Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Electrodynamic calculations of spontaneous emission coupled to metal nanostructures of arbitrary shape: nanoantenna-enhanced fluorescence

Not Accessible

Your library or personal account may give you access

Abstract

We present a theoretical study of the spontaneous emission of an optical emitter close to a metal nanostructure of arbitrary shape. The modification of the corresponding radiative and nonradiative decay rates and resulting quantum efficiencies, expressed on the basis of a semiclassical dipole model in terms of the local plasmonic mode density, is calculated by means of the rigorous formulation of the Green’s theorem surface integral equations. Metal losses and the intrinsic nonradiative decay rate of the molecules are properly considered, presenting relationships valid in general for arbitrary intrinsic quantum yields. Resonant enhancement of the radiative and nonradiative decay rates of a fluorescent molecule is observed when coupled to an optical dimer nanoantenna. Upon varying the dipole position, it is possible to obtain a predominant enhancement of radiative decay rates over the nonradiative counterpart, resulting in an increase of the internal quantum efficiency. For emitters positioned in the gap, quantum efficiency enhancements from an intrinsic value of 1% to 75% are possible.

© 2009 Optical Society of America

Full Article  |  PDF Article
More Like This
Enhancement of optical properties of nanoscaled objects by metal nanoparticles

J. B. Khurgin and G. Sun
J. Opt. Soc. Am. B 26(12) B83-B95 (2009)

Numerical studies of the modification of photodynamic processes by film-coupled plasmonic nanoparticles

Cristian Ciracì, Alec Rose, Christos Argyropoulos, and David R. Smith
J. Opt. Soc. Am. B 31(11) 2601-2607 (2014)

Purcell effect of nanoshell dimer on single molecule’s fluorescence

Jiunn-Woei Liaw, Jeng-Hong Chen, Chi-San Chen, and Mao-Kuen Kuo
Opt. Express 17(16) 13532-13540 (2009)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (34)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved