Abstract

We predict a significant enhancement of the magneto-optical transverse Kerr effect when a smooth magnetic dielectric film is covered with a thin noble metal layer perforated with subwavelength slit arrays. The relative intensity change can be as large as 50%. The Kerr effect increase is due to the magnetization-induced change of the phase velocity of the resonantly excited surface plasmons. It can be used as an efficient tool for surface plasmons detection.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. N. Prasad, Nanophotonics (Wiley, 2004).
    [CrossRef]
  2. A. Zvezdin and V. Kotov, Modern Magnetooptics and Magnetooptical Materials (IOP, 1997).
    [CrossRef]
  3. M. Levy, H. C. Yang, M. J. Steel, and J. Fujita, “Flat-top response in one-dimensional magnetic photonic bandgap structures with Faraday rotation enhancement,” J. Lightwave Technol. 19, 1964-1970 (2001).
    [CrossRef]
  4. C. Koerdt, G. L. J. A. Rikken, and E. P. Petrov, “Faraday effect of photonic crystals,” Appl. Phys. Lett. 82, 1538-1540 (2003).
    [CrossRef]
  5. A. K. Zvezdin and V. I. Belotelov, “Magnetooptical properties of two-dimensional photonic crystals,” Eur. Phys. J. B 37, 479-485 (2004).
    [CrossRef]
  6. V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98, 077401 (2007).
    [CrossRef] [PubMed]
  7. A. B. Khanikaev, A. V. Baryshev, and A. A. Fedyanin, “Anomalous Faraday effect of a system with extraordinary optical transmittance,” Opt. Express 15, 6612-6619 (2007).
    [CrossRef] [PubMed]
  8. G. Ctistis, E. Papaioannou, and P. Patoka, “Optical properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett. 9, 1-6 (2009).
    [CrossRef]
  9. G. A. Wurtz, W. Hendren, R. Pollard, R. Atkinson, L. Le Guyader, A. Kirilyuk, Th. Rasing, I. I. Smolyaninov, and A. V. Zayats, “Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field,” New J. Phys. 10, 105012 (2008).
    [CrossRef]
  10. L. Le Guyader, A. Kirilyuk, Th. Rasing, and I. I. Smolyaninov, “Electromagnetic surface wave induced magnetic anisotropy,” J. Phys. D 42, 105003 (2009).
    [CrossRef]
  11. A. V. Druzhinin, I. D. Lobov, V. M. Mayevskiy, and G. Bolotin, “Transverse magnetooptical Kerr effect in transmission,” Phys. Met. Metallogr. 56, 58-65 (1983).
  12. M. Fiebig, V. V. Pavlov, and R. V. Pisarev, “Second-harmonic generation as a tool for studying electronic and magnetic structures of crystals: review,” J. Opt. Soc. Am. B 22, 96-118 (2005).
    [CrossRef]
  13. V. I. Belotelov, A. P. Pyatakov, S. A. Eremin, G. G. Musaev, and A. K. Zvezdin, “New nonlinear intensity Kerr effect in the polar geometry,” Phys. Solid State 42, 1873-1880 (2000).
    [CrossRef]
  14. R. K. Hickernell and D. Sarid, “Long-range surface magnetoplasmons in thin nickel films,” Opt. Lett. 12, 570-572 (1987).
    [CrossRef] [PubMed]
  15. R. D. Olney and R. J. Romagnoli, “Optical effects of surface plasma waves with damping in metallic thin films,” Appl. Opt. 26, 2279-2282 (1987).
    [CrossRef] [PubMed]
  16. D. M. Newman, M. L. Wears, and R. J. Matelon, “Plasmon transport phenomena on a continuous ferromagnetic surface,” Europhys. Lett. 68, 692-698 (2004).
    [CrossRef]
  17. N. Bonod, R. Reinisch, E. Popov, and M. Nevière, “Optimization of surface-plasmon-enhanced magneto-optical effects,” J. Opt. Soc. Am. B 21, 791-797 (2004).
    [CrossRef]
  18. J. B. González-Díaz, A. García-Martín, G. Armelles, J. M. García-Martín, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, “Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures,” Phys. Rev. B 76, 153402 (2007).
    [CrossRef]
  19. E. F. Vila, X. M. B. Sueiro, J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. C. Navarro, G. A. Reig, D. M. Rodríguez, and E. M. Sandoval, “Surface plasmon resonance effects in the magneto-optical activity of Ag-Co-Ag trilayers,” IEEE Trans. Magn. 44, 3303-3306 (2008).
    [CrossRef]
  20. B. Sepulveda, L. M. Lechuga, and G. Armelles, “Magnetooptic effects in surface-plasmon-polaritons slab waveguides,” J. Lightwave Technol. 24, 945-953 (2006).
    [CrossRef]
  21. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998).
    [CrossRef]
  22. R. W. Wood, “Anomalous diffraction gratings,” Phys. Rev. 48, 928-936 (1935).
    [CrossRef]
  23. J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845-2848 (1999).
    [CrossRef]
  24. H. E. Went, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and A. P. Crick, “Selective transmission through very deep zero-order metallic gratings at microwave frequencies,” Appl. Phys. Lett. 77, 2789-2793 (2000).
    [CrossRef]
  25. L. Li, “Fourier modal method for crossed anisotropic gratings with arbitrary permittivity and permeability tensors,” J. Opt. A, Pure Appl. Opt. 5, 345-355 (2003).
    [CrossRef]
  26. M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67, 085415 (2003).
    [CrossRef]

