Abstract

Spectral distortion frequently occurs in a recently developed femtosecond time-resolved fluorescence spectroscopy based on noncollinear optical parametric amplification, which would limit its applications if it is not treated appropriately. We report the mechanism for broadening and distortion of the amplified spectrum, and it was found that the amplified fluorescence spectral width and the corresponding pulse duration were limited by the uncertainty principle. We demonstrated that the nonuniform gain curve of nonlinear optical crystal in the wide spectral region is the main cause leading to the distorted spectrum. Theoretical analysis shows that by carefully adjusting the experimental parameters, such as propagation and noncollinear angles, the spectral fidelity can be achieved in a broad region. Moreover, we also proposed a method for retrieving the genuine spectrum from the distorted amplified spectrum by experimentally measuring the gain curve encoded in the spectrum of the parametric superfluorescence, which is collected during propagation at noncollinear angles the same as those for amplified fluorescence.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. R. Ware and A. A. Lamola, Creation and Detection of the Excited State (Marcel Dekker, 1971).
  2. D. J. S. Birch and R. E. Imhof, “Time-domain fluorescence spectroscopy using time-correlated single-photon counting,” in Topics in Fluorescence Spectroscopy,Vol. 1, J.R.Lakowicz, ed. (Plenum Press, 1991) pp. 1-95.
  3. H. Szmacinski and J. R. Lakowicz, “Fluorescence lifetime-based sensing and imaging,” Sens. Actuators B 29, 16-24 (1995).
    [CrossRef]
  4. B. Gobets, J. T. M. Kennis, J. A. Ihalainen, M. Brazzoli, R. Croce, I. H. M. van Stokkum, R. Bassi, J. P. Dekker, H. van Amerongen, and G. R. Fleming, “Excitation energy transfer in dimeric light harvesting complex I: a combined streak-camera/fluorescence upconversion study,” J. Phys. Chem. B 105, 10132-10139 (2001).
    [CrossRef]
  5. I. H. M. van Stokkum, B. Gobets, T. Gensch, F. van Mourik, K. J. Hellingwerf, R. van Grondelle, and J. T. M. Kennis, “(Sub)-picosecond spectral evolution of fluorescence in photoactive proteins studied with a synchroscan streak camera system,” Photochem. Photobiol. 82, 380-388 (2006).
    [CrossRef] [PubMed]
  6. R. V. Krishnan, E. Biener, J. H. Zhang, R. Heckel, and B. Herman, “Probing subtle fluorescence dynamics in cellular proteins by streak camera based fluorescence lifetime imaging microscopy,” Appl. Phys. Lett. 83, 4658-4660 (2003).
    [CrossRef]
  7. T. C. Damen and J. Shah, “Femtosecond luminescence spectroscopy with 60 fs compressed pulses,” Appl. Phys. Lett. 52, 1291-1293 (1988).
    [CrossRef]
  8. L. Zhao, J. L. P. Lustres, V. Farztdinov, and N. P. Ernsting, “Femtosecond fluorescence spectroscopy by upconversion with tilted gate pulses,” Phys. Chem. Chem. Phys. 7, 1716-1725 (2005).
    [PubMed]
  9. S. Arzhantsev and M. Maroncelli, “Design and characterization of a femtosecond fluorescence spectrometer based on optical Kerr gating,” Appl. Spectrosc. 59, 206-220 (2005).
    [CrossRef] [PubMed]
  10. H. Mahr and M. D. Hirsch, “An optical up-conversion light gate with picosecond resolution,” Opt. Commun. 13, 96-99 (1975).
    [CrossRef]
  11. M. P. A. Branderhorst, P. Wasylczyk, and I. A. Walmsley, “Simultaneous time and frequency gating of weak molecular fluorescence in a thick nonlinear crystal,” Appl. Phys. Lett. 88, 061109 (2006).
    [CrossRef]
  12. C. Ma, W. M. Kwok, W. S. Chan, P. Zuo, J. T. W. Kan, P. H. Toy, and D. L. Phillips, “Ultrafast time-resolved study of photophysical processes involved in the photodeprotection of p-hydroxyphenacyl caged phototrigger compounds,” J. Am. Chem. Soc. 127, 1463-1472 (2005).
    [CrossRef] [PubMed]
  13. J. Takeda, K. Nakajima, S. Kurita, S. Tomimoto, S. Saito, and T. Suemoto, “Time-resolved luminescence spectroscopy by the optical Kerr-gate method applicable to ultrafast relaxation processes,” Phys. Rev. B 62, 10083-10087 (2000).
    [CrossRef]
  14. X. F. Han, X. H. Chen, Y. X. Weng, and J. Y. Zhang, “Ultrasensitive femtosecond time-resolved fluorescence spectroscopy for relaxation processes by using parametric amplification,” J. Opt. Soc. Am. B 24, 1633-1638 (2007).
    [CrossRef]
  15. P. Fita, Y. Stepanenko, and C. Radzewicz, “Femtosecond transient fluorescence spectrometer based on parametric amplification,” Appl. Phys. Lett. 86, 021909 (2005).
    [CrossRef]
  16. Z. Yu, X. Chen, Y. Weng, and J. Y. Zhang, “Nonlinear chirp effect introduced by Kerr medium as optical switches in ultrafast time-resolved measurements,” Opt. Lett. 34, 1117-1119 (2009).
    [CrossRef] [PubMed]
  17. X. H. Chen, X. F. Han, Y. X. Weng, and J. Y. Zhang, “Transient spectrometer for near-IR fluorescence based on parametric frequency upconversion,” Appl. Phys. Lett. 89, 061127 (2006).
    [CrossRef]
  18. J. Zhang, A. Shreenath, M. Kimmel, E. Zeek, R. Trebino, and S. Link, “Measurement of the intensity and phase of attojoule femtosecond light pulses using optical-parametric-amplification cross-correlation frequency-resolved optical gating,” Opt. Express 11, 601-609 (2003).
    [CrossRef] [PubMed]
  19. Y. X. Weng, X. F. Han, and J. Y. Zhang, “Determination of the detection limit for a noncollinear optical parametric amplification-gated femtosecond time-resolved fluorescence spectrometer--Reply to the Comment on “Ultrasensitive femtosecond time-resolved fluorescence spectroscopy for relaxation processes by using parametric amplification”,” J. Opt. Soc. B 25, 1627-1631 (2008).
    [CrossRef]
  20. X. F. Han, Y. X. Weng, R. Wang, X. H. Chen, K. H. Luo, L. A. Wu, and J. M. Zhao, “Single-photon level ultrafast all-optical switching,” Appl. Phys. Lett. 92, 151109 (2008).
    [CrossRef]
  21. X. F. Han, Y. X. Weng, A. L. Pan, B. S. Zou, and J. Y. Zhang, “Observation of delayed fluorescence in CdSxSe1-x nanobelts by femtosecond time-resolved fluorescence spectroscopy,” Appl. Phys. Lett. 92, 033102 (2008).
    [CrossRef]
  22. J. C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale (Academic, 2006).
    [PubMed]
  23. S. Akhmanov, A. Chirkin, K. Drabovich, A. Kovrigin, R. Khokhlov, and A. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. 4, 598-605 (1968).
    [CrossRef]
  24. F. Seifert, V. Petrov, and F. Noack, “Sub-100-fs optical parametric generator pumped by a high-repetition-rate Ti: sapphire regenerative amplifier system,” Opt. Lett. 19, 837-839 (1994).
    [CrossRef] [PubMed]
  25. V. Petrov and F. Noack, “Tunable femtosecond optical parametric amplifier in the mid-infrared with narrow-band seeding,” J. Opt. Soc. Am. B 12, 2214-2221 (1995).
    [CrossRef]
  26. R. Baumgartner and R. Byer, “Optical parametric amplification,” IEEE J. Quantum Electron. 15, 432-444 (1979).
    [CrossRef]
  27. T. Kobayashi and A. Baltuska, “Sub-5 fs pulse generation from a noncollinear optical parametric amplifier,” Meas. Sci. Technol. 13, 1671-1682 (2002).
    [CrossRef]
  28. A. Shirakawa, I. Sakane, M. Takasaka, and T. Kobayashi, “Sub-5-fs visible pulse generation by pulse-front-matched noncollinear optical parametric amplification,” Appl. Phys. Lett. 74, 2268 (1999).
    [CrossRef]
  29. A. Shirakawa, I. Sakane, and T. Kobayashi, “Pulse-front-matched optical parametric amplification for sub-10-fs pulse generation tunable in the visible and near infrared,” Opt. Lett. 23, 1292-1294 (1998).
    [CrossRef]
  30. L. Hongjun, Z. Wei, C. Guofu, W. Yishan, C. Zhao, and R. Chi, “Investigation of spectral bandwidth of optical parametric amplification,” Appl. Phys. B 79, 569-576 (2004).
    [CrossRef]
  31. A. Shirakawa and T. Kobayashi, “Noncollinear phase-and group-velocity matching of optical parametric amplifier for ultrashort pulse generation,” IEICE Trans. Electron. 81, 246-253 (1998).
  32. R. Danielius, A. Piskarskas, A. Stabinis, G. P. Banfi, P. Di Trapani, and R. Righini, “Traveling-wave parametric generation of widely tunable, highly coherent femtosecond light pulses,” J. Opt. Soc. Am. B 10, 2222-2232 (1993).
    [CrossRef]
  33. Fujian Castech Crystals, Inc. (Xihe, Fuzhou, Fujian, China) (1996), http://www.castech.com.
  34. P. Di Trapani, A. Andreoni, G. P. Banfi, C. Solcia, R. Danielius, A. Piskarskas, P. Foggi, M. Monguzzi, and C. Sozzi, “Group-velocity self-matching of femtosecond pulses in noncollinear parametric generation,” Phys. Rev. A 51, 3164-3168 (1995).
    [CrossRef] [PubMed]
  35. T. G. Giallorenzi and C. L. Tang, “Quantum theory of spontaneous parametric scattering of intense light,” Phys. Rev. 166, 225-233 (1968).
    [CrossRef]
  36. D. A. Kleinman, “Theory of optical parametric noise,” Phys. Rev. 174, 1027-1041 (1968).
    [CrossRef]

2009 (1)

2008 (3)

Y. X. Weng, X. F. Han, and J. Y. Zhang, “Determination of the detection limit for a noncollinear optical parametric amplification-gated femtosecond time-resolved fluorescence spectrometer--Reply to the Comment on “Ultrasensitive femtosecond time-resolved fluorescence spectroscopy for relaxation processes by using parametric amplification”,” J. Opt. Soc. B 25, 1627-1631 (2008).
[CrossRef]

X. F. Han, Y. X. Weng, R. Wang, X. H. Chen, K. H. Luo, L. A. Wu, and J. M. Zhao, “Single-photon level ultrafast all-optical switching,” Appl. Phys. Lett. 92, 151109 (2008).
[CrossRef]

X. F. Han, Y. X. Weng, A. L. Pan, B. S. Zou, and J. Y. Zhang, “Observation of delayed fluorescence in CdSxSe1-x nanobelts by femtosecond time-resolved fluorescence spectroscopy,” Appl. Phys. Lett. 92, 033102 (2008).
[CrossRef]

2007 (1)

2006 (3)

X. H. Chen, X. F. Han, Y. X. Weng, and J. Y. Zhang, “Transient spectrometer for near-IR fluorescence based on parametric frequency upconversion,” Appl. Phys. Lett. 89, 061127 (2006).
[CrossRef]

I. H. M. van Stokkum, B. Gobets, T. Gensch, F. van Mourik, K. J. Hellingwerf, R. van Grondelle, and J. T. M. Kennis, “(Sub)-picosecond spectral evolution of fluorescence in photoactive proteins studied with a synchroscan streak camera system,” Photochem. Photobiol. 82, 380-388 (2006).
[CrossRef] [PubMed]

M. P. A. Branderhorst, P. Wasylczyk, and I. A. Walmsley, “Simultaneous time and frequency gating of weak molecular fluorescence in a thick nonlinear crystal,” Appl. Phys. Lett. 88, 061109 (2006).
[CrossRef]

2005 (4)

C. Ma, W. M. Kwok, W. S. Chan, P. Zuo, J. T. W. Kan, P. H. Toy, and D. L. Phillips, “Ultrafast time-resolved study of photophysical processes involved in the photodeprotection of p-hydroxyphenacyl caged phototrigger compounds,” J. Am. Chem. Soc. 127, 1463-1472 (2005).
[CrossRef] [PubMed]

L. Zhao, J. L. P. Lustres, V. Farztdinov, and N. P. Ernsting, “Femtosecond fluorescence spectroscopy by upconversion with tilted gate pulses,” Phys. Chem. Chem. Phys. 7, 1716-1725 (2005).
[PubMed]

S. Arzhantsev and M. Maroncelli, “Design and characterization of a femtosecond fluorescence spectrometer based on optical Kerr gating,” Appl. Spectrosc. 59, 206-220 (2005).
[CrossRef] [PubMed]

P. Fita, Y. Stepanenko, and C. Radzewicz, “Femtosecond transient fluorescence spectrometer based on parametric amplification,” Appl. Phys. Lett. 86, 021909 (2005).
[CrossRef]

2004 (1)

L. Hongjun, Z. Wei, C. Guofu, W. Yishan, C. Zhao, and R. Chi, “Investigation of spectral bandwidth of optical parametric amplification,” Appl. Phys. B 79, 569-576 (2004).
[CrossRef]

2003 (2)

J. Zhang, A. Shreenath, M. Kimmel, E. Zeek, R. Trebino, and S. Link, “Measurement of the intensity and phase of attojoule femtosecond light pulses using optical-parametric-amplification cross-correlation frequency-resolved optical gating,” Opt. Express 11, 601-609 (2003).
[CrossRef] [PubMed]

R. V. Krishnan, E. Biener, J. H. Zhang, R. Heckel, and B. Herman, “Probing subtle fluorescence dynamics in cellular proteins by streak camera based fluorescence lifetime imaging microscopy,” Appl. Phys. Lett. 83, 4658-4660 (2003).
[CrossRef]

2002 (1)

T. Kobayashi and A. Baltuska, “Sub-5 fs pulse generation from a noncollinear optical parametric amplifier,” Meas. Sci. Technol. 13, 1671-1682 (2002).
[CrossRef]

2001 (1)

B. Gobets, J. T. M. Kennis, J. A. Ihalainen, M. Brazzoli, R. Croce, I. H. M. van Stokkum, R. Bassi, J. P. Dekker, H. van Amerongen, and G. R. Fleming, “Excitation energy transfer in dimeric light harvesting complex I: a combined streak-camera/fluorescence upconversion study,” J. Phys. Chem. B 105, 10132-10139 (2001).
[CrossRef]

2000 (1)

J. Takeda, K. Nakajima, S. Kurita, S. Tomimoto, S. Saito, and T. Suemoto, “Time-resolved luminescence spectroscopy by the optical Kerr-gate method applicable to ultrafast relaxation processes,” Phys. Rev. B 62, 10083-10087 (2000).
[CrossRef]

1999 (1)

A. Shirakawa, I. Sakane, M. Takasaka, and T. Kobayashi, “Sub-5-fs visible pulse generation by pulse-front-matched noncollinear optical parametric amplification,” Appl. Phys. Lett. 74, 2268 (1999).
[CrossRef]

1998 (2)

A. Shirakawa, I. Sakane, and T. Kobayashi, “Pulse-front-matched optical parametric amplification for sub-10-fs pulse generation tunable in the visible and near infrared,” Opt. Lett. 23, 1292-1294 (1998).
[CrossRef]

A. Shirakawa and T. Kobayashi, “Noncollinear phase-and group-velocity matching of optical parametric amplifier for ultrashort pulse generation,” IEICE Trans. Electron. 81, 246-253 (1998).

1995 (3)

P. Di Trapani, A. Andreoni, G. P. Banfi, C. Solcia, R. Danielius, A. Piskarskas, P. Foggi, M. Monguzzi, and C. Sozzi, “Group-velocity self-matching of femtosecond pulses in noncollinear parametric generation,” Phys. Rev. A 51, 3164-3168 (1995).
[CrossRef] [PubMed]

V. Petrov and F. Noack, “Tunable femtosecond optical parametric amplifier in the mid-infrared with narrow-band seeding,” J. Opt. Soc. Am. B 12, 2214-2221 (1995).
[CrossRef]

H. Szmacinski and J. R. Lakowicz, “Fluorescence lifetime-based sensing and imaging,” Sens. Actuators B 29, 16-24 (1995).
[CrossRef]

1994 (1)

1993 (1)

1988 (1)

T. C. Damen and J. Shah, “Femtosecond luminescence spectroscopy with 60 fs compressed pulses,” Appl. Phys. Lett. 52, 1291-1293 (1988).
[CrossRef]

1979 (1)

R. Baumgartner and R. Byer, “Optical parametric amplification,” IEEE J. Quantum Electron. 15, 432-444 (1979).
[CrossRef]

1975 (1)

H. Mahr and M. D. Hirsch, “An optical up-conversion light gate with picosecond resolution,” Opt. Commun. 13, 96-99 (1975).
[CrossRef]

1968 (3)

S. Akhmanov, A. Chirkin, K. Drabovich, A. Kovrigin, R. Khokhlov, and A. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. 4, 598-605 (1968).
[CrossRef]

T. G. Giallorenzi and C. L. Tang, “Quantum theory of spontaneous parametric scattering of intense light,” Phys. Rev. 166, 225-233 (1968).
[CrossRef]

D. A. Kleinman, “Theory of optical parametric noise,” Phys. Rev. 174, 1027-1041 (1968).
[CrossRef]

Akhmanov, S.

S. Akhmanov, A. Chirkin, K. Drabovich, A. Kovrigin, R. Khokhlov, and A. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. 4, 598-605 (1968).
[CrossRef]

Andreoni, A.

P. Di Trapani, A. Andreoni, G. P. Banfi, C. Solcia, R. Danielius, A. Piskarskas, P. Foggi, M. Monguzzi, and C. Sozzi, “Group-velocity self-matching of femtosecond pulses in noncollinear parametric generation,” Phys. Rev. A 51, 3164-3168 (1995).
[CrossRef] [PubMed]

Arzhantsev, S.

Baltuska, A.

T. Kobayashi and A. Baltuska, “Sub-5 fs pulse generation from a noncollinear optical parametric amplifier,” Meas. Sci. Technol. 13, 1671-1682 (2002).
[CrossRef]

Banfi, G. P.

P. Di Trapani, A. Andreoni, G. P. Banfi, C. Solcia, R. Danielius, A. Piskarskas, P. Foggi, M. Monguzzi, and C. Sozzi, “Group-velocity self-matching of femtosecond pulses in noncollinear parametric generation,” Phys. Rev. A 51, 3164-3168 (1995).
[CrossRef] [PubMed]

R. Danielius, A. Piskarskas, A. Stabinis, G. P. Banfi, P. Di Trapani, and R. Righini, “Traveling-wave parametric generation of widely tunable, highly coherent femtosecond light pulses,” J. Opt. Soc. Am. B 10, 2222-2232 (1993).
[CrossRef]

Bassi, R.

B. Gobets, J. T. M. Kennis, J. A. Ihalainen, M. Brazzoli, R. Croce, I. H. M. van Stokkum, R. Bassi, J. P. Dekker, H. van Amerongen, and G. R. Fleming, “Excitation energy transfer in dimeric light harvesting complex I: a combined streak-camera/fluorescence upconversion study,” J. Phys. Chem. B 105, 10132-10139 (2001).
[CrossRef]

Baumgartner, R.

R. Baumgartner and R. Byer, “Optical parametric amplification,” IEEE J. Quantum Electron. 15, 432-444 (1979).
[CrossRef]

Biener, E.

R. V. Krishnan, E. Biener, J. H. Zhang, R. Heckel, and B. Herman, “Probing subtle fluorescence dynamics in cellular proteins by streak camera based fluorescence lifetime imaging microscopy,” Appl. Phys. Lett. 83, 4658-4660 (2003).
[CrossRef]

Birch, D. J. S.

D. J. S. Birch and R. E. Imhof, “Time-domain fluorescence spectroscopy using time-correlated single-photon counting,” in Topics in Fluorescence Spectroscopy,Vol. 1, J.R.Lakowicz, ed. (Plenum Press, 1991) pp. 1-95.

Branderhorst, M. P. A.

M. P. A. Branderhorst, P. Wasylczyk, and I. A. Walmsley, “Simultaneous time and frequency gating of weak molecular fluorescence in a thick nonlinear crystal,” Appl. Phys. Lett. 88, 061109 (2006).
[CrossRef]

Brazzoli, M.

B. Gobets, J. T. M. Kennis, J. A. Ihalainen, M. Brazzoli, R. Croce, I. H. M. van Stokkum, R. Bassi, J. P. Dekker, H. van Amerongen, and G. R. Fleming, “Excitation energy transfer in dimeric light harvesting complex I: a combined streak-camera/fluorescence upconversion study,” J. Phys. Chem. B 105, 10132-10139 (2001).
[CrossRef]

Byer, R.

R. Baumgartner and R. Byer, “Optical parametric amplification,” IEEE J. Quantum Electron. 15, 432-444 (1979).
[CrossRef]

Chan, W. S.

C. Ma, W. M. Kwok, W. S. Chan, P. Zuo, J. T. W. Kan, P. H. Toy, and D. L. Phillips, “Ultrafast time-resolved study of photophysical processes involved in the photodeprotection of p-hydroxyphenacyl caged phototrigger compounds,” J. Am. Chem. Soc. 127, 1463-1472 (2005).
[CrossRef] [PubMed]

Chen, X.

Chen, X. H.

X. F. Han, Y. X. Weng, R. Wang, X. H. Chen, K. H. Luo, L. A. Wu, and J. M. Zhao, “Single-photon level ultrafast all-optical switching,” Appl. Phys. Lett. 92, 151109 (2008).
[CrossRef]

X. F. Han, X. H. Chen, Y. X. Weng, and J. Y. Zhang, “Ultrasensitive femtosecond time-resolved fluorescence spectroscopy for relaxation processes by using parametric amplification,” J. Opt. Soc. Am. B 24, 1633-1638 (2007).
[CrossRef]

X. H. Chen, X. F. Han, Y. X. Weng, and J. Y. Zhang, “Transient spectrometer for near-IR fluorescence based on parametric frequency upconversion,” Appl. Phys. Lett. 89, 061127 (2006).
[CrossRef]

Chi, R.

L. Hongjun, Z. Wei, C. Guofu, W. Yishan, C. Zhao, and R. Chi, “Investigation of spectral bandwidth of optical parametric amplification,” Appl. Phys. B 79, 569-576 (2004).
[CrossRef]

Chirkin, A.

S. Akhmanov, A. Chirkin, K. Drabovich, A. Kovrigin, R. Khokhlov, and A. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. 4, 598-605 (1968).
[CrossRef]

Croce, R.

B. Gobets, J. T. M. Kennis, J. A. Ihalainen, M. Brazzoli, R. Croce, I. H. M. van Stokkum, R. Bassi, J. P. Dekker, H. van Amerongen, and G. R. Fleming, “Excitation energy transfer in dimeric light harvesting complex I: a combined streak-camera/fluorescence upconversion study,” J. Phys. Chem. B 105, 10132-10139 (2001).
[CrossRef]

Damen, T. C.

T. C. Damen and J. Shah, “Femtosecond luminescence spectroscopy with 60 fs compressed pulses,” Appl. Phys. Lett. 52, 1291-1293 (1988).
[CrossRef]

Danielius, R.

P. Di Trapani, A. Andreoni, G. P. Banfi, C. Solcia, R. Danielius, A. Piskarskas, P. Foggi, M. Monguzzi, and C. Sozzi, “Group-velocity self-matching of femtosecond pulses in noncollinear parametric generation,” Phys. Rev. A 51, 3164-3168 (1995).
[CrossRef] [PubMed]

R. Danielius, A. Piskarskas, A. Stabinis, G. P. Banfi, P. Di Trapani, and R. Righini, “Traveling-wave parametric generation of widely tunable, highly coherent femtosecond light pulses,” J. Opt. Soc. Am. B 10, 2222-2232 (1993).
[CrossRef]

Dekker, J. P.

B. Gobets, J. T. M. Kennis, J. A. Ihalainen, M. Brazzoli, R. Croce, I. H. M. van Stokkum, R. Bassi, J. P. Dekker, H. van Amerongen, and G. R. Fleming, “Excitation energy transfer in dimeric light harvesting complex I: a combined streak-camera/fluorescence upconversion study,” J. Phys. Chem. B 105, 10132-10139 (2001).
[CrossRef]

Di Trapani, P.

P. Di Trapani, A. Andreoni, G. P. Banfi, C. Solcia, R. Danielius, A. Piskarskas, P. Foggi, M. Monguzzi, and C. Sozzi, “Group-velocity self-matching of femtosecond pulses in noncollinear parametric generation,” Phys. Rev. A 51, 3164-3168 (1995).
[CrossRef] [PubMed]

R. Danielius, A. Piskarskas, A. Stabinis, G. P. Banfi, P. Di Trapani, and R. Righini, “Traveling-wave parametric generation of widely tunable, highly coherent femtosecond light pulses,” J. Opt. Soc. Am. B 10, 2222-2232 (1993).
[CrossRef]

Diels, J. C.

J. C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale (Academic, 2006).
[PubMed]

Drabovich, K.

S. Akhmanov, A. Chirkin, K. Drabovich, A. Kovrigin, R. Khokhlov, and A. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. 4, 598-605 (1968).
[CrossRef]

Ernsting, N. P.

L. Zhao, J. L. P. Lustres, V. Farztdinov, and N. P. Ernsting, “Femtosecond fluorescence spectroscopy by upconversion with tilted gate pulses,” Phys. Chem. Chem. Phys. 7, 1716-1725 (2005).
[PubMed]

Farztdinov, V.

L. Zhao, J. L. P. Lustres, V. Farztdinov, and N. P. Ernsting, “Femtosecond fluorescence spectroscopy by upconversion with tilted gate pulses,” Phys. Chem. Chem. Phys. 7, 1716-1725 (2005).
[PubMed]

Fita, P.

P. Fita, Y. Stepanenko, and C. Radzewicz, “Femtosecond transient fluorescence spectrometer based on parametric amplification,” Appl. Phys. Lett. 86, 021909 (2005).
[CrossRef]

Fleming, G. R.

B. Gobets, J. T. M. Kennis, J. A. Ihalainen, M. Brazzoli, R. Croce, I. H. M. van Stokkum, R. Bassi, J. P. Dekker, H. van Amerongen, and G. R. Fleming, “Excitation energy transfer in dimeric light harvesting complex I: a combined streak-camera/fluorescence upconversion study,” J. Phys. Chem. B 105, 10132-10139 (2001).
[CrossRef]

Foggi, P.

P. Di Trapani, A. Andreoni, G. P. Banfi, C. Solcia, R. Danielius, A. Piskarskas, P. Foggi, M. Monguzzi, and C. Sozzi, “Group-velocity self-matching of femtosecond pulses in noncollinear parametric generation,” Phys. Rev. A 51, 3164-3168 (1995).
[CrossRef] [PubMed]

Gensch, T.

I. H. M. van Stokkum, B. Gobets, T. Gensch, F. van Mourik, K. J. Hellingwerf, R. van Grondelle, and J. T. M. Kennis, “(Sub)-picosecond spectral evolution of fluorescence in photoactive proteins studied with a synchroscan streak camera system,” Photochem. Photobiol. 82, 380-388 (2006).
[CrossRef] [PubMed]

Giallorenzi, T. G.

T. G. Giallorenzi and C. L. Tang, “Quantum theory of spontaneous parametric scattering of intense light,” Phys. Rev. 166, 225-233 (1968).
[CrossRef]

Gobets, B.

I. H. M. van Stokkum, B. Gobets, T. Gensch, F. van Mourik, K. J. Hellingwerf, R. van Grondelle, and J. T. M. Kennis, “(Sub)-picosecond spectral evolution of fluorescence in photoactive proteins studied with a synchroscan streak camera system,” Photochem. Photobiol. 82, 380-388 (2006).
[CrossRef] [PubMed]

B. Gobets, J. T. M. Kennis, J. A. Ihalainen, M. Brazzoli, R. Croce, I. H. M. van Stokkum, R. Bassi, J. P. Dekker, H. van Amerongen, and G. R. Fleming, “Excitation energy transfer in dimeric light harvesting complex I: a combined streak-camera/fluorescence upconversion study,” J. Phys. Chem. B 105, 10132-10139 (2001).
[CrossRef]

Guofu, C.

L. Hongjun, Z. Wei, C. Guofu, W. Yishan, C. Zhao, and R. Chi, “Investigation of spectral bandwidth of optical parametric amplification,” Appl. Phys. B 79, 569-576 (2004).
[CrossRef]

Han, X. F.

X. F. Han, Y. X. Weng, R. Wang, X. H. Chen, K. H. Luo, L. A. Wu, and J. M. Zhao, “Single-photon level ultrafast all-optical switching,” Appl. Phys. Lett. 92, 151109 (2008).
[CrossRef]

X. F. Han, Y. X. Weng, A. L. Pan, B. S. Zou, and J. Y. Zhang, “Observation of delayed fluorescence in CdSxSe1-x nanobelts by femtosecond time-resolved fluorescence spectroscopy,” Appl. Phys. Lett. 92, 033102 (2008).
[CrossRef]

Y. X. Weng, X. F. Han, and J. Y. Zhang, “Determination of the detection limit for a noncollinear optical parametric amplification-gated femtosecond time-resolved fluorescence spectrometer--Reply to the Comment on “Ultrasensitive femtosecond time-resolved fluorescence spectroscopy for relaxation processes by using parametric amplification”,” J. Opt. Soc. B 25, 1627-1631 (2008).
[CrossRef]

X. F. Han, X. H. Chen, Y. X. Weng, and J. Y. Zhang, “Ultrasensitive femtosecond time-resolved fluorescence spectroscopy for relaxation processes by using parametric amplification,” J. Opt. Soc. Am. B 24, 1633-1638 (2007).
[CrossRef]

X. H. Chen, X. F. Han, Y. X. Weng, and J. Y. Zhang, “Transient spectrometer for near-IR fluorescence based on parametric frequency upconversion,” Appl. Phys. Lett. 89, 061127 (2006).
[CrossRef]

Heckel, R.

R. V. Krishnan, E. Biener, J. H. Zhang, R. Heckel, and B. Herman, “Probing subtle fluorescence dynamics in cellular proteins by streak camera based fluorescence lifetime imaging microscopy,” Appl. Phys. Lett. 83, 4658-4660 (2003).
[CrossRef]

Hellingwerf, K. J.

I. H. M. van Stokkum, B. Gobets, T. Gensch, F. van Mourik, K. J. Hellingwerf, R. van Grondelle, and J. T. M. Kennis, “(Sub)-picosecond spectral evolution of fluorescence in photoactive proteins studied with a synchroscan streak camera system,” Photochem. Photobiol. 82, 380-388 (2006).
[CrossRef] [PubMed]

Herman, B.

R. V. Krishnan, E. Biener, J. H. Zhang, R. Heckel, and B. Herman, “Probing subtle fluorescence dynamics in cellular proteins by streak camera based fluorescence lifetime imaging microscopy,” Appl. Phys. Lett. 83, 4658-4660 (2003).
[CrossRef]

Hirsch, M. D.

H. Mahr and M. D. Hirsch, “An optical up-conversion light gate with picosecond resolution,” Opt. Commun. 13, 96-99 (1975).
[CrossRef]

Hongjun, L.

L. Hongjun, Z. Wei, C. Guofu, W. Yishan, C. Zhao, and R. Chi, “Investigation of spectral bandwidth of optical parametric amplification,” Appl. Phys. B 79, 569-576 (2004).
[CrossRef]

Ihalainen, J. A.

B. Gobets, J. T. M. Kennis, J. A. Ihalainen, M. Brazzoli, R. Croce, I. H. M. van Stokkum, R. Bassi, J. P. Dekker, H. van Amerongen, and G. R. Fleming, “Excitation energy transfer in dimeric light harvesting complex I: a combined streak-camera/fluorescence upconversion study,” J. Phys. Chem. B 105, 10132-10139 (2001).
[CrossRef]

Imhof, R. E.

D. J. S. Birch and R. E. Imhof, “Time-domain fluorescence spectroscopy using time-correlated single-photon counting,” in Topics in Fluorescence Spectroscopy,Vol. 1, J.R.Lakowicz, ed. (Plenum Press, 1991) pp. 1-95.

Kan, J. T. W.

C. Ma, W. M. Kwok, W. S. Chan, P. Zuo, J. T. W. Kan, P. H. Toy, and D. L. Phillips, “Ultrafast time-resolved study of photophysical processes involved in the photodeprotection of p-hydroxyphenacyl caged phototrigger compounds,” J. Am. Chem. Soc. 127, 1463-1472 (2005).
[CrossRef] [PubMed]

Kennis, J. T. M.

I. H. M. van Stokkum, B. Gobets, T. Gensch, F. van Mourik, K. J. Hellingwerf, R. van Grondelle, and J. T. M. Kennis, “(Sub)-picosecond spectral evolution of fluorescence in photoactive proteins studied with a synchroscan streak camera system,” Photochem. Photobiol. 82, 380-388 (2006).
[CrossRef] [PubMed]

B. Gobets, J. T. M. Kennis, J. A. Ihalainen, M. Brazzoli, R. Croce, I. H. M. van Stokkum, R. Bassi, J. P. Dekker, H. van Amerongen, and G. R. Fleming, “Excitation energy transfer in dimeric light harvesting complex I: a combined streak-camera/fluorescence upconversion study,” J. Phys. Chem. B 105, 10132-10139 (2001).
[CrossRef]

Khokhlov, R.

S. Akhmanov, A. Chirkin, K. Drabovich, A. Kovrigin, R. Khokhlov, and A. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. 4, 598-605 (1968).
[CrossRef]

Kimmel, M.

Kleinman, D. A.

D. A. Kleinman, “Theory of optical parametric noise,” Phys. Rev. 174, 1027-1041 (1968).
[CrossRef]

Kobayashi, T.

T. Kobayashi and A. Baltuska, “Sub-5 fs pulse generation from a noncollinear optical parametric amplifier,” Meas. Sci. Technol. 13, 1671-1682 (2002).
[CrossRef]

A. Shirakawa, I. Sakane, M. Takasaka, and T. Kobayashi, “Sub-5-fs visible pulse generation by pulse-front-matched noncollinear optical parametric amplification,” Appl. Phys. Lett. 74, 2268 (1999).
[CrossRef]

A. Shirakawa, I. Sakane, and T. Kobayashi, “Pulse-front-matched optical parametric amplification for sub-10-fs pulse generation tunable in the visible and near infrared,” Opt. Lett. 23, 1292-1294 (1998).
[CrossRef]

A. Shirakawa and T. Kobayashi, “Noncollinear phase-and group-velocity matching of optical parametric amplifier for ultrashort pulse generation,” IEICE Trans. Electron. 81, 246-253 (1998).

Kovrigin, A.

S. Akhmanov, A. Chirkin, K. Drabovich, A. Kovrigin, R. Khokhlov, and A. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. 4, 598-605 (1968).
[CrossRef]

Krishnan, R. V.

R. V. Krishnan, E. Biener, J. H. Zhang, R. Heckel, and B. Herman, “Probing subtle fluorescence dynamics in cellular proteins by streak camera based fluorescence lifetime imaging microscopy,” Appl. Phys. Lett. 83, 4658-4660 (2003).
[CrossRef]

Kurita, S.

