Abstract

We predict a significant enhancement of the magneto-optical transverse Kerr effect when a smooth magnetic dielectric film is covered with a thin noble metal layer perforated with subwavelength slit arrays. The relative intensity change can be as large as 50%. The Kerr effect increase is due to the magnetization-induced change of the phase velocity of the resonantly excited surface plasmons. It can be used as an efficient tool for surface plasmons detection.

© 2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hybrid structures of magnetic semiconductors and plasmonic crystals: a novel concept for magneto-optical devices [Invited]

Ilya A. Akimov, Vladimir I. Belotelov, Alexey V. Scherbakov, Martin Pohl, Andrey N. Kalish, Alexey S. Salasyuk, Michael Bombeck, Christian Brüggemann, Andrey V. Akimov, Roslan I. Dzhioev, Vladimir L. Korenev, Yuri G. Kusrayev, Victor F. Sapega, Vyacheslav A. Kotov, Dmitri R. Yakovlev, Anatoly K. Zvezdin, and Manfred Bayer
J. Opt. Soc. Am. B 29(2) A103-A118 (2012)

Coupled mode enhanced giant magnetoplasmonics transverse Kerr effect

L. Halagačka, M. Vanwolleghem, K. Postava, B. Dagens, and J. Pištora
Opt. Express 21(19) 21741-21755 (2013)

Enhancement of magneto-optical Kerr effect by surface plasmons in trilayer structure consisting of double-layer dielectrics and ferromagnetic metal

Terunori Kaihara, Takeaki Ando, Hiromasa Shimizu, Vadym Zayets, Hidekazu Saito, Koji Ando, and Shinji Yuasa
Opt. Express 23(9) 11537-11555 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription