Abstract

A versatile femtosecond ultraviolet (UV) pulse generation, a phase modulation, and a characterization setup for coherent control applications are demonstrated. For high-performance phase control of ultrashort pulses direct in the UV a microelectromechanical-system-based 2D mirror array is applied. Multiple examples for successful phase control of ultrashort UV pulses are given, such as arbitrarily phase tailoring and pulse recompression in open and closed loop schemes. For simple and effective characterization of the generated pulses, a UV autocorrelator based on two-photon absorption in a solar blind photomultiplier is constructed. The effects of space–time coupling on split mirror autocorrelation measurements are addressed and minimized.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Rabitz, R. deVivie-Riedle, M. Motzkus, and K.-L. Kompa, “Whither the future of controlling quantum phenomena?” Science 288, 824-828 (2000).
    [CrossRef] [PubMed]
  2. P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys. 9, 2470-2497 (2007).
    [CrossRef] [PubMed]
  3. M. Hacker, R. Netz, M. Roth, G. Stobrawa, T. Feurer, and R. Sauerbrey, “Frequency doubling of phase-modulated ultrashort laser pulses,” Appl. Phys. B 73, 273-277 (2001).
    [CrossRef]
  4. M. Hacker, T. Feurer, R. Sauerbrey, T. Lucza, and G. Szabo, “Programmable femtosecond laser pulses in the ultraviolet,” J. Opt. Soc. Am. B 18, 866-871 (2001).
    [CrossRef]
  5. S. Shimizu, Y. Nabekawa, M. Obara, and K. Midorikawa, “Spectral phase transfer for indirect phase control of sub-20-fs deep UV pulses,” Opt. Express 13, 6345-6353 (2005).
    [CrossRef] [PubMed]
  6. C. Schriever, S. Lochbrunner, M. Optiz, and E. Riedle, “19 fs shaped ultraviolet pulses,” Opt. Lett. 31, 543-545 (2006).
    [CrossRef] [PubMed]
  7. R. Selle, P. Nuernberger, F. Langhojer, F. Dimler, S. Fechner, G. Gerber, and T. Brixner, “Generation of polarization-shaped ultraviolet femtosecond pulses,” Opt. Lett. 33, 803-805 (2008).
    [CrossRef] [PubMed]
  8. M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, “Micromirror SLM for femtosecond pulse shaping in the ultraviolet,” Appl. Phys. B 76, 711-714 (2003).
    [CrossRef]
  9. P. Baum, S. Lochbrunner, and E. Riedle, “Tunable sub-10-fs ultraviolet pulses generated by achromatic frequency doubling,” Opt. Lett. 29, 1686-1688 (2004).
    [CrossRef] [PubMed]
  10. M. Roth, M. Mehendale, A. Bartelt, and H. Rabitz, “Acousto-optical shaping of ultraviolet femtosecond pulses,” Appl. Phys. B 80, 441-444 (2005).
    [CrossRef]
  11. S. Coudreau, D. Kaplan, and P. Tournois, “Ultraviolet acoust-optic programmable dispersive filter laser pulse shaping in KDP,” Opt. Lett. 31, 1899-1901 (2006).
    [CrossRef] [PubMed]
  12. B. J. Pearson and T. C. Weihnacht, “Shaped ultrafast laser pulses in the deep ultraviolet,” Opt. Express 15, 4385-4388 (2007).
    [CrossRef] [PubMed]
  13. P. Baum, S. Lochbrunner, and E. Riedle, “Zero-additional-phase SPIDER: full characterization of visible and sub-20-fs ultraviolet pulses,” Opt. Lett. 29, 210-212 (2004).
    [CrossRef] [PubMed]
  14. P. Nuernberger, G. Vogt, R. Selle, S. Fechner, T. Brixner, and G. Gerber, “Generation of shaped ultraviolet pulses at the third harmonic of titanium-sapphire femtosecond laser radiation,” Appl. Phys. B 88, 519-526 (2007).
    [CrossRef]
  15. D. Kane, A. Taylor, R. Trebino, and K. DeLong, “Single-shot measurement of the intensity and phase of a femtosecond UV laser pulse with frequency-resolved optical gating,” Opt. Lett. 19, 1061-1061 (1994).
    [CrossRef] [PubMed]
  16. K. Michelmann, T. Feurer, R. Fernsler, and R. Sauerbrey, “Frequency resolved optical gating in the UV using the electronic Kerr effect,” Appl. Phys. B 63, 485-489 (1996).
  17. R. Trebino, K. DeLong, D. Fittinghoff, J. Sweetser, M. Krumbügel, B. Richman, and D. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277-3295 (1997).
    [CrossRef]
  18. C. Durfee III, S. Backus, H. Kapteyn, and M. Murnane, “Intense 8-fs pulse generation in the deep ultraviolet,” Opt. Lett. 24, 697-699 (1999).
    [CrossRef]
  19. Y. Takagi, T. Kobayashi, K. Yoshihara, and S. Imamura, “Multiple- and single-shot autocorrelator based on two-photon conductivity in semiconductors,” Opt. Lett. 17, 658-660 (1992).
    [CrossRef] [PubMed]
  20. J. Ranka, A. Gaeta, A. Baltuska, M. Pshenichnikov, and D. Wiersma, “Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiode,” Opt. Lett. 22, 1344-1346 (1997).
    [CrossRef]
  21. A. Streltsov, K. Moll, A. Gaeta, P. Kung, D. Walker, and M. Razeghi, “Pulse autocorrelation measurements based on two- and three-photon conductivity in a GaN photodiode,” Appl. Phys. Lett. 75, 3778-3780 (1999).
    [CrossRef]
  22. J. I. Dadap, G. B. Focht, D. H. Reitze, and M. C. Downer, “Two photon absorption in diamond and its application to ultraviolet femtosecond pulse-width measurements,” Opt. Lett. 16, 499-501 (1991).
    [CrossRef] [PubMed]
  23. A. M. Streltsov, J. K. Ranka, and A. L. Gaeta, “Femtosecond ultraviolet autocorrelation measurements based on two-photon conductivity in fused silica,” Opt. Lett. 23, 798-800 (1998).
    [CrossRef]
  24. K. Ihara, S. Zaitsu, and T. Imasaka, “Autocorrelator consisting of a solar-blind photomultiplier for use in the near-ultraviolet region,” Rev. Sci. Instrum. 76, 026109 (2005).
    [CrossRef]
  25. I. Z. Kozma, P. Baum, S. Lochbrunner, and E. Riedle, “Widely tunable sub-30 fs ultraviolet pulses by chirped sum frequency mixing,” Opt. Express 11, 3110-3115 (2003).
    [CrossRef] [PubMed]
  26. H. Mashiko, A. Suda, and K. Midorikawa, “All-reflective interferometric autocorrelator for the measurement of ultra-short optical pulses,” Appl. Phys. B 76, 525-530 (2003).
    [CrossRef]
  27. I. Z. Kozma, P. Baum, U. Schmidhammer, S. Lochbrunner, and E. Riedle, “Compact autocorrelator for the online measurement of tunable 10 femtosecond pulses,” Rev. Sci. Instrum. 75, 2323-2327 (2004).
    [CrossRef]
  28. E. Power, J. Pentland, J. Nees, C. P. Hauri, M. Merano, R. Lopez-Martens, and G. Mourou, “All-reflective high fringe contrast autocorrelator for measurement of ultrabroadband optical pulses,” Opt. Lett. 31, 3514-3516 (2006).
    [CrossRef] [PubMed]
  29. H. Mashiko, A. Suda, and K. Midorikawa, “Second-order autocorrelation functions for all-reflective interferometric autocorrelator,” Appl. Phys. B 87, 221-226 (2007).
    [CrossRef]
  30. “52 mm (2 “) photomultiplier 9423B series data sheet,” Electron Tubes, Bury Street Ruislip, Middx, UK.
  31. T. Hattori, M. Kawashima, M. Daikoku, H. Inouye, and H. Nakatsuka, “Femtosecond two-photon response dynamics of photomultiplier tubes,” Jpn. J. Appl. Phys., Part 2 39, 4793-4798 (2000).
    [CrossRef]
  32. D. Zeidler, S. Frey, K.-L. Kompa, and M. Motzkus, “Evolutionary algorithms and their application to optimal control studies,” Phys. Rev. A 64, 023420 (2001).
    [CrossRef]
  33. A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, “Femtosecond pulse sequences used for optical manipulation of molecular motion,” Science 247, 1317-1319 (1990).
    [CrossRef] [PubMed]
  34. J. Hauer, T. Buckup, and M. Motzkus, “Enhancement of molecular modes by electronically resonant multipulse excitation: further progress towards mode selective chemistry,” J. Chem. Phys. 125, 061101 (2006).
    [CrossRef]
  35. M. M. Wefers and K. A. Nelson, “Space-time profiles of shaped ultrafast optical waveforms,” IEEE J. Quantum Electron. 32, 161-172 (1996).
    [CrossRef]
  36. T. Tanabe, H. Tanabe, Y. Teramura, and F. Kannari, “Spatiotemporal measurements based on spatial spectral interferometry for ultrashort optical pulses shaped by a Fourier pulse shaper,” J. Opt. Soc. Am. B 19, 2795-2802 (2002).
    [CrossRef]
  37. T. Tanabe, F. Kannari, F. Korte, J. Koch, and B. Chichkov, “Influence of spatiotemporal coupling induced by an ultrashort laser pulse shaper on a focused beam profile,” Appl. Opt. 44, 1092-1098 (2005).
    [CrossRef] [PubMed]
  38. B. Sussman, R. Lausten, and A. Stolow, “Focusing of light following a 4-f pulse shaper: considerations for quantum control,” Phys. Rev. A 77, 043416 (2008).
    [CrossRef]
  39. F. Frei, A. Galler, and T. Feurer, “Space-time coupling in femtosecond pulse shaping and its effects on coherent control,” J. Chem. Phys. 130, 034302 (2009).
    [CrossRef] [PubMed]

2009 (1)

F. Frei, A. Galler, and T. Feurer, “Space-time coupling in femtosecond pulse shaping and its effects on coherent control,” J. Chem. Phys. 130, 034302 (2009).
[CrossRef] [PubMed]

2008 (2)

B. Sussman, R. Lausten, and A. Stolow, “Focusing of light following a 4-f pulse shaper: considerations for quantum control,” Phys. Rev. A 77, 043416 (2008).
[CrossRef]

R. Selle, P. Nuernberger, F. Langhojer, F. Dimler, S. Fechner, G. Gerber, and T. Brixner, “Generation of polarization-shaped ultraviolet femtosecond pulses,” Opt. Lett. 33, 803-805 (2008).
[CrossRef] [PubMed]

2007 (4)

B. J. Pearson and T. C. Weihnacht, “Shaped ultrafast laser pulses in the deep ultraviolet,” Opt. Express 15, 4385-4388 (2007).
[CrossRef] [PubMed]

P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys. 9, 2470-2497 (2007).
[CrossRef] [PubMed]

P. Nuernberger, G. Vogt, R. Selle, S. Fechner, T. Brixner, and G. Gerber, “Generation of shaped ultraviolet pulses at the third harmonic of titanium-sapphire femtosecond laser radiation,” Appl. Phys. B 88, 519-526 (2007).
[CrossRef]

H. Mashiko, A. Suda, and K. Midorikawa, “Second-order autocorrelation functions for all-reflective interferometric autocorrelator,” Appl. Phys. B 87, 221-226 (2007).
[CrossRef]

2006 (4)

2005 (4)

K. Ihara, S. Zaitsu, and T. Imasaka, “Autocorrelator consisting of a solar-blind photomultiplier for use in the near-ultraviolet region,” Rev. Sci. Instrum. 76, 026109 (2005).
[CrossRef]

M. Roth, M. Mehendale, A. Bartelt, and H. Rabitz, “Acousto-optical shaping of ultraviolet femtosecond pulses,” Appl. Phys. B 80, 441-444 (2005).
[CrossRef]

T. Tanabe, F. Kannari, F. Korte, J. Koch, and B. Chichkov, “Influence of spatiotemporal coupling induced by an ultrashort laser pulse shaper on a focused beam profile,” Appl. Opt. 44, 1092-1098 (2005).
[CrossRef] [PubMed]

S. Shimizu, Y. Nabekawa, M. Obara, and K. Midorikawa, “Spectral phase transfer for indirect phase control of sub-20-fs deep UV pulses,” Opt. Express 13, 6345-6353 (2005).
[CrossRef] [PubMed]

