator,” Opt. Lett. 29, 1-10 (2004).
[CrossRef]

Müller, F.

P. Peier, S. Pilz, F. Müller, K. A. Nelson, and T. Feurer, “Analysis of phase contrast imaging of terahertz phonon-polaritons,” J. Opt. Soc. Am. B 25, B70-B75 (2008).
[CrossRef]

P. Kramper, M. Kafesaki, C. M. Soukoulis, A. Birner, F. Müller, U. Gösele, R. B. Wehrspohn, J. Mlynek, and V. Sandoghdar, “Near-field visualization of light confinement in a photonic crystal microresonator,” Opt. Lett. 29, 1-10 (2004).
[CrossRef]

Nelson, K. A.

P. Peier, S. Pilz, F. Müller, K. A. Nelson, and T. Feurer, “Analysis of phase contrast imaging of terahertz phonon-polaritons,” J. Opt. Soc. Am. B 25, B70-B75 (2008).
[CrossRef]

T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Res. 37, 317-350 (2007).
[CrossRef]

T. Feurer, J. C. Vaughan, T. Hornung, and K. A. Nelson, “Typesetting of terahertz waveforms,” Opt. Lett. 29, 1802-1804 (2004).
[CrossRef] [PubMed]

D. W. Ward, J. D. Beers, T. Feurer, E. R. Statz, N. S. Stoyanov, and K. A. Nelson, “Coherent control of phonon-polaritons in a terahertz resonator fabricated with femtosecond laser machining,” Opt. Lett. 29, 2671-2673 (2004).
[CrossRef] [PubMed]

N. S. Stoyanov, T. Feurer, D. W. Ward, and K. A. Nelson, “Integrated diffractive terahertz elements,” Appl. Phys. Lett. 82, 674-677 (2003).
[CrossRef]

T. Feurer, J. C. Vaughan, and K. A. Nelson, “Spatiotemporal coherent control of lattice vibrational waves,” Science 299, 374-377 (2003).
[CrossRef] [PubMed]

N. S. Stoyanov, D. W. Ward, T. Feurer, and K. A. Nelson, “Terahertz polariton propagation in patterned materials,” Nature Mater. 1, 95-98 (2002).
[CrossRef]

O'Brien, J. D.

Otter, A. M.

E. Flück, M. Hammer, A. M. Otter, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Amplitude and phase evolution of optical fields inside periodic photonic structures,” J. Lightwave Technol. 21, 1-10 (2003).
[CrossRef]

Peier, P.

Pilz, S.

Sakoda, K.

K. Sakoda, Optical Properties of Photonic Crystals (Springer, 2005).

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2007).

Sandoghdar, V.

P. Kramper, M. Kafesaki, C. M. Soukoulis, A. Birner, F. Müller, U. Gösele, R. B. Wehrspohn, J. Mlynek, and V. Sandoghdar, “Near-field visualization of light confinement in a photonic crystal microresonator,” Opt. Lett. 29, 1-10 (2004).
[CrossRef]

Søndergaard, T.

S. I. Bozhevolnyi, V. S. Volkov, T. Søndergaard, A. Boltasseva, P. I. Borel, and M. Kristensen, “Near-field imaging of light propagation in photonic crystal waveguides: explicit role of Bloch harmonics,” Phys. Rev. B 66, 235204 (2002).
[CrossRef]

Soukoulis, C. M.

P. Kramper, M. Kafesaki, C. M. Soukoulis, A. Birner, F. Müller, U. Gösele, R. B. Wehrspohn, J. Mlynek, and V. Sandoghdar, “Near-field visualization of light confinement in a photonic crystal microresonator,” Opt. Lett. 29, 1-10 (2004).
[CrossRef]

Statz, E. R.

Stepanov, A. G.

A. G. Stepanov, J. Hebling, and J. Kuhl, “Thz generation via optical rectification with ultrashort laser pulse focused to a line,” Appl. Phys. B 81, 23-26 (2005).
[CrossRef]

Stoyanov, N. S.

T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Res. 37, 317-350 (2007).
[CrossRef]

D. W. Ward, J. D. Beers, T. Feurer, E. R. Statz, N. S. Stoyanov, and K. A. Nelson, “Coherent control of phonon-polaritons in a terahertz resonator fabricated with femtosecond laser machining,” Opt. Lett. 29, 2671-2673 (2004).
[CrossRef] [PubMed]

N. S. Stoyanov, T. Feurer, D. W. Ward, and K. A. Nelson, “Integrated diffractive terahertz elements,” Appl. Phys. Lett. 82, 674-677 (2003).
[CrossRef]

N. S. Stoyanov, D. W. Ward, T. Feurer, and K. A. Nelson, “Terahertz polariton propagation in patterned materials,” Nature Mater. 1, 95-98 (2002).
[CrossRef]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics (Artech House, 2000).

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2007).

van Exter, M.

van Hulst, N. F.

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

E. Flück, M. Hammer, A. M. Otter, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Amplitude and phase evolution of optical fields inside periodic photonic structures,” J. Lightwave Technol. 21, 1-10 (2003).
[CrossRef]

M. L. M. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Phase mapping of optical fields in integrated optical waveguide structures,” J. Lightwave Technol. 19, 1169-1176 (2001).
[CrossRef]

M. L. M. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Local observations of phase singularities in optical fields in waveguide structures,” Phys. Rev. Lett. 85, 294-297 (2000).
[CrossRef] [PubMed]

Vaughan, J. C.

T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Res. 37, 317-350 (2007).
[CrossRef]

T. Feurer, J. C. Vaughan, T. Hornung, and K. A. Nelson, “Typesetting of terahertz waveforms,” Opt. Lett. 29, 1802-1804 (2004).
[CrossRef] [PubMed]

T. Feurer, J. C. Vaughan, and K. A. Nelson, “Spatiotemporal coherent control of lattice vibrational waves,” Science 299, 374-377 (2003).
[CrossRef] [PubMed]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, T. Søndergaard, A. Boltasseva, P. I. Borel, and M. Kristensen, “Near-field imaging of light propagation in photonic crystal waveguides: explicit role of Bloch harmonics,” Phys. Rev. B 66, 235204 (2002).
[CrossRef]

Ward, D. W.

T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Res. 37, 317-350 (2007).
[CrossRef]

D. W. Ward, J. D. Beers, T. Feurer, E. R. Statz, N. S. Stoyanov, and K. A. Nelson, “Coherent control of phonon-polaritons in a terahertz resonator fabricated with femtosecond laser machining,” Opt. Lett. 29, 2671-2673 (2004).
[CrossRef] [PubMed]

N. S. Stoyanov, T. Feurer, D. W. Ward, and K. A. Nelson, “Integrated diffractive terahertz elements,” Appl. Phys. Lett. 82, 674-677 (2003).
[CrossRef]

N. S. Stoyanov, D. W. Ward, T. Feurer, and K. A. Nelson, “Terahertz polariton propagation in patterned materials,” Nature Mater. 1, 95-98 (2002).
[CrossRef]

Wehrspohn, R. B.

P. Kramper, M. Kafesaki, C. M. Soukoulis, A. Birner, F. Müller, U. Gösele, R. B. Wehrspohn, J. Mlynek, and V. Sandoghdar, “Near-field visualization of light confinement in a photonic crystal microresonator,” Opt. Lett. 29, 1-10 (2004).
[CrossRef]

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, 1995).

Annu. Rev. Mater. Res. (1)

T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Res. 37, 317-350 (2007).
[CrossRef]

Appl. Phys. B (1)

A. G. Stepanov, J. Hebling, and J. Kuhl, “Thz generation via optical rectification with ultrashort laser pulse focused to a line,” Appl. Phys. B 81, 23-26 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

N. S. Stoyanov, T. Feurer, D. W. Ward, and K. A. Nelson, “Integrated diffractive terahertz elements,” Appl. Phys. Lett. 82, 674-677 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. A. Kleinman and D. H. Auston, “Theory of electrooptic shock radiation in nonlinear optical media,” IEEE J. Quantum Electron. 20, 964-970 (1984).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (2)

Nature Mater. (1)

N. S. Stoyanov, D. W. Ward, T. Feurer, and K. A. Nelson, “Terahertz polariton propagation in patterned materials,” Nature Mater. 1, 95-98 (2002).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. B (1)

S. I. Bozhevolnyi, V. S. Volkov, T. Søndergaard, A. Boltasseva, P. I. Borel, and M. Kristensen, “Near-field imaging of light propagation in photonic crystal waveguides: explicit role of Bloch harmonics,” Phys. Rev. B 66, 235204 (2002).
[CrossRef]

Phys. Rev. Lett. (2)

H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005).
[CrossRef] [PubMed]

M. L. M. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Local observations of phase singularities in optical fields in waveguide structures,” Phys. Rev. Lett. 85, 294-297 (2000).
[CrossRef] [PubMed]

Science (1)

T. Feurer, J. C. Vaughan, and K. A. Nelson, “Spatiotemporal coherent control of lattice vibrational waves,” Science 299, 374-377 (2003).
[CrossRef] [PubMed]

Other (5)

A. Taflove and S. C. Hagness, Computational Electrodynamics (Artech House, 2000).

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, 1995).

K. Sakoda, Optical Properties of Photonic Crystals (Springer, 2005).

D.Mittleman (Ed.), Sensing with Terahertz Radiation, Springer Series in Optical Sciences, Vol. 85, 2003.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Side view of the setup to measure the angular dependance of the transmitted THz wave. The optical pump pulse with wave vector k pump generates two counterpropagating THz waves ( k THz ) within the bulk Li Nb O 3 crystal to the left. The THz wave passes the air gap and enters the right crystal, where it is detected with a time-delayed probe pulse ( k probe ) . (b) Top view. The two Li Nb O 3 crystals may be rotated by θ i , thereby changing the angle of incidence for p-polarization.

Fig. 2
Fig. 2

(a) Side view and (b) top view of the experiment. The phonon-polaritons are generated by the pump pulse with wave vector k pump . One of the two THz waves propagates towards the multilayer system and is partly reflected and partly transmitted. The transmitted THz wave is detected with the probe-pulse wave vector parallel to the pump, and the reflected THz wave is detected with the probe-pulse wave vector antiparallel to the pump.

Fig. 3
Fig. 3

Transmission as a function of the angle of incidence (dots). The dashed curve corresponds to the Fresnel result with a refractive index of n THz = 4.8 , and the solid curve takes into account the angular spread of the wavepacket.

Fig. 4
Fig. 4

Transmitted signal as a function of position and air-gap width d. The measurements (a) agree well with the simulations (b).

Fig. 5
Fig. 5

Spectral response of a single Fabry–Perot etalon. The dashed lines mark the calculated resonances. (a) Experiment and (b) FDTD simulations.

Fig. 6
Fig. 6

Setup to characterize the THz multilayer systems. The two bulk Li Nb O 3 crystals serve to generate and detect the THz waves. The distances d 1 , 2 , 3 and the thickness t can be changed in order to modify the spectral response.

Fig. 7
Fig. 7

(a) 2D image of the reflected THz field; the line plot shows the average over the vertical direction. (b) 1D averages for different air-gap widths stacked on top of each other. The dashed white line indicates the distance at which the data shown in (a) was recorded, and the white arrow marks the configuration where two reflections cancel each other. (c) Line-by-line Fourier transforms of the data shown in (b).

Fig. 8
Fig. 8

Temporal amplitude of (a) the reflected and (b) the transmitted THz waveforms. The solid curves are the experimental results and the dashed curves result from FDTD simulations. The black vertical lines mark time zero, which was used to adjust the experimental and the simulated curves. (c) and (d) are the spectral amplitudes of the waveforms shown in (a) and (b).

Fig. 9
Fig. 9

(a) Reflected and (b) transmitted spectral amplitudes for a system with two 250 - μ m -thick Li Nb O 3 layers. The dashed curves represent the results of the simulations.

Fig. 10
Fig. 10

(a) Reflected and (b) transmitted spectral amplitude for a system with two 250 - μ m -thick silicon layers. The dashed curves represent the results of the simulations.

Fig. 11
Fig. 11

(a) Reflected and (b) transmitted spectral amplitude for a system with two 505 - μ m -thick silicon layers. The dashed curves represent the results of the simulations.

Metrics