2009 (2)

G. Ctistis, E. Papaioannou, and P. Patoka, “Optical properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett. 9, 1-6 (2009).
[CrossRef]

L. Le Guyader, A. Kirilyuk, Th. Rasing, and I. I. Smolyaninov, “Electromagnetic surface wave induced magnetic anisotropy,” J. Phys. D 42, 105003 (2009).
[CrossRef]

2008 (2)

G. A. Wurtz, W. Hendren, R. Pollard, R. Atkinson, L. Le Guyader, A. Kirilyuk, Th. Rasing, I. I. Smolyaninov, and A. V. Zayats, “Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field,” New J. Phys. 10, 105012 (2008).
[CrossRef]

E. F. Vila, X. M. B. Sueiro, J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. C. Navarro, G. A. Reig, D. M. Rodríguez, and E. M. Sandoval, “Surface plasmon resonance effects in the magneto-optical activity of Ag-Co-Ag trilayers,” IEEE Trans. Magn. 44, 3303-3306 (2008).
[CrossRef]

2007 (3)

V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98, 077401 (2007).
[CrossRef] [PubMed]

A. B. Khanikaev, A. V. Baryshev, and A. A. Fedyanin, “Anomalous Faraday effect of a system with extraordinary optical transmittance,” Opt. Express 15, 6612-6619 (2007).
[CrossRef] [PubMed]

J. B. González-Díaz, A. García-Martín, G. Armelles, J. M. García-Martín, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, “Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures,” Phys. Rev. B 76, 153402 (2007).
[CrossRef]

2006 (1)

2005 (1)

2004 (3)

A. K. Zvezdin and V. I. Belotelov, “Magnetooptical properties of two-dimensional photonic crystals,” Eur. Phys. J. B 37, 479-485 (2004).
[CrossRef]

D. M. Newman, M. L. Wears, and R. J. Matelon, “Plasmon transport phenomena on a continuous ferromagnetic surface,” Europhys. Lett. 68, 692-698 (2004).
[CrossRef]

N. Bonod, R. Reinisch, E. Popov, and M. Nevière, “Optimization of surface-plasmon-enhanced magneto-optical effects,” J. Opt. Soc. Am. B 21, 791-797 (2004).
[CrossRef]

2003 (3)

C. Koerdt, G. L. J. A. Rikken, and E. P. Petrov, “Faraday effect of photonic crystals,” Appl. Phys. Lett. 82, 1538-1540 (2003).
[CrossRef]

L. Li, “Fourier modal method for crossed anisotropic gratings with arbitrary permittivity and permeability tensors,” J. Opt. A, Pure Appl. Opt. 5, 345-355 (2003).
[CrossRef]

M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67, 085415 (2003).
[CrossRef]

2001 (1)

2000 (2)

V. I. Belotelov, A. P. Pyatakov, S. A. Eremin, G. G. Musaev, and A. K. Zvezdin, “New nonlinear intensity Kerr effect in the polar geometry,” Phys. Solid State 42, 1873-1880 (2000).
[CrossRef]

H. E. Went, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and A. P. Crick, “Selective transmission through very deep zero-order metallic gratings at microwave frequencies,” Appl. Phys. Lett. 77, 2789-2793 (2000).
[CrossRef]

1999 (1)

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845-2848 (1999).
[CrossRef]

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998).
[CrossRef]

1987 (2)

1983 (1)

A. V. Druzhinin, I. D. Lobov, V. M. Mayevskiy, and G. Bolotin, “Transverse magnetooptical Kerr effect in transmission,” Phys. Met. Metallogr. 56, 58-65 (1983).

1935 (1)

R. W. Wood, “Anomalous diffraction gratings,” Phys. Rev. 48, 928-936 (1935).
[CrossRef]

Armelles, G.

J. B. González-Díaz, A. García-Martín, G. Armelles, J. M. García-Martín, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, “Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures,” Phys. Rev. B 76, 153402 (2007).
[CrossRef]

B. Sepulveda, L. M. Lechuga, and G. Armelles, “Magnetooptic effects in surface-plasmon-polaritons slab waveguides,” J. Lightwave Technol. 24, 945-953 (2006).
[CrossRef]

Atkinson, R.

G. A. Wurtz, W. Hendren, R. Pollard, R. Atkinson, L. Le Guyader, A. Kirilyuk, Th. Rasing, I. I. Smolyaninov, and A. V. Zayats, “Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field,” New J. Phys. 10, 105012 (2008).
[CrossRef]

Baryshev, A. V.

Belotelov, V. I.

V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98, 077401 (2007).
[CrossRef] [PubMed]

A. K. Zvezdin and V. I. Belotelov, “Magnetooptical properties of two-dimensional photonic crystals,” Eur. Phys. J. B 37, 479-485 (2004).
[CrossRef]

V. I. Belotelov, A. P. Pyatakov, S. A. Eremin, G. G. Musaev, and A. K. Zvezdin, “New nonlinear intensity Kerr effect in the polar geometry,” Phys. Solid State 42, 1873-1880 (2000).
[CrossRef]

Bolotin, G.

A. V. Druzhinin, I. D. Lobov, V. M. Mayevskiy, and G. Bolotin, “Transverse magnetooptical Kerr effect in transmission,” Phys. Met. Metallogr. 56, 58-65 (1983).

Bonod, N.

Cebollada, A.

J. B. González-Díaz, A. García-Martín, G. Armelles, J. M. García-Martín, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, “Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures,” Phys. Rev. B 76, 153402 (2007).
[CrossRef]

Clarke, R.

J. B. González-Díaz, A. García-Martín, G. Armelles, J. M. García-Martín, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, “Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures,” Phys. Rev. B 76, 153402 (2007).
[CrossRef]

Clavero, C.

J. B. González-Díaz, A. García-Martín, G. Armelles, J. M. García-Martín, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, “Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures,” Phys. Rev. B 76, 153402 (2007).
[CrossRef]

Crick, A. P.

H. E. Went, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and A. P. Crick, “Selective transmission through very deep zero-order metallic gratings at microwave frequencies,” Appl. Phys. Lett. 77, 2789-2793 (2000).
[CrossRef]

Ctistis, G.

G. Ctistis, E. Papaioannou, and P. Patoka, “Optical properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett. 9, 1-6 (2009).
[CrossRef]

Doskolovich, L. L.

V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98, 077401 (2007).
[CrossRef] [PubMed]

Druzhinin, A. V.

A. V. Druzhinin, I. D. Lobov, V. M. Mayevskiy, and G. Bolotin, “Transverse magnetooptical Kerr effect in transmission,” Phys. Met. Metallogr. 56, 58-65 (1983).

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998).
[CrossRef]

Eremin, S. A.

