Abstract

Raman-like forward scattering by acoustic phonons transversely trapped in birefringent silica–air photonic crystal fibers is studied. As the air-filling fraction increases, core-confined acoustic resonances become increasingly apparent at higher frequencies (>1.1GHz), while the number of cladding-confined acoustic modes involved in scattering falls. Two main types of scattering are observed: intramodal (scattering to new frequencies within the same optical mode) and intermodal (frequency-shifted scattering to a different optical mode). It is shown that the twofold symmetric microstructure in a birefringent fiber causes strongly polarization-dependent intramodal scattering. Good agreement is obtained between the experimental measurements and numerical solutions of both the acoustic and electromagnetic wave equations by using a full-vectorial finite-element approach. Phononic bandgaps are found to play a significant role at higher air-filling fractions, leading to the appearance of additional bands in the scattering spectrum.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Dainese, P. St.J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, and A. Khelif, “Raman-like light scattering from acoustic phonons in photonic crystal fiber,” Opt. Express 14, 4141-4150 (2006).
    [CrossRef] [PubMed]
  2. D. Elser, U. L. Andersen, A. Korn, O. Glöckl, S. Lorenz, Ch. Marquardt, and G. Leuchs, “Reduction of guided acoustic wave Brillouin scattering in photonic crystal fibers,” Phys. Rev. Lett. 97, 133901 (2006).
    [CrossRef] [PubMed]
  3. J.-C. Beugnot, T. Sylvestre, H. Maillotte, G. Mélin, and V. Laude, “Guided acoustic wave Brillouin scattering in photonic crystal fibers,” Opt. Lett. 32, 17-19 (2007).
    [CrossRef]
  4. N. Shibata, A. Nakazono, N. Taguchi, and S. Tanaka, “Forward Brillouin scattering in holey fibers,” IEEE Photon. Technol. Lett. 18, 412-414 (2006).
    [CrossRef]
  5. R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B 31, 5244-5252 (1985).
    [CrossRef]
  6. R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, “Broadband parametric deamplification of quantum noise in an optical fiber,” Phys. Rev. Lett. 57, 691-694 (1986).
    [CrossRef] [PubMed]
  7. G. S. Wiederhecker, A. Brenn, H. Hundertmark, C. M. B. Cordeiro, J. C. Knight, P. St.J. Russell, and H. L. Fragnito, “Controlling acousto-optic interactions in photonic crystal fiber with sub-wavelength core-hole,” in Proceedings of theConference on Lasers and Electro-Optics (Optical Society of America, 2007), paper CThFF2.
  8. P. St.J. Russell, E. Marin, A. Diez, S. Guenneau, and A. B. Movchan, “Sonic band gaps in PCF preforms: enhancing the interaction of sound and light,” Opt. Express 11, 2555-2560 (2003).
    [CrossRef] [PubMed]
  9. I. Enomori, K. Saitoh, and M. Koshiba, “Fundamental characteristics of localized acoustic modes in photonic crystal fibers,” IEICE Trans. Electron. E88c, 876-882 (2005).
    [CrossRef]
  10. V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J. M. Dudley, and H. Maillotte, “Phononic band-gap guidance of acoustic modes in photonic crystal fibers,” Phys. Rev. B 71, 045107 (2005).
    [CrossRef]
  11. P. Dainese, P. St.J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2, 388-392 (2006).
    [CrossRef]
  12. T. Matsui, K. Nakajima, T. Sakamoto, K. Shiraki, and I. Sankawa, “Structural dependence of guided acoustic-wave Brillouin scattering spectra in hole-assisted fiber and its temperature dependence,” Appl. Opt. 46, 6912-6917 (2007).
    [CrossRef] [PubMed]
  13. A. J. Poustie, “Bandwidth and mode intensities of guided acoustic-wave Brillouin scattering in optical fibers,” J. Opt. Soc. Am. B 10, 691-696 (1993).
    [CrossRef]
  14. G. S. Wiederhecker, A. Brenn, H. L. Fragnito, and P. St.J. Russell, “Coherent control of ultrahigh-frequency acoustic resonances in photonic crystal fibers,” Phys. Rev. Lett. 100, 203903 (2008).
    [CrossRef] [PubMed]
  15. D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed. (Academic, 1991).
  16. P. J. Thomas, N. L. Rowell, H. M. van Driel, and G. I. Stegeman, “Normal acoustic modes and Brillouin scattering in single-mode optical fibers,” Phys. Rev. B 19, 4986-4998 (1979).
    [CrossRef]
  17. S. Afshar V., V. P. Kalosha, X. Bao, and L. Chen, “Enhancement of stimulated Brillouin scattering of higher-order acoustic modes in single-mode optical fiber,” Opt. Lett. 30, 2685-2687 (2005).
    [CrossRef]
  18. M. S. Kang, A. Nazarkin, A. Brenn, and P. St.J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5, 276-280 (2009).
    [CrossRef]

2009

M. S. Kang, A. Nazarkin, A. Brenn, and P. St.J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5, 276-280 (2009).
[CrossRef]

2008

G. S. Wiederhecker, A. Brenn, H. L. Fragnito, and P. St.J. Russell, “Coherent control of ultrahigh-frequency acoustic resonances in photonic crystal fibers,” Phys. Rev. Lett. 100, 203903 (2008).
[CrossRef] [PubMed]

2007

2006

P. Dainese, P. St.J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, and A. Khelif, “Raman-like light scattering from acoustic phonons in photonic crystal fiber,” Opt. Express 14, 4141-4150 (2006).
[CrossRef] [PubMed]

P. Dainese, P. St.J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2, 388-392 (2006).
[CrossRef]

D. Elser, U. L. Andersen, A. Korn, O. Glöckl, S. Lorenz, Ch. Marquardt, and G. Leuchs, “Reduction of guided acoustic wave Brillouin scattering in photonic crystal fibers,” Phys. Rev. Lett. 97, 133901 (2006).
[CrossRef] [PubMed]

N. Shibata, A. Nakazono, N. Taguchi, and S. Tanaka, “Forward Brillouin scattering in holey fibers,” IEEE Photon. Technol. Lett. 18, 412-414 (2006).
[CrossRef]

2005

I. Enomori, K. Saitoh, and M. Koshiba, “Fundamental characteristics of localized acoustic modes in photonic crystal fibers,” IEICE Trans. Electron. E88c, 876-882 (2005).
[CrossRef]

V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J. M. Dudley, and H. Maillotte, “Phononic band-gap guidance of acoustic modes in photonic crystal fibers,” Phys. Rev. B 71, 045107 (2005).
[CrossRef]

S. Afshar V., V. P. Kalosha, X. Bao, and L. Chen, “Enhancement of stimulated Brillouin scattering of higher-order acoustic modes in single-mode optical fiber,” Opt. Lett. 30, 2685-2687 (2005).
[CrossRef]

2003

1993

1986

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, “Broadband parametric deamplification of quantum noise in an optical fiber,” Phys. Rev. Lett. 57, 691-694 (1986).
[CrossRef] [PubMed]

1985

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B 31, 5244-5252 (1985).
[CrossRef]

1979

P. J. Thomas, N. L. Rowell, H. M. van Driel, and G. I. Stegeman, “Normal acoustic modes and Brillouin scattering in single-mode optical fibers,” Phys. Rev. B 19, 4986-4998 (1979).
[CrossRef]

Afshar V., S.

Andersen, U. L.

D. Elser, U. L. Andersen, A. Korn, O. Glöckl, S. Lorenz, Ch. Marquardt, and G. Leuchs, “Reduction of guided acoustic wave Brillouin scattering in photonic crystal fibers,” Phys. Rev. Lett. 97, 133901 (2006).
[CrossRef] [PubMed]

Bao, X.

Bayer, P. W.

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B 31, 5244-5252 (1985).
[CrossRef]

Benchabane, S.

V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J. M. Dudley, and H. Maillotte, “Phononic band-gap guidance of acoustic modes in photonic crystal fibers,” Phys. Rev. B 71, 045107 (2005).
[CrossRef]

Beugnot, J.-C.

Brenn, A.

M. S. Kang, A. Nazarkin, A. Brenn, and P. St.J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5, 276-280 (2009).
[CrossRef]

G. S. Wiederhecker, A. Brenn, H. L. Fragnito, and P. St.J. Russell, “Coherent control of ultrahigh-frequency acoustic resonances in photonic crystal fibers,” Phys. Rev. Lett. 100, 203903 (2008).
[CrossRef] [PubMed]

G. S. Wiederhecker, A. Brenn, H. Hundertmark, C. M. B. Cordeiro, J. C. Knight, P. St.J. Russell, and H. L. Fragnito, “Controlling acousto-optic interactions in photonic crystal fiber with sub-wavelength core-hole,” in Proceedings of theConference on Lasers and Electro-Optics (Optical Society of America, 2007), paper CThFF2.

Chen, L.

Cordeiro, C. M. B.

G. S. Wiederhecker, A. Brenn, H. Hundertmark, C. M. B. Cordeiro, J. C. Knight, P. St.J. Russell, and H. L. Fragnito, “Controlling acousto-optic interactions in photonic crystal fiber with sub-wavelength core-hole,” in Proceedings of theConference on Lasers and Electro-Optics (Optical Society of America, 2007), paper CThFF2.

Dainese, P.

P. Dainese, P. St.J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2, 388-392 (2006).
[CrossRef]

P. Dainese, P. St.J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, and A. Khelif, “Raman-like light scattering from acoustic phonons in photonic crystal fiber,” Opt. Express 14, 4141-4150 (2006).
[CrossRef] [PubMed]

DeVoe, R. G.

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, “Broadband parametric deamplification of quantum noise in an optical fiber,” Phys. Rev. Lett. 57, 691-694 (1986).
[CrossRef] [PubMed]

Diez, A.

Dudley, J. M.

V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J. M. Dudley, and H. Maillotte, “Phononic band-gap guidance of acoustic modes in photonic crystal fibers,” Phys. Rev. B 71, 045107 (2005).
[CrossRef]

Elser, D.

D. Elser, U. L. Andersen, A. Korn, O. Glöckl, S. Lorenz, Ch. Marquardt, and G. Leuchs, “Reduction of guided acoustic wave Brillouin scattering in photonic crystal fibers,” Phys. Rev. Lett. 97, 133901 (2006).
[CrossRef] [PubMed]

Enomori, I.

I. Enomori, K. Saitoh, and M. Koshiba, “Fundamental characteristics of localized acoustic modes in photonic crystal fibers,” IEICE Trans. Electron. E88c, 876-882 (2005).
[CrossRef]

Fragnito, H. L.

G. S. Wiederhecker, A. Brenn, H. L. Fragnito, and P. St.J. Russell, “Coherent control of ultrahigh-frequency acoustic resonances in photonic crystal fibers,” Phys. Rev. Lett. 100, 203903 (2008).
[CrossRef] [PubMed]

P. Dainese, P. St.J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2, 388-392 (2006).
[CrossRef]

P. Dainese, P. St.J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, and A. Khelif, “Raman-like light scattering from acoustic phonons in photonic crystal fiber,” Opt. Express 14, 4141-4150 (2006).
[CrossRef] [PubMed]

G. S. Wiederhecker, A. Brenn, H. Hundertmark, C. M. B. Cordeiro, J. C. Knight, P. St.J. Russell, and H. L. Fragnito, “Controlling acousto-optic interactions in photonic crystal fiber with sub-wavelength core-hole,” in Proceedings of theConference on Lasers and Electro-Optics (Optical Society of America, 2007), paper CThFF2.

Glöckl, O.