2004 (3)

2003 (3)

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, “Micromirror SLM for femtosecond pulse shaping in the ultraviolet,” Appl. Phys. B 76, 711-714 (2003).
[CrossRef]

H. Mashiko, A. Suda, and K. Midorikawa, “All-reflective interferometric autocorrelator for the measurement of ultra-short optical pulses,” Appl. Phys. B 76, 525-530 (2003).
[CrossRef]

I. Z. Kozma, P. Baum, S. Lochbrunner, and E. Riedle, “Widely tunable sub-30 fs ultraviolet pulses by chirped sum frequency mixing,” Opt. Express 11, 3110-3115 (2003).
[CrossRef] [PubMed]

2002 (1)

2001 (3)

M. Hacker, T. Feurer, R. Sauerbrey, T. Lucza, and G. Szabo, “Programmable femtosecond laser pulses in the ultraviolet,” J. Opt. Soc. Am. B 18, 866-871 (2001).
[CrossRef]

D. Zeidler, S. Frey, K.-L. Kompa, and M. Motzkus, “Evolutionary algorithms and their application to optimal control studies,” Phys. Rev. A 64, 023420 (2001).
[CrossRef]

M. Hacker, R. Netz, M. Roth, G. Stobrawa, T. Feurer, and R. Sauerbrey, “Frequency doubling of phase-modulated ultrashort laser pulses,” Appl. Phys. B 73, 273-277 (2001).
[CrossRef]

2000 (2)

H. Rabitz, R. deVivie-Riedle, M. Motzkus, and K.-L. Kompa, “Whither the future of controlling quantum phenomena?” Science 288, 824-828 (2000).
[CrossRef] [PubMed]

T. Hattori, M. Kawashima, M. Daikoku, H. Inouye, and H. Nakatsuka, “Femtosecond two-photon response dynamics of photomultiplier tubes,” Jpn. J. Appl. Phys., Part 2 39, 4793-4798 (2000).
[CrossRef]

1999 (2)

C. Durfee III, S. Backus, H. Kapteyn, and M. Murnane, “Intense 8-fs pulse generation in the deep ultraviolet,” Opt. Lett. 24, 697-699 (1999).
[CrossRef]

A. Streltsov, K. Moll, A. Gaeta, P. Kung, D. Walker, and M. Razeghi, “Pulse autocorrelation measurements based on two- and three-photon conductivity in a GaN photodiode,” Appl. Phys. Lett. 75, 3778-3780 (1999).
[CrossRef]

1998 (1)

1997 (2)

J. Ranka, A. Gaeta, A. Baltuska, M. Pshenichnikov, and D. Wiersma, “Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiode,” Opt. Lett. 22, 1344-1346 (1997).
[CrossRef]

R. Trebino, K. DeLong, D. Fittinghoff, J. Sweetser, M. Krumbügel, B. Richman, and D. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277-3295 (1997).
[CrossRef]

1996 (2)

K. Michelmann, T. Feurer, R. Fernsler, and R. Sauerbrey, “Frequency resolved optical gating in the UV using the electronic Kerr effect,” Appl. Phys. B 63, 485-489 (1996).

M. M. Wefers and K. A. Nelson, “Space-time profiles of shaped ultrafast optical waveforms,” IEEE J. Quantum Electron. 32, 161-172 (1996).
[CrossRef]

1994 (1)

1992 (1)

1991 (1)

1990 (1)

A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, “Femtosecond pulse sequences used for optical manipulation of molecular motion,” Science 247, 1317-1319 (1990).
[CrossRef] [PubMed]

Backus, S.

Baltuska, A.

Bartelt, A.

M. Roth, M. Mehendale, A. Bartelt, and H. Rabitz, “Acousto-optical shaping of ultraviolet femtosecond pulses,” Appl. Phys. B 80, 441-444 (2005).
[CrossRef]

Baum, P.

Brixner, T.

R. Selle, P. Nuernberger, F. Langhojer, F. Dimler, S. Fechner, G. Gerber, and T. Brixner, “Generation of polarization-shaped ultraviolet femtosecond pulses,” Opt. Lett. 33, 803-805 (2008).
[CrossRef] [PubMed]

P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys. 9, 2470-2497 (2007).
[CrossRef] [PubMed]

P. Nuernberger, G. Vogt, R. Selle, S. Fechner, T. Brixner, and G. Gerber, “Generation of shaped ultraviolet pulses at the third harmonic of titanium-sapphire femtosecond laser radiation,” Appl. Phys. B 88, 519-526 (2007).
[CrossRef]

Buckup, T.

J. Hauer, T. Buckup, and M. Motzkus, “Enhancement of molecular modes by electronically resonant multipulse excitation: further progress towards mode selective chemistry,” J. Chem. Phys. 125, 061101 (2006).
[CrossRef]

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, “Micromirror SLM for femtosecond pulse shaping in the ultraviolet,” Appl. Phys. B 76, 711-714 (2003).
[CrossRef]

Chichkov, B.

Coudreau, S.

Dadap, J. I.

Daikoku, M.

T. Hattori, M. Kawashima, M. Daikoku, H. Inouye, and H. Nakatsuka, “Femtosecond two-photon response dynamics of photomultiplier tubes,” Jpn. J. Appl. Phys., Part 2 39, 4793-4798 (2000).
[CrossRef]

DeLong, K.

R. Trebino, K. DeLong, D. Fittinghoff, J. Sweetser, M. Krumbügel, B. Richman, and D. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277-3295 (1997).
[CrossRef]

D. Kane, A. Taylor, R. Trebino, and K. DeLong, “Single-shot measurement of the intensity and phase of a femtosecond UV laser pulse with frequency-resolved optical gating,” Opt. Lett. 19, 1061-1061 (1994).
[CrossRef] [PubMed]

deVivie-Riedle, R.

H. Rabitz, R. deVivie-Riedle, M. Motzkus, and K.-L. Kompa, “Whither the future of controlling quantum phenomena?” Science 288, 824-828 (2000).
[CrossRef] [PubMed]

Dimler, F.

Downer, M. C.

Durfee, C.

Fechner, S.