J. Takeda, K. Nakajima, S. Kurita, S. Tomimoto, S. Saito, and T. Suemoto, “Time-resolved luminescence spectroscopy by the optical Kerr-gate method applicable to ultrafast relaxation processes,” Phys. Rev. B 62, 10083-10087 (2000).
[CrossRef]

Kwok, W. M.

C. Ma, W. M. Kwok, W. S. Chan, P. Zuo, J. T. W. Kan, P. H. Toy, and D. L. Phillips, “Ultrafast time-resolved study of photophysical processes involved in the photodeprotection of p-hydroxyphenacyl caged phototrigger compounds,” J. Am. Chem. Soc. 127, 1463-1472 (2005).
[CrossRef] [PubMed]

Lakowicz, J. R.

H. Szmacinski and J. R. Lakowicz, “Fluorescence lifetime-based sensing and imaging,” Sens. Actuators B 29, 16-24 (1995).
[CrossRef]

Lamola, A. A.

W. R. Ware and A. A. Lamola, Creation and Detection of the Excited State (Marcel Dekker, 1971).

Link, S.

Luo, K. H.

X. F. Han, Y. X. Weng, R. Wang, X. H. Chen, K. H. Luo, L. A. Wu, and J. M. Zhao, “Single-photon level ultrafast all-optical switching,” Appl. Phys. Lett. 92, 151109 (2008).
[CrossRef]

Lustres, J. L. P.

L. Zhao, J. L. P. Lustres, V. Farztdinov, and N. P. Ernsting, “Femtosecond fluorescence spectroscopy by upconversion with tilted gate pulses,” Phys. Chem. Chem. Phys. 7, 1716-1725 (2005).
[PubMed]

Ma, C.

C. Ma, W. M. Kwok, W. S. Chan, P. Zuo, J. T. W. Kan, P. H. Toy, and D. L. Phillips, “Ultrafast time-resolved study of photophysical processes involved in the photodeprotection of p-hydroxyphenacyl caged phototrigger compounds,” J. Am. Chem. Soc. 127, 1463-1472 (2005).
[CrossRef] [PubMed]

Mahr, H.

H. Mahr and M. D. Hirsch, “An optical up-conversion light gate with picosecond resolution,” Opt. Commun. 13, 96-99 (1975).
[CrossRef]

Maroncelli, M.

Monguzzi, M.

P. Di Trapani, A. Andreoni, G. P. Banfi, C. Solcia, R. Danielius, A. Piskarskas, P. Foggi, M. Monguzzi, and C. Sozzi, “Group-velocity self-matching of femtosecond pulses in noncollinear parametric generation,” Phys. Rev. A 51, 3164-3168 (1995).
[CrossRef] [PubMed]

Nakajima, K.

J. Takeda, K. Nakajima, S. Kurita, S. Tomimoto, S. Saito, and T. Suemoto, “Time-resolved luminescence spectroscopy by the optical Kerr-gate method applicable to ultrafast relaxation processes,” Phys. Rev. B 62, 10083-10087 (2000).
[CrossRef]

Noack, F.

Pan, A. L.

X. F. Han, Y. X. Weng, A. L. Pan, B. S. Zou, and J. Y. Zhang, “Observation of delayed fluorescence in CdSxSe1-x nanobelts by femtosecond time-resolved fluorescence spectroscopy,” Appl. Phys. Lett. 92, 033102 (2008).
[CrossRef]

Petrov, V.

Phillips, D. L.

C. Ma, W. M. Kwok, W. S. Chan, P. Zuo, J. T. W. Kan, P. H. Toy, and D. L. Phillips, “Ultrafast time-resolved study of photophysical processes involved in the photodeprotection of p-hydroxyphenacyl caged phototrigger compounds,” J. Am. Chem. Soc. 127, 1463-1472 (2005).
[CrossRef] [PubMed]

Piskarskas, A.

P. Di Trapani, A. Andreoni, G. P. Banfi, C. Solcia, R. Danielius, A. Piskarskas, P. Foggi, M. Monguzzi, and C. Sozzi, “Group-velocity self-matching of femtosecond pulses in noncollinear parametric generation,” Phys. Rev. A 51, 3164-3168 (1995).
[CrossRef] [PubMed]

R. Danielius, A. Piskarskas, A. Stabinis, G. P. Banfi, P. Di Trapani, and R. Righini, “Traveling-wave parametric generation of widely tunable, highly coherent femtosecond light pulses,” J. Opt. Soc. Am. B 10, 2222-2232 (1993).
[CrossRef]

Radzewicz, C.

P. Fita, Y. Stepanenko, and C. Radzewicz, “Femtosecond transient fluorescence spectrometer based on parametric amplification,” Appl. Phys. Lett. 86, 021909 (2005).
[CrossRef]

Righini, R.

Rudolph, W.

J. C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale (Academic, 2006).
[PubMed]

Saito, S.

J. Takeda, K. Nakajima, S. Kurita, S. Tomimoto, S. Saito, and T. Suemoto, “Time-resolved luminescence spectroscopy by the optical Kerr-gate method applicable to ultrafast relaxation processes,” Phys. Rev. B 62, 10083-10087 (2000).
[CrossRef]

Sakane, I.

A. Shirakawa, I. Sakane, M. Takasaka, and T. Kobayashi, “Sub-5-fs visible pulse generation by pulse-front-matched noncollinear optical parametric amplification,” Appl. Phys. Lett. 74, 2268 (1999).
[CrossRef]

A. Shirakawa, I. Sakane, and T. Kobayashi, “Pulse-front-matched optical parametric amplification for sub-10-fs pulse generation tunable in the visible and near infrared,” Opt. Lett. 23, 1292-1294 (1998).
[CrossRef]

Seifert, F.

Shah, J.

T. C. Damen and J. Shah, “Femtosecond luminescence spectroscopy with 60 fs compressed pulses,” Appl. Phys. Lett. 52, 1291-1293 (1988).
[CrossRef]

Shirakawa, A.

A. Shirakawa, I. Sakane, M. Takasaka, and T. Kobayashi, “Sub-5-fs visible pulse generation by pulse-front-matched noncollinear optical parametric amplification,” Appl. Phys. Lett. 74, 2268 (1999).
[CrossRef]

A. Shirakawa, I. Sakane, and T. Kobayashi, “Pulse-front-matched optical parametric amplification for sub-10-fs pulse generation tunable in the visible and near infrared,” Opt. Lett. 23, 1292-1294 (1998).
[CrossRef]

A. Shirakawa and T. Kobayashi, “Noncollinear phase-and group-velocity matching of optical parametric amplifier for ultrashort pulse generation,” IEICE Trans. Electron. 81, 246-253 (1998).

Shreenath, A.

Solcia, C.

P. Di Trapani, A. Andreoni, G. P. Banfi, C. Solcia, R. Danielius, A. Piskarskas, P. Foggi, M. Monguzzi, and C. Sozzi, “Group-velocity self-matching of femtosecond pulses in noncollinear parametric generation,” Phys. Rev. A 51, 3164-3168 (1995).
[CrossRef] [PubMed]

Sozzi, C.

P. Di Trapani, A. Andreoni, G. P. Banfi, C. Solcia, R. Danielius, A. Piskarskas, P. Foggi, M. Monguzzi, and C. Sozzi, “Group-velocity self-matching of femtosecond pulses in noncollinear parametric generation,” Phys. Rev. A 51, 3164-3168 (1995).
[CrossRef] [PubMed]

Stabinis, A.

Stepanenko, Y.

P. Fita, Y. Stepanenko, and C. Radzewicz, “Femtosecond transient fluorescence spectrometer based on parametric amplification,” Appl. Phys. Lett. 86, 021909 (2005).
[CrossRef]

Suemoto, T.

J. Takeda, K. Nakajima, S. Kurita, S. Tomimoto, S. Saito, and T. Suemoto, “Time-resolved luminescence spectroscopy by the optical Kerr-gate method applicable to ultrafast relaxation processes,” Phys. Rev. B 62, 10083-10087 (2000).
[CrossRef]

Sukhorukov, A.

S. Akhmanov, A. Chirkin, K. Drabovich, A. Kovrigin, R. Khokhlov, and A. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. 4, 598-605 (1968).
[CrossRef]

Szmacinski, H.

H. Szmacinski and J. R. Lakowicz, “Fluorescence lifetime-based sensing and imaging,” Sens. Actuators B 29, 16-24 (1995).
[CrossRef]

Takasaka, M.

A. Shirakawa, I. Sakane, M. Takasaka, and T. Kobayashi, “Sub-5-fs visible pulse generation by pulse-front-matched noncollinear optical parametric amplification,” Appl. Phys. Lett. 74, 2268 (1999).
[CrossRef]

Takeda, J.

J. Takeda, K. Nakajima, S. Kurita, S. Tomimoto, S. Saito, and T. Suemoto, “Time-resolved luminescence spectroscopy by the optical Kerr-gate method applicable to ultrafast relaxation processes,” Phys. Rev. B 62, 10083-10087 (2000).
[CrossRef]

Tang, C. L.

T. G. Giallorenzi and C. L. Tang, “Quantum theory of spontaneous parametric scattering of intense light,” Phys. Rev. 166, 225-233 (1968).
[CrossRef]

Tomimoto, S.

J. Takeda, K. Nakajima, S. Kurita, S. Tomimoto, S. Saito, and T. Suemoto, “Time-resolved luminescence spectroscopy by the optical Kerr-gate method applicable to ultrafast relaxation processes,” Phys. Rev. B 62, 10083-10087 (2000).
[CrossRef]

Toy, P. H.

C. Ma, W. M. Kwok, W. S. Chan, P. Zuo, J. T. W. Kan, P. H. Toy, and D. L. Phillips, “Ultrafast time-resolved study of photophysical processes involved in the photodeprotection of p-hydroxyphenacyl caged phototrigger compounds,” J. Am. Chem. Soc. 127, 1463-1472 (2005).
[CrossRef] [PubMed]

Trebino, R.

van Amerongen, H.

B. Gobets, J. T. M. Kennis, J. A. Ihalainen, M. Brazzoli, R. Croce, I. H. M. van Stokkum, R. Bassi, J. P. Dekker, H. van Amerongen, and G. R. Fleming, “Excitation energy transfer in dimeric light harvesting complex I: a combined streak-camera/fluorescence upconversion study,” J. Phys. Chem. B 105, 10132-10139 (2001).
[CrossRef]

van Grondelle, R.

I. H. M. van Stokkum, B. Gobets, T. Gensch, F. van Mourik, K. J. Hellingwerf, R. van Grondelle, and J. T. M. Kennis, “(Sub)-picosecond spectral evolution of fluorescence in photoactive proteins studied with a synchroscan streak camera system,” Photochem. Photobiol. 82, 380-388 (2006).
[CrossRef] [PubMed]

van Mourik, F.

I. H. M. van Stokkum, B. Gobets, T. Gensch, F. van Mourik, K. J. Hellingwerf, R. van Grondelle, and J. T. M. Kennis, “(Sub)-picosecond spectral evolution of fluorescence in photoactive proteins studied with a synchroscan streak camera system,” Photochem. Photobiol. 82, 380-388 (2006).
[CrossRef] [PubMed]

van Stokkum, I. H. M.

I. H. M. van Stokkum, B. Gobets, T. Gensch, F. van Mourik, K. J. Hellingwerf, R. van Grondelle, and J. T. M. Kennis, “(Sub)-picosecond spectral evolution of fluorescence in photoactive proteins studied with a synchroscan streak camera system,” Photochem. Photobiol. 82, 380-388 (2006).
[CrossRef] [PubMed]

B. Gobets, J. T. M. Kennis, J. A. Ihalainen, M. Brazzoli, R. Croce, I. H. M. van Stokkum, R. Bassi, J. P. Dekker, H. van Amerongen, and G. R. Fleming, “Excitation energy transfer in dimeric light harvesting complex I: a combined streak-camera/fluorescence upconversion study,” J. Phys. Chem. B 105, 10132-10139 (2001).
[CrossRef]

Walmsley, I. A.

M. P. A. Branderhorst, P. Wasylczyk, and I. A. Walmsley, “Simultaneous time and frequency gating of weak molecular fluorescence in a thick nonlinear crystal,” Appl. Phys. Lett. 88, 061109 (2006).
[CrossRef]

Wang, R.

X. F. Han, Y. X. Weng, R. Wang, X. H. Chen, K. H. Luo, L. A. Wu, and J. M. Zhao, “Single-photon level ultrafast all-optical switching,” Appl. Phys. Lett. 92, 151109 (2008).
[CrossRef]

Ware, W. R.

W. R. Ware and A. A. Lamola, Creation and Detection of the Excited State (Marcel Dekker, 1971).

Wasylczyk, P.

M. P. A. Branderhorst, P. Wasylczyk, and I. A. Walmsley, “Simultaneous time and frequency gating of weak molecular fluorescence in a thick nonlinear crystal,” Appl. Phys. Lett. 88, 061109 (2006).
[CrossRef]

Wei, Z.

L. Hongjun, Z. Wei, C. Guofu, W. Yishan, C. Zhao, and R. Chi, “Investigation of spectral bandwidth of optical parametric amplification,” Appl. Phys. B 79, 569-576 (2004).
[CrossRef]

Weng, Y.

Weng, Y. X.

Y. X. Weng, X. F. Han, and J. Y. Zhang, “Determination of the detection limit for a noncollinear optical parametric amplification-gated femtosecond time-resolved fluorescence spectrometer--Reply to the Comment on “Ultrasensitive femtosecond time-resolved fluorescence spectroscopy for relaxation processes by using parametric amplification”,” J. Opt. Soc. B 25, 1627-1631 (2008).
[CrossRef]

X. F. Han, Y. X. Weng, A. L. Pan, B. S. Zou, and J. Y. Zhang, “Observation of delayed fluorescence in CdSxSe1-x nanobelts by femtosecond time-resolved fluorescence spectroscopy,” Appl. Phys. Lett. 92, 033102 (2008).
[CrossRef]

X. F. Han, Y. X. Weng, R. Wang, X. H. Chen, K. H. Luo, L. A. Wu, and J. M. Zhao, “Single-photon level ultrafast all-optical switching,” Appl. Phys. Lett. 92, 151109 (2008).
[CrossRef]

X. F. Han, X. H. Chen, Y. X. Weng, and J. Y. Zhang, “Ultrasensitive femtosecond time-resolved fluorescence spectroscopy for relaxation processes by using parametric amplification,” J. Opt. Soc. Am. B 24, 1633-1638 (2007).
[CrossRef]

X. H. Chen, X. F. Han, Y. X. Weng, and J. Y. Zhang, “Transient spectrometer for near-IR fluorescence based on parametric frequency upconversion,” Appl. Phys. Lett. 89, 061127 (2006).
[CrossRef]

Wu, L. A.

X. F. Han, Y. X. Weng, R. Wang, X. H. Chen, K. H. Luo, L. A. Wu, and J. M. Zhao, “Single-photon level ultrafast all-optical switching,” Appl. Phys. Lett. 92, 151109 (2008).
[CrossRef]

Yishan, W.

L. Hongjun, Z. Wei, C. Guofu, W. Yishan, C. Zhao, and R. Chi, “Investigation of spectral bandwidth of optical parametric amplification,” Appl. Phys. B 79, 569-576 (2004).
[CrossRef]

Yu, Z.

Zeek, E.

Zhang, J.

Zhang, J. H.

R. V. Krishnan, E. Biener, J. H. Zhang, R. Heckel, and B. Herman, “Probing subtle fluorescence dynamics in cellular proteins by streak camera based fluorescence lifetime imaging microscopy,” Appl. Phys. Lett. 83, 4658-4660 (2003).
[CrossRef]

Zhang, J. Y.

Z. Yu, X. Chen, Y. Weng, and J. Y. Zhang, “Nonlinear chirp effect introduced by Kerr medium as optical switches in ultrafast time-resolved measurements,” Opt. Lett. 34, 1117-1119 (2009).
[CrossRef] [PubMed]

Y. X. Weng, X. F. Han, and J. Y. Zhang, “Determination of the detection limit for a noncollinear optical parametric amplification-gated femtosecond time-resolved fluorescence spectrometer--Reply to the Comment on “Ultrasensitive femtosecond time-resolved fluorescence spectroscopy for relaxation processes by using parametric amplification”,” J. Opt. Soc. B 25, 1627-1631 (2008).
[CrossRef]

X. F. Han, Y. X. Weng, A. L. Pan, B. S. Zou, and J. Y. Zhang, “Observation of delayed fluorescence in CdSxSe1-x nanobelts by femtosecond time-resolved fluorescence spectroscopy,” Appl. Phys. Lett. 92, 033102 (2008).
[CrossRef]

X. F. Han, X. H. Chen, Y. X. Weng, and J. Y. Zhang, “Ultrasensitive femtosecond time-resolved fluorescence spectroscopy for relaxation processes by using parametric amplification,” J. Opt. Soc. Am. B 24, 1633-1638 (2007).
[CrossRef]

X. H. Chen, X. F. Han, Y. X. Weng, and J. Y. Zhang, “Transient spectrometer for near-IR fluorescence based on parametric frequency upconversion,” Appl. Phys. Lett. 89, 061127 (2006).
[CrossRef]

Zhao, C.

L. Hongjun, Z. Wei, C. Guofu, W. Yishan, C. Zhao, and R. Chi, “Investigation of spectral bandwidth of optical parametric amplification,” Appl. Phys. B 79, 569-576 (2004).
[CrossRef]

Zhao, J. M.

X. F. Han, Y. X. Weng, R. Wang, X. H. Chen, K. H. Luo, L. A. Wu, and J. M. Zhao, “Single-photon level ultrafast all-optical switching,” Appl. Phys. Lett. 92, 151109 (2008).
[CrossRef]

Zhao, L.