V. I. Belotelov, A. P. Pyatakov, S. A. Eremin, G. G. Musaev, and A. K. Zvezdin, “New nonlinear intensity Kerr effect in the polar geometry,” Phys. Solid State 42, 1873-1880 (2000).
[CrossRef]

Fedyanin, A. A.

Fiebig, M.

Fujita, J.

García-Martín, A.

E. F. Vila, X. M. B. Sueiro, J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. C. Navarro, G. A. Reig, D. M. Rodríguez, and E. M. Sandoval, “Surface plasmon resonance effects in the magneto-optical activity of Ag-Co-Ag trilayers,” IEEE Trans. Magn. 44, 3303-3306 (2008).
[CrossRef]

J. B. González-Díaz, A. García-Martín, G. Armelles, J. M. García-Martín, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, “Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures,” Phys. Rev. B 76, 153402 (2007).
[CrossRef]

García-Martín, J. M.

E. F. Vila, X. M. B. Sueiro, J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. C. Navarro, G. A. Reig, D. M. Rodríguez, and E. M. Sandoval, “Surface plasmon resonance effects in the magneto-optical activity of Ag-Co-Ag trilayers,” IEEE Trans. Magn. 44, 3303-3306 (2008).
[CrossRef]

J. B. González-Díaz, A. García-Martín, G. Armelles, J. M. García-Martín, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, “Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures,” Phys. Rev. B 76, 153402 (2007).
[CrossRef]

García-Vidal, F. J.

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845-2848 (1999).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998).
[CrossRef]

González-Díaz, J. B.

E. F. Vila, X. M. B. Sueiro, J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. C. Navarro, G. A. Reig, D. M. Rodríguez, and E. M. Sandoval, “Surface plasmon resonance effects in the magneto-optical activity of Ag-Co-Ag trilayers,” IEEE Trans. Magn. 44, 3303-3306 (2008).
[CrossRef]

J. B. González-Díaz, A. García-Martín, G. Armelles, J. M. García-Martín, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, “Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures,” Phys. Rev. B 76, 153402 (2007).
[CrossRef]

Hendren, W.

G. A. Wurtz, W. Hendren, R. Pollard, R. Atkinson, L. Le Guyader, A. Kirilyuk, Th. Rasing, I. I. Smolyaninov, and A. V. Zayats, “Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field,” New J. Phys. 10, 105012 (2008).
[CrossRef]

Hibbins, A. P.

H. E. Went, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and A. P. Crick, “Selective transmission through very deep zero-order metallic gratings at microwave frequencies,” Appl. Phys. Lett. 77, 2789-2793 (2000).
[CrossRef]

Hickernell, R. K.

Khanikaev, A. B.

Kirilyuk, A.

L. Le Guyader, A. Kirilyuk, Th. Rasing, and I. I. Smolyaninov, “Electromagnetic surface wave induced magnetic anisotropy,” J. Phys. D 42, 105003 (2009).
[CrossRef]

G. A. Wurtz, W. Hendren, R. Pollard, R. Atkinson, L. Le Guyader, A. Kirilyuk, Th. Rasing, I. I. Smolyaninov, and A. V. Zayats, “Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field,” New J. Phys. 10, 105012 (2008).
[CrossRef]

Koerdt, C.

C. Koerdt, G. L. J. A. Rikken, and E. P. Petrov, “Faraday effect of photonic crystals,” Appl. Phys. Lett. 82, 1538-1540 (2003).
[CrossRef]

Kotov, V.

A. Zvezdin and V. Kotov, Modern Magnetooptics and Magnetooptical Materials (IOP, 1997).
[CrossRef]

Kumah, D. P.

J. B. González-Díaz, A. García-Martín, G. Armelles, J. M. García-Martín, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, “Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures,” Phys. Rev. B 76, 153402 (2007).
[CrossRef]

Lawrence, C. R.

H. E. Went, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and A. P. Crick, “Selective transmission through very deep zero-order metallic gratings at microwave frequencies,” Appl. Phys. Lett. 77, 2789-2793 (2000).
[CrossRef]

Le Guyader, L.