R. Selle, P. Nuernberger, F. Langhojer, F. Dimler, S. Fechner, G. Gerber, and T. Brixner, “Generation of polarization-shaped ultraviolet femtosecond pulses,” Opt. Lett. 33, 803-805 (2008).
[CrossRef] [PubMed]

P. Nuernberger, G. Vogt, R. Selle, S. Fechner, T. Brixner, and G. Gerber, “Generation of shaped ultraviolet pulses at the third harmonic of titanium-sapphire femtosecond laser radiation,” Appl. Phys. B 88, 519-526 (2007).
[CrossRef]

Fernsler, R.

K. Michelmann, T. Feurer, R. Fernsler, and R. Sauerbrey, “Frequency resolved optical gating in the UV using the electronic Kerr effect,” Appl. Phys. B 63, 485-489 (1996).

Feurer, T.

F. Frei, A. Galler, and T. Feurer, “Space-time coupling in femtosecond pulse shaping and its effects on coherent control,” J. Chem. Phys. 130, 034302 (2009).
[CrossRef] [PubMed]

M. Hacker, R. Netz, M. Roth, G. Stobrawa, T. Feurer, and R. Sauerbrey, “Frequency doubling of phase-modulated ultrashort laser pulses,” Appl. Phys. B 73, 273-277 (2001).
[CrossRef]

M. Hacker, T. Feurer, R. Sauerbrey, T. Lucza, and G. Szabo, “Programmable femtosecond laser pulses in the ultraviolet,” J. Opt. Soc. Am. B 18, 866-871 (2001).
[CrossRef]

K. Michelmann, T. Feurer, R. Fernsler, and R. Sauerbrey, “Frequency resolved optical gating in the UV using the electronic Kerr effect,” Appl. Phys. B 63, 485-489 (1996).

Fittinghoff, D.

R. Trebino, K. DeLong, D. Fittinghoff, J. Sweetser, M. Krumbügel, B. Richman, and D. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277-3295 (1997).
[CrossRef]

Focht, G. B.

Frei, F.

F. Frei, A. Galler, and T. Feurer, “Space-time coupling in femtosecond pulse shaping and its effects on coherent control,” J. Chem. Phys. 130, 034302 (2009).
[CrossRef] [PubMed]

Frey, S.

D. Zeidler, S. Frey, K.-L. Kompa, and M. Motzkus, “Evolutionary algorithms and their application to optimal control studies,” Phys. Rev. A 64, 023420 (2001).
[CrossRef]

Gaeta, A.

A. Streltsov, K. Moll, A. Gaeta, P. Kung, D. Walker, and M. Razeghi, “Pulse autocorrelation measurements based on two- and three-photon conductivity in a GaN photodiode,” Appl. Phys. Lett. 75, 3778-3780 (1999).
[CrossRef]

J. Ranka, A. Gaeta, A. Baltuska, M. Pshenichnikov, and D. Wiersma, “Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiode,” Opt. Lett. 22, 1344-1346 (1997).
[CrossRef]

Gaeta, A. L.

Galler, A.

F. Frei, A. Galler, and T. Feurer, “Space-time coupling in femtosecond pulse shaping and its effects on coherent control,” J. Chem. Phys. 130, 034302 (2009).
[CrossRef] [PubMed]

Gehner, A.

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, “Micromirror SLM for femtosecond pulse shaping in the ultraviolet,” Appl. Phys. B 76, 711-714 (2003).
[CrossRef]

Gerber, G.

R. Selle, P. Nuernberger, F. Langhojer, F. Dimler, S. Fechner, G. Gerber, and T. Brixner, “Generation of polarization-shaped ultraviolet femtosecond pulses,” Opt. Lett. 33, 803-805 (2008).
[CrossRef] [PubMed]

P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys. 9, 2470-2497 (2007).
[CrossRef] [PubMed]

P. Nuernberger, G. Vogt, R. Selle, S. Fechner, T. Brixner, and G. Gerber, “Generation of shaped ultraviolet pulses at the third harmonic of titanium-sapphire femtosecond laser radiation,” Appl. Phys. B 88, 519-526 (2007).
[CrossRef]

Hacker, M.

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, “Micromirror SLM for femtosecond pulse shaping in the ultraviolet,” Appl. Phys. B 76, 711-714 (2003).
[CrossRef]

M. Hacker, R. Netz, M. Roth, G. Stobrawa, T. Feurer, and R. Sauerbrey, “Frequency doubling of phase-modulated ultrashort laser pulses,” Appl. Phys. B 73, 273-277 (2001).
[CrossRef]

M. Hacker, T. Feurer, R. Sauerbrey, T. Lucza, and G. Szabo, “Programmable femtosecond laser pulses in the ultraviolet,” J. Opt. Soc. Am. B 18, 866-871 (2001).
[CrossRef]

Hattori, T.

T. Hattori, M. Kawashima, M. Daikoku, H. Inouye, and H. Nakatsuka, “Femtosecond two-photon response dynamics of photomultiplier tubes,” Jpn. J. Appl. Phys., Part 2 39, 4793-4798 (2000).
[CrossRef]

Hauer, J.

J. Hauer, T. Buckup, and M. Motzkus, “Enhancement of molecular modes by electronically resonant multipulse excitation: further progress towards mode selective chemistry,” J. Chem. Phys. 125, 061101 (2006).
[CrossRef]

Hauri, C. P.

Ihara, K.

K. Ihara, S. Zaitsu, and T. Imasaka, “Autocorrelator consisting of a solar-blind photomultiplier for use in the near-ultraviolet region,” Rev. Sci. Instrum. 76, 026109 (2005).
[CrossRef]

Imamura, S.

Imasaka, T.

K. Ihara, S. Zaitsu, and T. Imasaka, “Autocorrelator consisting of a solar-blind photomultiplier for use in the near-ultraviolet region,” Rev. Sci. Instrum. 76, 026109 (2005).
[CrossRef]

Inouye, H.

T. Hattori, M. Kawashima, M. Daikoku, H. Inouye, and H. Nakatsuka, “Femtosecond two-photon response dynamics of photomultiplier tubes,” Jpn. J. Appl. Phys., Part 2 39, 4793-4798 (2000).
[CrossRef]

Kane, D.

R. Trebino, K. DeLong, D. Fittinghoff, J. Sweetser, M. Krumbügel, B. Richman, and D. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277-3295 (1997).
[CrossRef]

D. Kane, A. Taylor, R. Trebino, and K. DeLong, “Single-shot measurement of the intensity and phase of a femtosecond UV laser pulse with frequency-resolved optical gating,” Opt. Lett. 19, 1061-1061 (1994).
[CrossRef] [PubMed]

Kannari, F.

Kaplan, D.

Kapteyn, H.

Kawashima, M.

T. Hattori, M. Kawashima, M. Daikoku, H. Inouye, and H. Nakatsuka, “Femtosecond two-photon response dynamics of photomultiplier tubes,” Jpn. J. Appl. Phys., Part 2 39, 4793-4798 (2000).
[CrossRef]

Kobayashi, T.

Koch, J.

Kompa, K. -L.

D. Zeidler, S. Frey, K.-L. Kompa, and M. Motzkus, “Evolutionary algorithms and their application to optimal control studies,” Phys. Rev. A 64, 023420 (2001).
[CrossRef]

H. Rabitz, R. deVivie-Riedle, M. Motzkus, and K.-L. Kompa, “Whither the future of controlling quantum phenomena?” Science 288, 824-828 (2000).
[CrossRef] [PubMed]

Korte, F.

Kozma, I. Z.

I. Z. Kozma, P. Baum, U. Schmidhammer, S. Lochbrunner, and E. Riedle, “Compact autocorrelator for the online measurement of tunable 10 femtosecond pulses,” Rev. Sci. Instrum. 75, 2323-2327 (2004).
[CrossRef]

I. Z. Kozma, P. Baum, S. Lochbrunner, and E. Riedle, “Widely tunable sub-30 fs ultraviolet pulses by chirped sum frequency mixing,” Opt. Express 11, 3110-3115 (2003).
[CrossRef] [PubMed]

Krumbügel, M.

R. Trebino, K. DeLong, D. Fittinghoff, J. Sweetser, M. Krumbügel, B. Richman, and D. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277-3295 (1997).
[CrossRef]

Kung, P.

A. Streltsov, K. Moll, A. Gaeta, P. Kung, D. Walker, and M. Razeghi, “Pulse autocorrelation measurements based on two- and three-photon conductivity in a GaN photodiode,” Appl. Phys. Lett. 75, 3778-3780 (1999).
[CrossRef]

Langhojer, F.

Lausten, R.

B. Sussman, R. Lausten, and A. Stolow, “Focusing of light following a 4-f pulse shaper: considerations for quantum control,” Phys. Rev. A 77, 043416 (2008).
[CrossRef]

Leaird, D. E.

A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, “Femtosecond pulse sequences used for optical manipulation of molecular motion,” Science 247, 1317-1319 (1990).
[CrossRef] [PubMed]

Lochbrunner, S.

Lopez-Martens, R.

Lucza, T.

Mashiko, H.

H. Mashiko, A. Suda, and K. Midorikawa, “Second-order autocorrelation functions for all-reflective interferometric autocorrelator,” Appl. Phys. B 87, 221-226 (2007).
[CrossRef]

H. Mashiko, A. Suda, and K. Midorikawa, “All-reflective interferometric autocorrelator for the measurement of ultra-short optical pulses,” Appl. Phys. B 76, 525-530 (2003).
[CrossRef]

Mehendale, M.

M. Roth, M. Mehendale, A. Bartelt, and H. Rabitz, “Acousto-optical shaping of ultraviolet femtosecond pulses,” Appl. Phys. B 80, 441-444 (2005).
[CrossRef]

Merano, M.

Michelmann, K.

K. Michelmann, T. Feurer, R. Fernsler, and R. Sauerbrey, “Frequency resolved optical gating in the UV using the electronic Kerr effect,” Appl. Phys. B 63, 485-489 (1996).

Midorikawa, K.

H. Mashiko, A. Suda, and K. Midorikawa, “Second-order autocorrelation functions for all-reflective interferometric autocorrelator,” Appl. Phys. B 87, 221-226 (2007).
[CrossRef]

S. Shimizu, Y. Nabekawa, M. Obara, and K. Midorikawa, “Spectral phase transfer for indirect phase control of sub-20-fs deep UV pulses,” Opt. Express 13, 6345-6353 (2005).
[CrossRef] [PubMed]

H. Mashiko, A. Suda, and K. Midorikawa, “All-reflective interferometric autocorrelator for the measurement of ultra-short optical pulses,” Appl. Phys. B 76, 525-530 (2003).
[CrossRef]

Moll, K.

A. Streltsov, K. Moll, A. Gaeta, P. Kung, D. Walker, and M. Razeghi, “Pulse autocorrelation measurements based on two- and three-photon conductivity in a GaN photodiode,” Appl. Phys. Lett. 75, 3778-3780 (1999).
[CrossRef]

Motzkus, M.

J. Hauer, T. Buckup, and M. Motzkus, “Enhancement of molecular modes by electronically resonant multipulse excitation: further progress towards mode selective chemistry,” J. Chem. Phys. 125, 061101 (2006).
[CrossRef]

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, “Micromirror SLM for femtosecond pulse shaping in the ultraviolet,” Appl. Phys. B 76, 711-714 (2003).
[CrossRef]

D. Zeidler, S. Frey, K.-L. Kompa, and M. Motzkus, “Evolutionary algorithms and their application to optimal control studies,” Phys. Rev. A 64, 023420 (2001).
[CrossRef]

H. Rabitz, R. deVivie-Riedle, M. Motzkus, and K.-L. Kompa, “Whither the future of controlling quantum phenomena?” Science 288, 824-828 (2000).
[CrossRef] [PubMed]

Mourou, G.

Murnane, M.

Nabekawa, Y.

Nakatsuka, H.

T. Hattori, M. Kawashima, M. Daikoku, H. Inouye, and H. Nakatsuka, “Femtosecond two-photon response dynamics of photomultiplier tubes,” Jpn. J. Appl. Phys., Part 2 39, 4793-4798 (2000).
[CrossRef]

Nees, J.

Nelson, K. A.

M. M. Wefers and K. A. Nelson, “Space-time profiles of shaped ultrafast optical waveforms,” IEEE J. Quantum Electron. 32, 161-172 (1996).
[CrossRef]

A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, “Femtosecond pulse sequences used for optical manipulation of molecular motion,” Science 247, 1317-1319 (1990).
[CrossRef] [PubMed]

Netz, R.

M. Hacker, R. Netz, M. Roth, G. Stobrawa, T. Feurer, and R. Sauerbrey, “Frequency doubling of phase-modulated ultrashort laser pulses,” Appl. Phys. B 73, 273-277 (2001).
[CrossRef]

Nuernberger, P.

R. Selle, P. Nuernberger, F. Langhojer, F. Dimler, S. Fechner, G. Gerber, and T. Brixner, “Generation of polarization-shaped ultraviolet femtosecond pulses,” Opt. Lett. 33, 803-805 (2008).
[CrossRef] [PubMed]

P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys. 9, 2470-2497 (2007).
[CrossRef] [PubMed]

P. Nuernberger, G. Vogt, R. Selle, S. Fechner, T. Brixner, and G. Gerber, “Generation of shaped ultraviolet pulses at the third harmonic of titanium-sapphire femtosecond laser radiation,” Appl. Phys. B 88, 519-526 (2007).
[CrossRef]

Obara, M.

Optiz, M.

Pearson, B. J.

Pentland, J.

Power, E.

Pshenichnikov, M.

Rabitz, H.

M. Roth, M. Mehendale, A. Bartelt, and H. Rabitz, “Acousto-optical shaping of ultraviolet femtosecond pulses,” Appl. Phys. B 80, 441-444 (2005).
[CrossRef]

H. Rabitz, R. deVivie-Riedle, M. Motzkus, and K.-L. Kompa, “Whither the future of controlling quantum phenomena?” Science 288, 824-828 (2000).
[CrossRef] [PubMed]

Ranka, J.

Ranka, J. K.

Razeghi, M.

A. Streltsov, K. Moll, A. Gaeta, P. Kung, D. Walker, and M. Razeghi, “Pulse autocorrelation measurements based on two- and three-photon conductivity in a GaN photodiode,” Appl. Phys. Lett. 75, 3778-3780 (1999).
[CrossRef]

Reitze, D. H.

Richman, B.

R. Trebino, K. DeLong, D. Fittinghoff, J. Sweetser, M. Krumbügel, B. Richman, and D. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277-3295 (1997).
[CrossRef]

Riedle, E.

Roth, M.

M. Roth, M. Mehendale, A. Bartelt, and H. Rabitz, “Acousto-optical shaping of ultraviolet femtosecond pulses,” Appl. Phys. B 80, 441-444 (2005).
[CrossRef]

M. Hacker, R. Netz, M. Roth, G. Stobrawa, T. Feurer, and R. Sauerbrey, “Frequency doubling of phase-modulated ultrashort laser pulses,” Appl. Phys. B 73, 273-277 (2001).
[CrossRef]

Sauerbrey, R.

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, “Micromirror SLM for femtosecond pulse shaping in the ultraviolet,” Appl. Phys. B 76, 711-714 (2003).
[CrossRef]

M. Hacker, R. Netz, M. Roth, G. Stobrawa, T. Feurer, and R. Sauerbrey, “Frequency doubling of phase-modulated ultrashort laser pulses,” Appl. Phys. B 73, 273-277 (2001).
[CrossRef]

M. Hacker, T. Feurer, R. Sauerbrey, T. Lucza, and G. Szabo, “Programmable femtosecond laser pulses in the ultraviolet,” J. Opt. Soc. Am. B 18, 866-871 (2001).
[CrossRef]

K. Michelmann, T. Feurer, R. Fernsler, and R. Sauerbrey, “Frequency resolved optical gating in the UV using the electronic Kerr effect,” Appl. Phys. B 63, 485-489 (1996).

Schmidhammer, U.

I. Z. Kozma, P. Baum, U. Schmidhammer, S. Lochbrunner, and E. Riedle, “Compact autocorrelator for the online measurement of tunable 10 femtosecond pulses,” Rev. Sci. Instrum. 75, 2323-2327 (2004).
[CrossRef]

Schriever, C.

Selle, R.

R. Selle, P. Nuernberger, F. Langhojer, F. Dimler, S. Fechner, G. Gerber, and T. Brixner, “Generation of polarization-shaped ultraviolet femtosecond pulses,” Opt. Lett. 33, 803-805 (2008).
[CrossRef] [PubMed]

P. Nuernberger, G. Vogt, R. Selle, S. Fechner, T. Brixner, and G. Gerber, “Generation of shaped ultraviolet pulses at the third harmonic of titanium-sapphire femtosecond laser radiation,” Appl. Phys. B 88, 519-526 (2007).
[CrossRef]

Shimizu, S.

Stobrawa, G.

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, “Micromirror SLM for femtosecond pulse shaping in the ultraviolet,” Appl. Phys. B 76, 711-714 (2003).
[CrossRef]

M. Hacker, R. Netz, M. Roth, G. Stobrawa, T. Feurer, and R. Sauerbrey, “Frequency doubling of phase-modulated ultrashort laser pulses,” Appl. Phys. B 73, 273-277 (2001).
[CrossRef]

Stolow, A.

B. Sussman, R. Lausten, and A. Stolow, “Focusing of light following a 4-f pulse shaper: considerations for quantum control,” Phys. Rev. A 77, 043416 (2008).
[CrossRef]

Streltsov, A.

A. Streltsov, K. Moll, A. Gaeta, P. Kung, D. Walker, and M. Razeghi, “Pulse autocorrelation measurements based on two- and three-photon conductivity in a GaN photodiode,” Appl. Phys. Lett. 75, 3778-3780 (1999).
[CrossRef]

Streltsov, A. M.

Suda, A.

H. Mashiko, A. Suda, and K. Midorikawa, “Second-order autocorrelation functions for all-reflective interferometric autocorrelator,” Appl. Phys. B 87, 221-226 (2007).
[CrossRef]

H. Mashiko, A. Suda, and K. Midorikawa, “All-reflective interferometric autocorrelator for the measurement of ultra-short optical pulses,” Appl. Phys. B 76, 525-530 (2003).
[CrossRef]

Sussman, B.

B. Sussman, R. Lausten, and A. Stolow, “Focusing of light following a 4-f pulse shaper: considerations for quantum control,” Phys. Rev. A 77, 043416 (2008).
[CrossRef]

Sweetser, J.

R. Trebino, K. DeLong, D. Fittinghoff, J. Sweetser, M. Krumbügel, B. Richman, and D. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277-3295 (1997).
[CrossRef]

Szabo, G.

Takagi, Y.

Tanabe, H.

Tanabe, T.