L. Zhao, J. L. P. Lustres, V. Farztdinov, and N. P. Ernsting, “Femtosecond fluorescence spectroscopy by upconversion with tilted gate pulses,” Phys. Chem. Chem. Phys. 7, 1716-1725 (2005).
[PubMed]

Zou, B. S.

X. F. Han, Y. X. Weng, A. L. Pan, B. S. Zou, and J. Y. Zhang, “Observation of delayed fluorescence in CdSxSe1-x nanobelts by femtosecond time-resolved fluorescence spectroscopy,” Appl. Phys. Lett. 92, 033102 (2008).
[CrossRef]

Zuo, P.

C. Ma, W. M. Kwok, W. S. Chan, P. Zuo, J. T. W. Kan, P. H. Toy, and D. L. Phillips, “Ultrafast time-resolved study of photophysical processes involved in the photodeprotection of p-hydroxyphenacyl caged phototrigger compounds,” J. Am. Chem. Soc. 127, 1463-1472 (2005).
[CrossRef] [PubMed]

Appl. Phys. B (1)

L. Hongjun, Z. Wei, C. Guofu, W. Yishan, C. Zhao, and R. Chi, “Investigation of spectral bandwidth of optical parametric amplification,” Appl. Phys. B 79, 569-576 (2004).
[CrossRef]

Appl. Phys. Lett. (8)

A. Shirakawa, I. Sakane, M. Takasaka, and T. Kobayashi, “Sub-5-fs visible pulse generation by pulse-front-matched noncollinear optical parametric amplification,” Appl. Phys. Lett. 74, 2268 (1999).
[CrossRef]

X. F. Han, Y. X. Weng, R. Wang, X. H. Chen, K. H. Luo, L. A. Wu, and J. M. Zhao, “Single-photon level ultrafast all-optical switching,” Appl. Phys. Lett. 92, 151109 (2008).
[CrossRef]

X. F. Han, Y. X. Weng, A. L. Pan, B. S. Zou, and J. Y. Zhang, “Observation of delayed fluorescence in CdSxSe1-x nanobelts by femtosecond time-resolved fluorescence spectroscopy,” Appl. Phys. Lett. 92, 033102 (2008).
[CrossRef]

R. V. Krishnan, E. Biener, J. H. Zhang, R. Heckel, and B. Herman, “Probing subtle fluorescence dynamics in cellular proteins by streak camera based fluorescence lifetime imaging microscopy,” Appl. Phys. Lett. 83, 4658-4660 (2003).
[CrossRef]

T. C. Damen and J. Shah, “Femtosecond luminescence spectroscopy with 60 fs compressed pulses,” Appl. Phys. Lett. 52, 1291-1293 (1988).
[CrossRef]

M. P. A. Branderhorst, P. Wasylczyk, and I. A. Walmsley, “Simultaneous time and frequency gating of weak molecular fluorescence in a thick nonlinear crystal,” Appl. Phys. Lett. 88, 061109 (2006).
[CrossRef]

P. Fita, Y. Stepanenko, and C. Radzewicz, “Femtosecond transient fluorescence spectrometer based on parametric amplification,” Appl. Phys. Lett. 86, 021909 (2005).
[CrossRef]

X. H. Chen, X. F. Han, Y. X. Weng, and J. Y. Zhang, “Transient spectrometer for near-IR fluorescence based on parametric frequency upconversion,” Appl. Phys. Lett. 89, 061127 (2006).
[CrossRef]

Appl. Spectrosc. (1)

IEEE J. Quantum Electron. (2)

S. Akhmanov, A. Chirkin, K. Drabovich, A. Kovrigin, R. Khokhlov, and A. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. 4, 598-605 (1968).
[CrossRef]

R. Baumgartner and R. Byer, “Optical parametric amplification,” IEEE J. Quantum Electron. 15, 432-444 (1979).
[CrossRef]

IEICE Trans. Electron. (1)

A. Shirakawa and T. Kobayashi, “Noncollinear phase-and group-velocity matching of optical parametric amplifier for ultrashort pulse generation,” IEICE Trans. Electron. 81, 246-253 (1998).

J. Am. Chem. Soc. (1)

C. Ma, W. M. Kwok, W. S. Chan, P. Zuo, J. T. W. Kan, P. H. Toy, and D. L. Phillips, “Ultrafast time-resolved study of photophysical processes involved in the photodeprotection of p-hydroxyphenacyl caged phototrigger compounds,” J. Am. Chem. Soc. 127, 1463-1472 (2005).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (3)

J. Opt. Soc. B (1)

Y. X. Weng, X. F. Han, and J. Y. Zhang, “Determination of the detection limit for a noncollinear optical parametric amplification-gated femtosecond time-resolved fluorescence spectrometer--Reply to the Comment on “Ultrasensitive femtosecond time-resolved fluorescence spectroscopy for relaxation processes by using parametric amplification”,” J. Opt. Soc. B 25, 1627-1631 (2008).
[CrossRef]

J. Phys. Chem. B (1)

B. Gobets, J. T. M. Kennis, J. A. Ihalainen, M. Brazzoli, R. Croce, I. H. M. van Stokkum, R. Bassi, J. P. Dekker, H. van Amerongen, and G. R. Fleming, “Excitation energy transfer in dimeric light harvesting complex I: a combined streak-camera/fluorescence upconversion study,” J. Phys. Chem. B 105, 10132-10139 (2001).
[CrossRef]

Meas. Sci. Technol. (1)

T. Kobayashi and A. Baltuska, “Sub-5 fs pulse generation from a noncollinear optical parametric amplifier,” Meas. Sci. Technol. 13, 1671-1682 (2002).
[CrossRef]

Opt. Commun. (1)

H. Mahr and M. D. Hirsch, “An optical up-conversion light gate with picosecond resolution,” Opt. Commun. 13, 96-99 (1975).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Photochem. Photobiol. (1)

I. H. M. van Stokkum, B. Gobets, T. Gensch, F. van Mourik, K. J. Hellingwerf, R. van Grondelle, and J. T. M. Kennis, “(Sub)-picosecond spectral evolution of fluorescence in photoactive proteins studied with a synchroscan streak camera system,” Photochem. Photobiol. 82, 380-388 (2006).
[CrossRef] [PubMed]

Phys. Chem. Chem. Phys. (1)

L. Zhao, J. L. P. Lustres, V. Farztdinov, and N. P. Ernsting, “Femtosecond fluorescence spectroscopy by upconversion with tilted gate pulses,” Phys. Chem. Chem. Phys. 7, 1716-1725 (2005).
[PubMed]

Phys. Rev. (2)

T. G. Giallorenzi and C. L. Tang, “Quantum theory of spontaneous parametric scattering of intense light,” Phys. Rev. 166, 225-233 (1968).
[CrossRef]

D. A. Kleinman, “Theory of optical parametric noise,” Phys. Rev. 174, 1027-1041 (1968).
[CrossRef]

Phys. Rev. A (1)

P. Di Trapani, A. Andreoni, G. P. Banfi, C. Solcia, R. Danielius, A. Piskarskas, P. Foggi, M. Monguzzi, and C. Sozzi, “Group-velocity self-matching of femtosecond pulses in noncollinear parametric generation,” Phys. Rev. A 51, 3164-3168 (1995).
[CrossRef] [PubMed]

Phys. Rev. B (1)

J. Takeda, K. Nakajima, S. Kurita, S. Tomimoto, S. Saito, and T. Suemoto, “Time-resolved luminescence spectroscopy by the optical Kerr-gate method applicable to ultrafast relaxation processes,” Phys. Rev. B 62, 10083-10087 (2000).
[CrossRef]

Sens. Actuators B (1)

H. Szmacinski and J. R. Lakowicz, “Fluorescence lifetime-based sensing and imaging,” Sens. Actuators B 29, 16-24 (1995).
[CrossRef]

Other (4)

W. R. Ware and A. A. Lamola, Creation and Detection of the Excited State (Marcel Dekker, 1971).

D. J. S. Birch and R. E. Imhof, “Time-domain fluorescence spectroscopy using time-correlated single-photon counting,” in Topics in Fluorescence Spectroscopy,Vol. 1, J.R.Lakowicz, ed. (Plenum Press, 1991) pp. 1-95.

Fujian Castech Crystals, Inc. (Xihe, Fuzhou, Fujian, China) (1996), http://www.castech.com.

J. C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale (Academic, 2006).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Noncollinear geometry of the signal, idler and pump beams in BBO. θ is the propagation angle of pump relative to the optic axis while α and β are the noncollinear angles.

Fig. 2
Fig. 2

The experimental amplified spectra of (a) fluorescence from Rhodamine 6G dye passing through a 588 nm interference filter with a gain 10 6 ; (b) a coherent laser beam at 800 nm with the gain 10 8 . The spectral widths (FWHM) are broadened from 16.9 and 9.8 nm to 23.9 and 15 nm , respectively, in comparison with that of the corresponding seeding beams.

Fig. 3
Fig. 3

Comparison of the pulse widths of NOPA amplified 800 nm fundamental laser beam (open circle), amplified fluorescence of Rhodamine 6G at 588 nm (solid uptriangle), and unamplified 800 nm fundamental laser beam (solid square). All the pulse widths are measured by NOPA gating technique.