D. Elser, U. L. Andersen, A. Korn, O. Glöckl, S. Lorenz, Ch. Marquardt, and G. Leuchs, “Reduction of guided acoustic wave Brillouin scattering in photonic crystal fibers,” Phys. Rev. Lett. 97, 133901 (2006).
[CrossRef] [PubMed]

Guenneau, S.

Hundertmark, H.

G. S. Wiederhecker, A. Brenn, H. Hundertmark, C. M. B. Cordeiro, J. C. Knight, P. St.J. Russell, and H. L. Fragnito, “Controlling acousto-optic interactions in photonic crystal fiber with sub-wavelength core-hole,” in Proceedings of theConference on Lasers and Electro-Optics (Optical Society of America, 2007), paper CThFF2.

Joly, N.

P. Dainese, P. St.J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2, 388-392 (2006).
[CrossRef]

P. Dainese, P. St.J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, and A. Khelif, “Raman-like light scattering from acoustic phonons in photonic crystal fiber,” Opt. Express 14, 4141-4150 (2006).
[CrossRef] [PubMed]

Kalosha, V. P.

Kang, M. S.

M. S. Kang, A. Nazarkin, A. Brenn, and P. St.J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5, 276-280 (2009).
[CrossRef]

Khelif, A.

P. Dainese, P. St.J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2, 388-392 (2006).
[CrossRef]

P. Dainese, P. St.J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, and A. Khelif, “Raman-like light scattering from acoustic phonons in photonic crystal fiber,” Opt. Express 14, 4141-4150 (2006).
[CrossRef] [PubMed]

V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J. M. Dudley, and H. Maillotte, “Phononic band-gap guidance of acoustic modes in photonic crystal fibers,” Phys. Rev. B 71, 045107 (2005).
[CrossRef]

Kibler, B.

V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J. M. Dudley, and H. Maillotte, “Phononic band-gap guidance of acoustic modes in photonic crystal fibers,” Phys. Rev. B 71, 045107 (2005).
[CrossRef]

Knight, J. C.

P. Dainese, P. St.J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2, 388-392 (2006).
[CrossRef]

G. S. Wiederhecker, A. Brenn, H. Hundertmark, C. M. B. Cordeiro, J. C. Knight, P. St.J. Russell, and H. L. Fragnito, “Controlling acousto-optic interactions in photonic crystal fiber with sub-wavelength core-hole,” in Proceedings of theConference on Lasers and Electro-Optics (Optical Society of America, 2007), paper CThFF2.

Korn, A.

D. Elser, U. L. Andersen, A. Korn, O. Glöckl, S. Lorenz, Ch. Marquardt, and G. Leuchs, “Reduction of guided acoustic wave Brillouin scattering in photonic crystal fibers,” Phys. Rev. Lett. 97, 133901 (2006).
[CrossRef] [PubMed]

Koshiba, M.

I. Enomori, K. Saitoh, and M. Koshiba, “Fundamental characteristics of localized acoustic modes in photonic crystal fibers,” IEICE Trans. Electron. E88c, 876-882 (2005).
[CrossRef]

Laude, V.

J.-C. Beugnot, T. Sylvestre, H. Maillotte, G. Mélin, and V. Laude, “Guided acoustic wave Brillouin scattering in photonic crystal fibers,” Opt. Lett. 32, 17-19 (2007).
[CrossRef]

P. Dainese, P. St.J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2, 388-392 (2006).
[CrossRef]

P. Dainese, P. St.J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, and A. Khelif, “Raman-like light scattering from acoustic phonons in photonic crystal fiber,” Opt. Express 14, 4141-4150 (2006).
[CrossRef] [PubMed]

V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J. M. Dudley, and H. Maillotte, “Phononic band-gap guidance of acoustic modes in photonic crystal fibers,” Phys. Rev. B 71, 045107 (2005).
[CrossRef]

Leuchs, G.

D. Elser, U. L. Andersen, A. Korn, O. Glöckl, S. Lorenz, Ch. Marquardt, and G. Leuchs, “Reduction of guided acoustic wave Brillouin scattering in photonic crystal fibers,” Phys. Rev. Lett. 97, 133901 (2006).
[CrossRef] [PubMed]

Levenson, M. D.

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, “Broadband parametric deamplification of quantum noise in an optical fiber,” Phys. Rev. Lett. 57, 691-694 (1986).
[CrossRef] [PubMed]

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B 31, 5244-5252 (1985).
[CrossRef]

Lorenz, S.

D. Elser, U. L. Andersen, A. Korn, O. Glöckl, S. Lorenz, Ch. Marquardt, and G. Leuchs, “Reduction of guided acoustic wave Brillouin scattering in photonic crystal fibers,” Phys. Rev. Lett. 97, 133901 (2006).
[CrossRef] [PubMed]

Maillotte, H.

J.-C. Beugnot, T. Sylvestre, H. Maillotte, G. Mélin, and V. Laude, “Guided acoustic wave Brillouin scattering in photonic crystal fibers,” Opt. Lett. 32, 17-19 (2007).
[CrossRef]

V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J. M. Dudley, and H. Maillotte, “Phononic band-gap guidance of acoustic modes in photonic crystal fibers,” Phys. Rev. B 71, 045107 (2005).
[CrossRef]

Marcuse, D.

D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed. (Academic, 1991).

Marin, E.

Marquardt, Ch.

D. Elser, U. L. Andersen, A. Korn, O. Glöckl, S. Lorenz, Ch. Marquardt, and G. Leuchs, “Reduction of guided acoustic wave Brillouin scattering in photonic crystal fibers,” Phys. Rev. Lett. 97, 133901 (2006).
[CrossRef] [PubMed]

Matsui, T.

Mélin, G.

Movchan, A. B.

Mussot, A.

V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J. M. Dudley, and H. Maillotte, “Phononic band-gap guidance of acoustic modes in photonic crystal fibers,” Phys. Rev. B 71, 045107 (2005).
[CrossRef]

Nakajima, K.

Nakazono, A.

N. Shibata, A. Nakazono, N. Taguchi, and S. Tanaka, “Forward Brillouin scattering in holey fibers,” IEEE Photon. Technol. Lett. 18, 412-414 (2006).
[CrossRef]

Nazarkin, A.

M. S. Kang, A. Nazarkin, A. Brenn, and P. St.J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5, 276-280 (2009).
[CrossRef]

Perlmutter, S. H.

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, “Broadband parametric deamplification of quantum noise in an optical fiber,” Phys. Rev. Lett. 57, 691-694 (1986).
[CrossRef] [PubMed]

Poustie, A. J.

Rowell, N. L.

P. J. Thomas, N. L. Rowell, H. M. van Driel, and G. I. Stegeman, “Normal acoustic modes and Brillouin scattering in single-mode optical fibers,” Phys. Rev. B 19, 4986-4998 (1979).
[CrossRef]

Russell, P. St.J.

M. S. Kang, A. Nazarkin, A. Brenn, and P. St.J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5, 276-280 (2009).
[CrossRef]

G. S. Wiederhecker, A. Brenn, H. L. Fragnito, and P. St.J. Russell, “Coherent control of ultrahigh-frequency acoustic resonances in photonic crystal fibers,” Phys. Rev. Lett. 100, 203903 (2008).
[CrossRef] [PubMed]

P. Dainese, P. St.J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2, 388-392 (2006).
[CrossRef]

P. Dainese, P. St.J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, and A. Khelif, “Raman-like light scattering from acoustic phonons in photonic crystal fiber,” Opt. Express 14, 4141-4150 (2006).
[CrossRef] [PubMed]

P. St.J. Russell, E. Marin, A. Diez, S. Guenneau, and A. B. Movchan, “Sonic band gaps in PCF preforms: enhancing the interaction of sound and light,” Opt. Express 11, 2555-2560 (2003).
[CrossRef] [PubMed]

G. S. Wiederhecker, A. Brenn, H. Hundertmark, C. M. B. Cordeiro, J. C. Knight, P. St.J. Russell, and H. L. Fragnito, “Controlling acousto-optic interactions in photonic crystal fiber with sub-wavelength core-hole,” in Proceedings of theConference on Lasers and Electro-Optics (Optical Society of America, 2007), paper CThFF2.

Saitoh, K.

I. Enomori, K. Saitoh, and M. Koshiba, “Fundamental characteristics of localized acoustic modes in photonic crystal fibers,” IEICE Trans. Electron. E88c, 876-882 (2005).
[CrossRef]

Sakamoto, T.

Sankawa, I.

Shelby, R. M.

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, “Broadband parametric deamplification of quantum noise in an optical fiber,” Phys. Rev. Lett. 57, 691-694 (1986).
[CrossRef] [PubMed]

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B 31, 5244-5252 (1985).
[CrossRef]

Shibata, N.

N. Shibata, A. Nakazono, N. Taguchi, and S. Tanaka, “Forward Brillouin scattering in holey fibers,” IEEE Photon. Technol. Lett. 18, 412-414 (2006).
[CrossRef]

Shiraki, K.

Stegeman, G. I.

P. J. Thomas, N. L. Rowell, H. M. van Driel, and G. I. Stegeman, “Normal acoustic modes and Brillouin scattering in single-mode optical fibers,” Phys. Rev. B 19, 4986-4998 (1979).
[CrossRef]

Sylvestre, T.

J.-C. Beugnot, T. Sylvestre, H. Maillotte, G. Mélin, and V. Laude, “Guided acoustic wave Brillouin scattering in photonic crystal fibers,” Opt. Lett. 32, 17-19 (2007).
[CrossRef]

V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J. M. Dudley, and H. Maillotte, “Phononic band-gap guidance of acoustic modes in photonic crystal fibers,” Phys. Rev. B 71, 045107 (2005).
[CrossRef]

Taguchi, N.

N. Shibata, A. Nakazono, N. Taguchi, and S. Tanaka, “Forward Brillouin scattering in holey fibers,” IEEE Photon. Technol. Lett. 18, 412-414 (2006).
[CrossRef]

Tanaka, S.

N. Shibata, A. Nakazono, N. Taguchi, and S. Tanaka, “Forward Brillouin scattering in holey fibers,” IEEE Photon. Technol. Lett. 18, 412-414 (2006).
[CrossRef]

Thomas, P. J.

P. J. Thomas, N. L. Rowell, H. M. van Driel, and G. I. Stegeman, “Normal acoustic modes and Brillouin scattering in single-mode optical fibers,” Phys. Rev. B 19, 4986-4998 (1979).
[CrossRef]

van Driel, H. M.

P. J. Thomas, N. L. Rowell, H. M. van Driel, and G. I. Stegeman, “Normal acoustic modes and Brillouin scattering in single-mode optical fibers,” Phys. Rev. B 19, 4986-4998 (1979).
[CrossRef]

Walls, D. F.

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, “Broadband parametric deamplification of quantum noise in an optical fiber,” Phys. Rev. Lett. 57, 691-694 (1986).
[CrossRef] [PubMed]

Wiederhecker, G. S.

G. S. Wiederhecker, A. Brenn, H. L. Fragnito, and P. St.J. Russell, “Coherent control of ultrahigh-frequency acoustic resonances in photonic crystal fibers,” Phys. Rev. Lett. 100, 203903 (2008).
[CrossRef] [PubMed]

P. Dainese, P. St.J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2, 388-392 (2006).
[CrossRef]

P. Dainese, P. St.J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, and A. Khelif, “Raman-like light scattering from acoustic phonons in photonic crystal fiber,” Opt. Express 14, 4141-4150 (2006).
[CrossRef] [PubMed]

G. S. Wiederhecker, A. Brenn, H. Hundertmark, C. M. B. Cordeiro, J. C. Knight, P. St.J. Russell, and H. L. Fragnito, “Controlling acousto-optic interactions in photonic crystal fiber with sub-wavelength core-hole,” in Proceedings of theConference on Lasers and Electro-Optics (Optical Society of America, 2007), paper CThFF2.