L. Le Guyader, A. Kirilyuk, Th. Rasing, and I. I. Smolyaninov, “Electromagnetic surface wave induced magnetic anisotropy,” J. Phys. D 42, 105003 (2009).
[CrossRef]

G. A. Wurtz, W. Hendren, R. Pollard, R. Atkinson, L. Le Guyader, A. Kirilyuk, Th. Rasing, I. I. Smolyaninov, and A. V. Zayats, “Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field,” New J. Phys. 10, 105012 (2008).
[CrossRef]

Lechuga, L. M.

Levy, M.

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998).
[CrossRef]

Li, L.

L. Li, “Fourier modal method for crossed anisotropic gratings with arbitrary permittivity and permeability tensors,” J. Opt. A, Pure Appl. Opt. 5, 345-355 (2003).
[CrossRef]

Lobov, I. D.

A. V. Druzhinin, I. D. Lobov, V. M. Mayevskiy, and G. Bolotin, “Transverse magnetooptical Kerr effect in transmission,” Phys. Met. Metallogr. 56, 58-65 (1983).

Lukaszew, R. A.

J. B. González-Díaz, A. García-Martín, G. Armelles, J. M. García-Martín, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, “Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures,” Phys. Rev. B 76, 153402 (2007).
[CrossRef]

Matelon, R. J.

D. M. Newman, M. L. Wears, and R. J. Matelon, “Plasmon transport phenomena on a continuous ferromagnetic surface,” Europhys. Lett. 68, 692-698 (2004).
[CrossRef]

Mayevskiy, V. M.

A. V. Druzhinin, I. D. Lobov, V. M. Mayevskiy, and G. Bolotin, “Transverse magnetooptical Kerr effect in transmission,” Phys. Met. Metallogr. 56, 58-65 (1983).

Musaev, G. G.

V. I. Belotelov, A. P. Pyatakov, S. A. Eremin, G. G. Musaev, and A. K. Zvezdin, “New nonlinear intensity Kerr effect in the polar geometry,” Phys. Solid State 42, 1873-1880 (2000).
[CrossRef]

Navarro, A. C.

E. F. Vila, X. M. B. Sueiro, J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. C. Navarro, G. A. Reig, D. M. Rodríguez, and E. M. Sandoval, “Surface plasmon resonance effects in the magneto-optical activity of Ag-Co-Ag trilayers,” IEEE Trans. Magn. 44, 3303-3306 (2008).
[CrossRef]

Nevière, M.

Newman, D. M.

D. M. Newman, M. L. Wears, and R. J. Matelon, “Plasmon transport phenomena on a continuous ferromagnetic surface,” Europhys. Lett. 68, 692-698 (2004).
[CrossRef]

Olney, R. D.

Papaioannou, E.

G. Ctistis, E. Papaioannou, and P. Patoka, “Optical properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett. 9, 1-6 (2009).
[CrossRef]

Patoka, P.

G. Ctistis, E. Papaioannou, and P. Patoka, “Optical properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett. 9, 1-6 (2009).
[CrossRef]

Pavlov, V. V.

Pendry, J. B.

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845-2848 (1999).
[CrossRef]

Petrov, E. P.

C. Koerdt, G. L. J. A. Rikken, and E. P. Petrov, “Faraday effect of photonic crystals,” Appl. Phys. Lett. 82, 1538-1540 (2003).
[CrossRef]

Pisarev, R. V.

Pollard, R.

G. A. Wurtz, W. Hendren, R. Pollard, R. Atkinson, L. Le Guyader, A. Kirilyuk, Th. Rasing, I. I. Smolyaninov, and A. V. Zayats, “Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field,” New J. Phys. 10, 105012 (2008).
[CrossRef]

Popov, E.

Porto, J. A.

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845-2848 (1999).
[CrossRef]

Prasad, P. N.

P. N. Prasad, Nanophotonics (Wiley, 2004).
[CrossRef]

Pyatakov, A. P.

V. I. Belotelov, A. P. Pyatakov, S. A. Eremin, G. G. Musaev, and A. K. Zvezdin, “New nonlinear intensity Kerr effect in the polar geometry,” Phys. Solid State 42, 1873-1880 (2000).
[CrossRef]

Rasing, Th.

L. Le Guyader, A. Kirilyuk, Th. Rasing, and I. I. Smolyaninov, “Electromagnetic surface wave induced magnetic anisotropy,” J. Phys. D 42, 105003 (2009).
[CrossRef]

G. A. Wurtz, W. Hendren, R. Pollard, R. Atkinson, L. Le Guyader, A. Kirilyuk, Th. Rasing, I. I. Smolyaninov, and A. V. Zayats, “Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field,” New J. Phys. 10, 105012 (2008).
[CrossRef]

Reig, G. A.

E. F. Vila, X. M. B. Sueiro, J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. C. Navarro, G. A. Reig, D. M. Rodríguez, and E. M. Sandoval, “Surface plasmon resonance effects in the magneto-optical activity of Ag-Co-Ag trilayers,” IEEE Trans. Magn. 44, 3303-3306 (2008).
[CrossRef]

Reinisch, R.

Rikken, G. L. J. A.

C. Koerdt, G. L. J. A. Rikken, and E. P. Petrov, “Faraday effect of photonic crystals,” Appl. Phys. Lett. 82, 1538-1540 (2003).
[CrossRef]

Rodríguez, D. M.

E. F. Vila, X. M. B. Sueiro, J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. C. Navarro, G. A. Reig, D. M. Rodríguez, and E. M. Sandoval, “Surface plasmon resonance effects in the magneto-optical activity of Ag-Co-Ag trilayers,” IEEE Trans. Magn. 44, 3303-3306 (2008).
[CrossRef]

Romagnoli, R. J.

Sambles, J. R.

H. E. Went, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and A. P. Crick, “Selective transmission through very deep zero-order metallic gratings at microwave frequencies,” Appl. Phys. Lett. 77, 2789-2793 (2000).
[CrossRef]

Sandoval, E. M.

E. F. Vila, X. M. B. Sueiro, J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. C. Navarro, G. A. Reig, D. M. Rodríguez, and E. M. Sandoval, “Surface plasmon resonance effects in the magneto-optical activity of Ag-Co-Ag trilayers,” IEEE Trans. Magn. 44, 3303-3306 (2008).
[CrossRef]

Sarid, D.

Sarrazin, M.

M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67, 085415 (2003).
[CrossRef]

Sepulveda, B.

Skuza, J. R.

J. B. González-Díaz, A. García-Martín, G. Armelles, J. M. García-Martín, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, “Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures,” Phys. Rev. B 76, 153402 (2007).
[CrossRef]

Smolyaninov, I. I.

L. Le Guyader, A. Kirilyuk, Th. Rasing, and I. I. Smolyaninov, “Electromagnetic surface wave induced magnetic anisotropy,” J. Phys. D 42, 105003 (2009).
[CrossRef]

G. A. Wurtz, W. Hendren, R. Pollard, R. Atkinson, L. Le Guyader, A. Kirilyuk, Th. Rasing, I. I. Smolyaninov, and A. V. Zayats, “Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field,” New J. Phys. 10, 105012 (2008).
[CrossRef]

Steel, M. J.

Sueiro, X. M. B.

E. F. Vila, X. M. B. Sueiro, J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. C. Navarro, G. A. Reig, D. M. Rodríguez, and E. M. Sandoval, “Surface plasmon resonance effects in the magneto-optical activity of Ag-Co-Ag trilayers,” IEEE Trans. Magn. 44, 3303-3306 (2008).
[CrossRef]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998).
[CrossRef]

Vigneron, J.-P.

M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67, 085415 (2003).
[CrossRef]

Vigoureux, J.-M.

M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67, 085415 (2003).
[CrossRef]

Vila, E. F.

E. F. Vila, X. M. B. Sueiro, J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. C. Navarro, G. A. Reig, D. M. Rodríguez, and E. M. Sandoval, “Surface plasmon resonance effects in the magneto-optical activity of Ag-Co-Ag trilayers,” IEEE Trans. Magn. 44, 3303-3306 (2008).
[CrossRef]

Wears, M. L.