Fig. 4
Fig. 4

Theoretical comparison of the pulse durations between the seeding and amplified beams. The amplified signal is described by Eq. (3) with Γ 0 L = 10 , τ p = τ s = 150 fs under the assumption that the seeding signal is a Gaussian pulse. (b) Comparison of the bandwidths between the seeding (solid) and amplified (with (dash) and without (dash dot) consideration of the dispersion effect) beams. The following parameters are used in Eq. (11): λ p = 400 nm , λ s = 600 nm , τ p = τ s = 150 fs , L = 1 mm , α = 3.82 ° , β = 7.74 ° and θ = 31.46 ° .

Fig. 5
Fig. 5

Plots of the gain value G, the parametric gain coefficient Γ and the phase-mismatch value Δ k against the wavelength. Inset: the comparison between the spectra of the seeding (solid curve) and calculated amplified (dashed curve) fluorescence spectra. The pump energy per pulse is 30 μ J , λ p = 400 nm , L = 2 mm and the angles α = 3.76 ° , θ = 31.3 ° which are deduced according to a maximum gain bandwidth around the peak of the spectrum.

Fig. 6
Fig. 6

Plots of the gain value G, Γ and the phase-mismatch value Δ k against the wavelength with selected angles α = 3.9 ° , and θ = 31.7 ° . Inset: comparison between the seeded Rhodamine 6G fluorescence (solid curve) and the calculated amplified (dashed curve) spectra.

Fig. 7
Fig. 7

The amplified spectra obtained from (a) theoretical simulation and (b) experimental measurement at various angles. The solid black lines denote the seeding fluorescence spectra of Rhodamine 6G.

Fig. 8
Fig. 8

Spectra of the seeding and amplified fluorescence accompanied with the gain curve (dashed curve). The gain curve is obtained from the spectrum of superfluorescence measured at the same angles. (b) The comparison between spectra of the seeder (solid curve) and the corrected amplified (dashed curve) fluorescence

Fig. 9
Fig. 9

Schematic diagram for the experimental setup of simultaneously measuring the spectra of the parametric superfluorescence and the amplified signal with the same propagation and noncollinear angles. The first slit is fixed, and the second one can be adjusted along the y-axis which is the radial direction from the center of the superfluorescence ring to the signal spot, thus every position of the second slit is corresponding to a special noncollinear angle α (inside the crystal) or α (outside the crystal).

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

E ̃ + ( t , z ) = 1 2 ε ( t , z ) e i ϕ 0 e i ϕ ( t , z ) e i ( ω l t k l z ) = 1 2 ε ̃ ( t , z ) e i ( ω l t k l z ) ,
{ ( z + 1 v s t ) ε ̃ s i 2 k s 2 t 2 ε ̃ s + D s = i χ ( 2 ) ω s 2 4 c 2 k s ε ̃ i * ε ̃ p e i Δ k z ( z + 1 v i t ) ε ̃ i i 2 k i 2 t 2 ε ̃ i + D i = i χ ( 2 ) ω i 2 4 c 2 k i ε ̃ s * ε ̃ p e i Δ k z ( z + 1 v p t ) ε ̃ p i 2 k p 2 t 2 ε ̃ p + D p = i χ ( 2 ) ω p 2 4 c 2 k p ε ̃ s ε ̃ i e i Δ k z } ,
ε ̃ s ( η , L ) = ε ̃ s ( η , 0 ) cosh [ γ | ε ̃ p ( η , 0 ) | L ] ,
ε ̃ s ( η , L ) = 1 2 ε ̃ s ( η , 0 ) exp [ Γ 0 L 2 ln 2 ( t t p Γ 0 L ) 2 ] = 1 2 ε ̃ s ( η , 0 ) exp ( Γ 0 L ) exp [ 2 ln 2 ( t t p Γ 0 L ) 2 ] ,
( 2 z 2 1 c 2 2 t 2 ) E ̃ ( t , z ) μ 0 2 t 2 P ̃ L ( t , z ) = μ 0 2 t 2 P ̃ NL ( t , z ) .
E ̃ ( t , z ) = e ̂ o E ̃ s ( t , z ) + e ̂ o E ̃ i ( t , z ) + e ̂ e E ̃ p ( t , z ) = e ̂ o E ̃ s ( Ω , z ) e i Ω t d Ω + e ̂ o E ̃ i ( Ω , z ) e i Ω t d Ω + e ̂ e E ̃ p ( Ω , z ) e i Ω t d Ω .
P ̃ L ( t , z ) = ε 0 e ̂ o χ ( 1 ) ( Ω ) E ̃ s ( Ω , z ) e i Ω t d Ω + ε 0 e ̂ o χ ( 1 ) ( Ω ) E ̃ i ( Ω , z ) e i Ω t d Ω + ε 0 e ̂ e χ ( 1 ) ( Ω ) E ̃ p ( Ω , z ) e i Ω t d Ω .
( 2 z 2 1 c 2 2 t 2 ) E ̃ ( t , z ) μ 0 2 t 2 P ̃ L ( t , z ) = e ̂ o ( 2 z 2 + μ 0 Ω 2 ε ( Ω ) ) E ̃ s ( Ω , z ) e i Ω t d Ω + e ̂ o ( 2 z 2 + μ 0 Ω 2 ε ( Ω ) ) E ̃ i ( Ω , z ) e i Ω t d Ω + e ̂ e ( 2 z 2 + μ 0 Ω 2 ε ( Ω ) ) E ̃ p ( Ω , z ) e i Ω t d Ω .
P ̃ NL ( t , z ) = ε 0 χ ( 2 ) [ E ̃ s ( t , z ) E ̃ i ( t , z ) e ̂ e + E ̃ p ( t , z ) E ̃ s * ( t , z ) e ̂ o + E ̃ p ( t , z ) E ̃ i * ( t , z ) e ̂ o ] = ε 0 χ ( 2 ) [ E ̃ p ( Ω + Ω , z ) E ̃ i * ( Ω , z ) e ̂ o d Ω ] e i Ω t d Ω + ε 0 χ ( 2 ) [ E ̃ p ( Ω + Ω , z ) E ̃ s * ( Ω , z ) e ̂ o d Ω ] e i Ω t d Ω + ε 0 χ ( 2 ) [ E ̃ s ( Ω Ω , z ) E ̃ i ( Ω , z ) e ̂ o d Ω ] e i Ω t d Ω .
μ 0 2 t 2 P ̃ NL ( t , z ) = 1 c 2 { χ ( 2 ) Ω 2 [ E ̃ p ( Ω + Ω , z ) E ̃ i * ( Ω , z ) e ̂ o d Ω ] e i Ω t d Ω + χ ( 2 ) [ Ω 2 E ̃ p ( Ω + Ω , z ) E ̃ s * ( Ω , z ) e ̂ o d Ω ] e i Ω t d Ω + χ ( 2 ) [ Ω 2 E ̃ s ( Ω Ω , z ) E ̃ i ( Ω , z ) e ̂ o d Ω ] e i Ω t d Ω } .
{ z a ̃ s ( Ω , z ) = i χ ( 2 ) Ω 2 4 c 2 k s ( Ω ) a ̃ p ( Ω , z ) a ̃ i * ( Ω Ω , z ) e i [ k i ( Ω Ω ) + k s ( Ω ) k p ( Ω ) ] z d Ω i 2 k s ( Ω ) 2 z 2 a ̃ s ( Ω , z ) z a ̃ i ( Ω , z ) = i χ ( 2 ) Ω 2 4 c 2 k i ( Ω ) a ̃ p ( Ω , z ) a ̃ s * ( Ω Ω , z ) e i [ k s ( Ω Ω ) + k i ( Ω ) z k p ( Ω ) ] z d Ω i 2 k i ( Ω ) 2 z 2 a ̃ i ( Ω , z ) z a ̃ p ( Ω , z ) = i χ ( 2 ) Ω 2 4 c 2 k p ( Ω ) a ̃ s ( Ω , z ) a ̃ i ( Ω Ω , z ) e i [ k s ( Ω ) k i ( Ω Ω ) + k p ( Ω ) ] z d Ω i 2 k p ( Ω ) 2 z 2 a ̃ p ( Ω , z ) } .
{ a ̃ s ( Ω , 0 ) = τ s 2 π ln 2 ε s 0 exp [ 1 8 ln 2 ( Ω ω s ) 2 τ s 2 ] a ̃ i ( Ω , 0 ) = 0 a ̃ p ( Ω , 0 ) = τ p 2 π ln 2 ε p 0 exp [ 1 8 ln 2 ( Ω ω p ) 2 τ p 2 ] } .
G = 0.25 exp { 2 [ Γ 2 ( Δ k 2 ) 2 ] 1 2 L } ,
Δ k Ω s = 1 v i cos ( α + β ) 1 v s = 0 ,
Φ sf ( λ ; α , θ ) = Φ zp ( λ ) [ G ( λ ; α , θ ) 1 ] ,

Metrics