Wilm, M.

V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J. M. Dudley, and H. Maillotte, “Phononic band-gap guidance of acoustic modes in photonic crystal fibers,” Phys. Rev. B 71, 045107 (2005).
[CrossRef]

Appl. Opt.

IEEE Photon. Technol. Lett.

N. Shibata, A. Nakazono, N. Taguchi, and S. Tanaka, “Forward Brillouin scattering in holey fibers,” IEEE Photon. Technol. Lett. 18, 412-414 (2006).
[CrossRef]

IEICE Trans. Electron.

I. Enomori, K. Saitoh, and M. Koshiba, “Fundamental characteristics of localized acoustic modes in photonic crystal fibers,” IEICE Trans. Electron. E88c, 876-882 (2005).
[CrossRef]

J. Opt. Soc. Am. B

Nat. Phys.

M. S. Kang, A. Nazarkin, A. Brenn, and P. St.J. Russell, “Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators,” Nat. Phys. 5, 276-280 (2009).
[CrossRef]

P. Dainese, P. St.J. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2, 388-392 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

P. J. Thomas, N. L. Rowell, H. M. van Driel, and G. I. Stegeman, “Normal acoustic modes and Brillouin scattering in single-mode optical fibers,” Phys. Rev. B 19, 4986-4998 (1979).
[CrossRef]

V. Laude, A. Khelif, S. Benchabane, M. Wilm, T. Sylvestre, B. Kibler, A. Mussot, J. M. Dudley, and H. Maillotte, “Phononic band-gap guidance of acoustic modes in photonic crystal fibers,” Phys. Rev. B 71, 045107 (2005).
[CrossRef]

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B 31, 5244-5252 (1985).
[CrossRef]

Phys. Rev. Lett.

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, “Broadband parametric deamplification of quantum noise in an optical fiber,” Phys. Rev. Lett. 57, 691-694 (1986).
[CrossRef] [PubMed]

D. Elser, U. L. Andersen, A. Korn, O. Glöckl, S. Lorenz, Ch. Marquardt, and G. Leuchs, “Reduction of guided acoustic wave Brillouin scattering in photonic crystal fibers,” Phys. Rev. Lett. 97, 133901 (2006).
[CrossRef] [PubMed]

G. S. Wiederhecker, A. Brenn, H. L. Fragnito, and P. St.J. Russell, “Coherent control of ultrahigh-frequency acoustic resonances in photonic crystal fibers,” Phys. Rev. Lett. 100, 203903 (2008).
[CrossRef] [PubMed]

Other

D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed. (Academic, 1991).

G. S. Wiederhecker, A. Brenn, H. Hundertmark, C. M. B. Cordeiro, J. C. Knight, P. St.J. Russell, and H. L. Fragnito, “Controlling acousto-optic interactions in photonic crystal fiber with sub-wavelength core-hole,” in Proceedings of theConference on Lasers and Electro-Optics (Optical Society of America, 2007), paper CThFF2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Dispersion diagrams illustrating phase-matching conditions for intermodal and intramodal forward Raman-like scattering. For the acoustic properties, we consider a cylindrical silica rod of 2 μ m diameter in vacuum with stress-free boundaries for simplicity. The TR 21 torsional-radial acoustic mode causes intermodal coupling between orthogonal optical polarized modes of the core. It also yields intramodal scattering, as does the R 01 radial acoustic mode [2, 5]. (a) Acoustic dispersion relation of the R 01 mode (green) and the TR 21 mode (blue) in the silica rod. Raman-like scattering of light is caused by acoustic phonons (red arrows) with small wavevectors. (b) Zoomed in portion of (a) around the phase-matched R 01 resonance for intramodal scattering. The sloping dashed line corresponds to one of the two optical modes. (c) Zoomed-in portion of (a) around the phase-matched TR 21 resonance for intermodal scattering. The vertical dashed lines correspond to the difference of the axial wavevectors of the two optical modes at a certain optical wavelength ( 1550 nm in our experiments).

Fig. 2
Fig. 2

SEMs of the four birefringent PCFs investigated.

Fig. 3
Fig. 3

Experimental setup for polarization spectroscopic measurement of forward-scattering spectrum. EDFA, erbium-doped fiber amplifier; Polar, polarizer; PD, photodetector.

Fig. 4
Fig. 4

Forward-scattering spectra and SEMs for four PCFs with AFFs from 26% to 85%. Cladding resonances appear on the left-hand side of the slanted dashed line, and higher-frequency core resonances occur above 1.1 GHz (to the right of the vertical dashed line). The eigenmodes of the PC cladding are marked a–d.

Fig. 5
Fig. 5

(Left) Forward-scattering spectra for three PCFs with slightly different core sizes. Low-frequency cladding resonances appear below 0.7 GHz and higher-frequency core resonances in the range 1.3 1.7 GHz . (Right) SEMs of the PCFs.

Fig. 6
Fig. 6

(Left) Section of geometry and (right) FEM mesh used in the calculations of PCF #1. The external cladding diameter used for acoustic mode calculations was 110 μ m .

Fig. 7
Fig. 7

Optical modes of PCF #1 (top row, x-polarized mode; bottom row, y-polarized mode; from left to right E x , E y , Im ( E z ) ).

Fig. 8
Fig. 8

Comparison between the experimentally observed scattering spectrum of PCF #1 (top) and the calculated intermodal scattering spectrum (bottom) given by Eq. (5). The vertical dashed lines (a,b,c) indicate the modes that will be described in Fig. 9.

Fig. 9
Fig. 9

Spatial distributions of transverse deformation u t = ( u x 2 + u y 2 ) 1 2 and torsional dielectric tensor perturbation Δ ε x y of ARs in PCF #1 at (a) 298 MHz (Fig. 8a), (b) 516 MHz (Fig. 8b), (c), (d) 892 MHz and 893 MHz (Fig. 8c).

Fig. 10
Fig. 10

(Left) Structure used in the calculations of PCF #4. The external cladding diameter used for acoustic mode calculations was 100 μ m . (Right) Comparison between the “idealized” geometry (red) and the realistic one (black) of PCF #4.

Fig. 11
Fig. 11

Optical modes of PCF #4 (top row, x-polarized mode; bottom row, y-polarized mode; from left to right E x , E y , Im ( E z ) ).

Fig. 12
Fig. 12

(Left) Numerically calculated spectra for intramodal ( A 11 and A 22 , top) and intermodal ( A 12 , bottom) scattering in PCF #4. (Right) Comparison between the experimentally observed and calculated scattering spectra.

Fig. 13
Fig. 13

Calculated profiles of transverse deformation u t = ( u x 2 + u y 2 ) 1 2 of ARs in an idealized structure representing PCF #4. The modes at 0.812 and 1.237 GHz are confined by phononic bandgaps of the periodic structure in the cladding. The mode at 1.338 GHz is further extended into the cladding but still localized in the core.

Fig. 14
Fig. 14

(Left) Geometry of the unit cell used for calculation of phononic band structure of PCF #4. It corresponds to the idealized structure in Fig. 10. (Right) Calculated phononic band diagram, where the bandgap regions are shaded.

Tables (1)

Tables Icon

Table 1 Parameters of the Fibers Used in the Experiments

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

( β s , ω s ) = ( β i , ω i ) ± ( β ac , Ω ) ,
Ω β ac = c n g ,
β ac ( Ω ) = ω i Δ n c + n g s Ω c ω i Δ n c ,
κ i s m = ω ε 0 4 P i P s ( E i ( Δ ε ) m E s ) d A ,
A i s ( Ω ) = 1 π m κ i s m 2 Γ m 2 ( Ω Ω m ) 2 + Γ m 2 ,

Metrics