D. M. Newman, M. L. Wears, and R. J. Matelon, “Plasmon transport phenomena on a continuous ferromagnetic surface,” Europhys. Lett. 68, 692-698 (2004).
[CrossRef]

Went, H. E.

H. E. Went, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and A. P. Crick, “Selective transmission through very deep zero-order metallic gratings at microwave frequencies,” Appl. Phys. Lett. 77, 2789-2793 (2000).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998).
[CrossRef]

Wood, R. W.

R. W. Wood, “Anomalous diffraction gratings,” Phys. Rev. 48, 928-936 (1935).
[CrossRef]

Wurtz, G. A.

G. A. Wurtz, W. Hendren, R. Pollard, R. Atkinson, L. Le Guyader, A. Kirilyuk, Th. Rasing, I. I. Smolyaninov, and A. V. Zayats, “Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field,” New J. Phys. 10, 105012 (2008).
[CrossRef]

Yang, H. C.

Zayats, A. V.

G. A. Wurtz, W. Hendren, R. Pollard, R. Atkinson, L. Le Guyader, A. Kirilyuk, Th. Rasing, I. I. Smolyaninov, and A. V. Zayats, “Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field,” New J. Phys. 10, 105012 (2008).
[CrossRef]

Zvezdin, A.

A. Zvezdin and V. Kotov, Modern Magnetooptics and Magnetooptical Materials (IOP, 1997).
[CrossRef]

Zvezdin, A. K.

V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98, 077401 (2007).
[CrossRef] [PubMed]

A. K. Zvezdin and V. I. Belotelov, “Magnetooptical properties of two-dimensional photonic crystals,” Eur. Phys. J. B 37, 479-485 (2004).
[CrossRef]

V. I. Belotelov, A. P. Pyatakov, S. A. Eremin, G. G. Musaev, and A. K. Zvezdin, “New nonlinear intensity Kerr effect in the polar geometry,” Phys. Solid State 42, 1873-1880 (2000).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

C. Koerdt, G. L. J. A. Rikken, and E. P. Petrov, “Faraday effect of photonic crystals,” Appl. Phys. Lett. 82, 1538-1540 (2003).
[CrossRef]

H. E. Went, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and A. P. Crick, “Selective transmission through very deep zero-order metallic gratings at microwave frequencies,” Appl. Phys. Lett. 77, 2789-2793 (2000).
[CrossRef]

Eur. Phys. J. B (1)

A. K. Zvezdin and V. I. Belotelov, “Magnetooptical properties of two-dimensional photonic crystals,” Eur. Phys. J. B 37, 479-485 (2004).
[CrossRef]

Europhys. Lett. (1)

D. M. Newman, M. L. Wears, and R. J. Matelon, “Plasmon transport phenomena on a continuous ferromagnetic surface,” Europhys. Lett. 68, 692-698 (2004).
[CrossRef]

IEEE Trans. Magn. (1)

E. F. Vila, X. M. B. Sueiro, J. B. González-Díaz, A. García-Martín, J. M. García-Martín, A. C. Navarro, G. A. Reig, D. M. Rodríguez, and E. M. Sandoval, “Surface plasmon resonance effects in the magneto-optical activity of Ag-Co-Ag trilayers,” IEEE Trans. Magn. 44, 3303-3306 (2008).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. A, Pure Appl. Opt. (1)

L. Li, “Fourier modal method for crossed anisotropic gratings with arbitrary permittivity and permeability tensors,” J. Opt. A, Pure Appl. Opt. 5, 345-355 (2003).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. D (1)

L. Le Guyader, A. Kirilyuk, Th. Rasing, and I. I. Smolyaninov, “Electromagnetic surface wave induced magnetic anisotropy,” J. Phys. D 42, 105003 (2009).
[CrossRef]

Nano Lett. (1)

G. Ctistis, E. Papaioannou, and P. Patoka, “Optical properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett. 9, 1-6 (2009).
[CrossRef]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667-669 (1998).
[CrossRef]

New J. Phys. (1)

G. A. Wurtz, W. Hendren, R. Pollard, R. Atkinson, L. Le Guyader, A. Kirilyuk, Th. Rasing, I. I. Smolyaninov, and A. V. Zayats, “Controlling optical transmission through magneto-plasmonic crystals with an external magnetic field,” New J. Phys. 10, 105012 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Met. Metallogr. (1)

A. V. Druzhinin, I. D. Lobov, V. M. Mayevskiy, and G. Bolotin, “Transverse magnetooptical Kerr effect in transmission,” Phys. Met. Metallogr. 56, 58-65 (1983).

Phys. Rev. (1)

R. W. Wood, “Anomalous diffraction gratings,” Phys. Rev. 48, 928-936 (1935).
[CrossRef]

Phys. Rev. B (2)

M. Sarrazin, J.-P. Vigneron, and J.-M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67, 085415 (2003).
[CrossRef]

J. B. González-Díaz, A. García-Martín, G. Armelles, J. M. García-Martín, C. Clavero, A. Cebollada, R. A. Lukaszew, J. R. Skuza, D. P. Kumah, and R. Clarke, “Surface-magnetoplasmon nonreciprocity effects in noble-metal/ferromagnetic heterostructures,” Phys. Rev. B 76, 153402 (2007).
[CrossRef]

Phys. Rev. Lett. (2)

V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98, 077401 (2007).
[CrossRef] [PubMed]

J. A. Porto, F. J. García-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845-2848 (1999).
[CrossRef]

Phys. Solid State (1)

V. I. Belotelov, A. P. Pyatakov, S. A. Eremin, G. G. Musaev, and A. K. Zvezdin, “New nonlinear intensity Kerr effect in the polar geometry,” Phys. Solid State 42, 1873-1880 (2000).
[CrossRef]

Other (2)

P. N. Prasad, Nanophotonics (Wiley, 2004).
[CrossRef]

A. Zvezdin and V. Kotov, Modern Magnetooptics and Magnetooptical Materials (IOP, 1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(Top inset) Schematic of the metal–dielectric heterostructure. (a) Spectra of reflection (solid curve) and MOKE (dashed curve). (b) Spectra of transmission (solid curve) and intensity MO effect in transmission (dashed curve). Geometrical parameters are metal layer thickness h 1 = 130 nm , magnetic film thickness h 2 = 1000 nm , d = 480 nm , r = 20 nm . Illumination is p-polarized and is incident at θ = 10 ° . Substrate is not magnetized and has the same dielectric constant as the one of the magnetic film.

Fig. 2
Fig. 2

Graph showing contour plots for incident light wavelengths of (a) 803 nm (cavity mode resonance of ∣ H y 2), (b) 1049 nm (minus first first-order SPP), and (c) 1189 nm (first-order SPP) (c). Geometrical parameters are the same as for Fig. 1. The region of 100 nm above the metal layer, the metal layer [indicated by white dotted lines in (a)] and the region of the magnetized substrate 300 nm under the metal layer are shown. One period of the heterostructure is shown in the lateral direction. The slit is in the center of the metal layer.

Fig. 3
Fig. 3

(a–b) Dispersion of the reflection R (a) and MOKE—d (b) versus wavelength and incidence angle. White dashed vertical lines indicate conditions for the curves (c)–(e). (c–e) Reflection spectra for the structure magnetized in two opposite directions + M (solid curve) and M (dashed curve) for incidence angles of (c) θ = 20 ° , (d) θ = 28 ° , (e) θ = 30 ° . Geometrical parameters are h 1 = 130 nm , h 2 = 1000 nm , d = 900 nm , r = 35 nm . Illumination is p-polarized.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

δ = ( R ( M ) R ( M ) ) R ( 0 ) .
η 1 ( η 0 + η 2 g κ ϵ 2 2 ) + [ η 0 ( η 2 g κ ϵ 2 2 ) + η 1 2 ] tanh ( γ 1 d ) = 0 ,
κ = κ 0 ( 1 + α g ) ,
Δ λ λ 0 = κ 0 α m G g .
Δ λ = g d ω m ω p .

Metrics