Taylor, A.

Teramura, Y.

Tournois, P.

Trebino, R.

R. Trebino, K. DeLong, D. Fittinghoff, J. Sweetser, M. Krumbügel, B. Richman, and D. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277-3295 (1997).
[CrossRef]

D. Kane, A. Taylor, R. Trebino, and K. DeLong, “Single-shot measurement of the intensity and phase of a femtosecond UV laser pulse with frequency-resolved optical gating,” Opt. Lett. 19, 1061-1061 (1994).
[CrossRef] [PubMed]

Vogt, G.

P. Nuernberger, G. Vogt, R. Selle, S. Fechner, T. Brixner, and G. Gerber, “Generation of shaped ultraviolet pulses at the third harmonic of titanium-sapphire femtosecond laser radiation,” Appl. Phys. B 88, 519-526 (2007).
[CrossRef]

P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys. 9, 2470-2497 (2007).
[CrossRef] [PubMed]

Walker, D.

A. Streltsov, K. Moll, A. Gaeta, P. Kung, D. Walker, and M. Razeghi, “Pulse autocorrelation measurements based on two- and three-photon conductivity in a GaN photodiode,” Appl. Phys. Lett. 75, 3778-3780 (1999).
[CrossRef]

Wefers, M. M.

M. M. Wefers and K. A. Nelson, “Space-time profiles of shaped ultrafast optical waveforms,” IEEE J. Quantum Electron. 32, 161-172 (1996).
[CrossRef]

Weihnacht, T. C.

Weiner, A. M.

A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, “Femtosecond pulse sequences used for optical manipulation of molecular motion,” Science 247, 1317-1319 (1990).
[CrossRef] [PubMed]

Wiederrecht, G. P.

A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, “Femtosecond pulse sequences used for optical manipulation of molecular motion,” Science 247, 1317-1319 (1990).
[CrossRef] [PubMed]

Wiersma, D.

Wildenhain, M.

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, “Micromirror SLM for femtosecond pulse shaping in the ultraviolet,” Appl. Phys. B 76, 711-714 (2003).
[CrossRef]

Yoshihara, K.

Zaitsu, S.

K. Ihara, S. Zaitsu, and T. Imasaka, “Autocorrelator consisting of a solar-blind photomultiplier for use in the near-ultraviolet region,” Rev. Sci. Instrum. 76, 026109 (2005).
[CrossRef]

Zeidler, D.

D. Zeidler, S. Frey, K.-L. Kompa, and M. Motzkus, “Evolutionary algorithms and their application to optimal control studies,” Phys. Rev. A 64, 023420 (2001).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (7)

M. Hacker, R. Netz, M. Roth, G. Stobrawa, T. Feurer, and R. Sauerbrey, “Frequency doubling of phase-modulated ultrashort laser pulses,” Appl. Phys. B 73, 273-277 (2001).
[CrossRef]

M. Hacker, G. Stobrawa, R. Sauerbrey, T. Buckup, M. Motzkus, M. Wildenhain, and A. Gehner, “Micromirror SLM for femtosecond pulse shaping in the ultraviolet,” Appl. Phys. B 76, 711-714 (2003).
[CrossRef]

M. Roth, M. Mehendale, A. Bartelt, and H. Rabitz, “Acousto-optical shaping of ultraviolet femtosecond pulses,” Appl. Phys. B 80, 441-444 (2005).
[CrossRef]

P. Nuernberger, G. Vogt, R. Selle, S. Fechner, T. Brixner, and G. Gerber, “Generation of shaped ultraviolet pulses at the third harmonic of titanium-sapphire femtosecond laser radiation,” Appl. Phys. B 88, 519-526 (2007).
[CrossRef]

K. Michelmann, T. Feurer, R. Fernsler, and R. Sauerbrey, “Frequency resolved optical gating in the UV using the electronic Kerr effect,” Appl. Phys. B 63, 485-489 (1996).

H. Mashiko, A. Suda, and K. Midorikawa, “Second-order autocorrelation functions for all-reflective interferometric autocorrelator,” Appl. Phys. B 87, 221-226 (2007).
[CrossRef]

H. Mashiko, A. Suda, and K. Midorikawa, “All-reflective interferometric autocorrelator for the measurement of ultra-short optical pulses,” Appl. Phys. B 76, 525-530 (2003).
[CrossRef]

Appl. Phys. Lett. (1)

A. Streltsov, K. Moll, A. Gaeta, P. Kung, D. Walker, and M. Razeghi, “Pulse autocorrelation measurements based on two- and three-photon conductivity in a GaN photodiode,” Appl. Phys. Lett. 75, 3778-3780 (1999).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. M. Wefers and K. A. Nelson, “Space-time profiles of shaped ultrafast optical waveforms,” IEEE J. Quantum Electron. 32, 161-172 (1996).
[CrossRef]

J. Chem. Phys. (2)

J. Hauer, T. Buckup, and M. Motzkus, “Enhancement of molecular modes by electronically resonant multipulse excitation: further progress towards mode selective chemistry,” J. Chem. Phys. 125, 061101 (2006).
[CrossRef]

F. Frei, A. Galler, and T. Feurer, “Space-time coupling in femtosecond pulse shaping and its effects on coherent control,” J. Chem. Phys. 130, 034302 (2009).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys., Part 2 (1)

T. Hattori, M. Kawashima, M. Daikoku, H. Inouye, and H. Nakatsuka, “Femtosecond two-photon response dynamics of photomultiplier tubes,” Jpn. J. Appl. Phys., Part 2 39, 4793-4798 (2000).
[CrossRef]

Opt. Express (3)

Opt. Lett. (12)

R. Selle, P. Nuernberger, F. Langhojer, F. Dimler, S. Fechner, G. Gerber, and T. Brixner, “Generation of polarization-shaped ultraviolet femtosecond pulses,” Opt. Lett. 33, 803-805 (2008).
[CrossRef] [PubMed]

C. Schriever, S. Lochbrunner, M. Optiz, and E. Riedle, “19 fs shaped ultraviolet pulses,” Opt. Lett. 31, 543-545 (2006).
[CrossRef] [PubMed]

S. Coudreau, D. Kaplan, and P. Tournois, “Ultraviolet acoust-optic programmable dispersive filter laser pulse shaping in KDP,” Opt. Lett. 31, 1899-1901 (2006).
[CrossRef] [PubMed]

E. Power, J. Pentland, J. Nees, C. P. Hauri, M. Merano, R. Lopez-Martens, and G. Mourou, “All-reflective high fringe contrast autocorrelator for measurement of ultrabroadband optical pulses,” Opt. Lett. 31, 3514-3516 (2006).
[CrossRef] [PubMed]

P. Baum, S. Lochbrunner, and E. Riedle, “Zero-additional-phase SPIDER: full characterization of visible and sub-20-fs ultraviolet pulses,” Opt. Lett. 29, 210-212 (2004).
[CrossRef] [PubMed]

P. Baum, S. Lochbrunner, and E. Riedle, “Tunable sub-10-fs ultraviolet pulses generated by achromatic frequency doubling,” Opt. Lett. 29, 1686-1688 (2004).
[CrossRef] [PubMed]

J. I. Dadap, G. B. Focht, D. H. Reitze, and M. C. Downer, “Two photon absorption in diamond and its application to ultraviolet femtosecond pulse-width measurements,” Opt. Lett. 16, 499-501 (1991).
[CrossRef] [PubMed]

Y. Takagi, T. Kobayashi, K. Yoshihara, and S. Imamura, “Multiple- and single-shot autocorrelator based on two-photon conductivity in semiconductors,” Opt. Lett. 17, 658-660 (1992).
[CrossRef] [PubMed]

D. Kane, A. Taylor, R. Trebino, and K. DeLong, “Single-shot measurement of the intensity and phase of a femtosecond UV laser pulse with frequency-resolved optical gating,” Opt. Lett. 19, 1061-1061 (1994).
[CrossRef] [PubMed]

J. Ranka, A. Gaeta, A. Baltuska, M. Pshenichnikov, and D. Wiersma, “Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiode,” Opt. Lett. 22, 1344-1346 (1997).
[CrossRef]

A. M. Streltsov, J. K. Ranka, and A. L. Gaeta, “Femtosecond ultraviolet autocorrelation measurements based on two-photon conductivity in fused silica,” Opt. Lett. 23, 798-800 (1998).
[CrossRef]

C. Durfee III, S. Backus, H. Kapteyn, and M. Murnane, “Intense 8-fs pulse generation in the deep ultraviolet,” Opt. Lett. 24, 697-699 (1999).
[CrossRef]

Phys. Chem. Chem. Phys. (1)

P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys. 9, 2470-2497 (2007).
[CrossRef] [PubMed]

Phys. Rev. A (2)

D. Zeidler, S. Frey, K.-L. Kompa, and M. Motzkus, “Evolutionary algorithms and their application to optimal control studies,” Phys. Rev. A 64, 023420 (2001).
[CrossRef]

B. Sussman, R. Lausten, and A. Stolow, “Focusing of light following a 4-f pulse shaper: considerations for quantum control,” Phys. Rev. A 77, 043416 (2008).
[CrossRef]

Rev. Sci. Instrum. (3)

K. Ihara, S. Zaitsu, and T. Imasaka, “Autocorrelator consisting of a solar-blind photomultiplier for use in the near-ultraviolet region,” Rev. Sci. Instrum. 76, 026109 (2005).
[CrossRef]

I. Z. Kozma, P. Baum, U. Schmidhammer, S. Lochbrunner, and E. Riedle, “Compact autocorrelator for the online measurement of tunable 10 femtosecond pulses,” Rev. Sci. Instrum. 75, 2323-2327 (2004).
[CrossRef]

R. Trebino, K. DeLong, D. Fittinghoff, J. Sweetser, M. Krumbügel, B. Richman, and D. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277-3295 (1997).
[CrossRef]

Science (2)

H. Rabitz, R. deVivie-Riedle, M. Motzkus, and K.-L. Kompa, “Whither the future of controlling quantum phenomena?” Science 288, 824-828 (2000).
[CrossRef] [PubMed]

A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, “Femtosecond pulse sequences used for optical manipulation of molecular motion,” Science 247, 1317-1319 (1990).
[CrossRef] [PubMed]

Other (1)

“52 mm (2 “) photomultiplier 9423B series data sheet,” Electron Tubes, Bury Street Ruislip, Middx, UK.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup overview. A nc-OPA is pumped by an amplified femtosecond laser (CPA). Tunable VIS radiation is generated and SFM with the temporal stretched (ϕ” indicates a glass block) NIR fundamental without prior pulse compression. Pulse compression is conducted in a UV prism compressor (Comp.). The compressed pulse is fed into our purely reflective 4 - f MEMS shaper setup (SLM). A chopper (CH) with a 1:5 duty cycle is used to enable synchronization of the MEMS deflection. The shaped UV pulse is fed to a split mirror TPA (TPA in PMT) autocorrelator.

Fig. 2
Fig. 2

Energy dependence of the PMT response. (a) Linear fit on double logarithmic plot of the data shown in (a) returns a gradient of 1.93 indicating good two photon response of the PMT. (b) A typical AC traces in an energy range covered by (a).

Fig. 3
Fig. 3

Compensation of dispersion, caused by glass substrates, by second order spectral phase scanning. The curves indicate a fitting based on simulation of an appropriate AC and the retrieved amount of FS is given in comparison to the inserted one.

Fig. 4
Fig. 4

Adaptive recompression after insertion of 10 mm FS substrate into the UV beam path. The figure shows the autocorrelation traces of the optimal pulses with and without the additional substrate. The inset shows the convergence curve of the applied evolutionary algorithm.

Fig. 5
Fig. 5

Multipulses generated by sinus phase modulation. The parameters used for multipulse generation correspond to ϕ ( ω ) = a   sin ( ω b + c ) . (All: a = 1.23 , c = 0 ). The points represent the measured AC whereas the curves indicate a fitting based on a simulated AC of the measured pulse spectrum.

Fig. 6
Fig. 6

Space–time coupling effect on split mirror autocorrelators: (a) asymmetric autocorrelation trace of multipulse; (b) asymmetry vanishes when beam is rotated by periscope. This effect can be attributed to space–time coupling as illustrated in the insets. The fitting to the asymmetric AC trace is computed according to the illustration in (c). The split mirror acts as intensity filter for the pulse train, yielding an intensity filtered multipulse for each mirror half. A simulated cross correlation between these agrees well with the AC shown in (a).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

C ST = c d   cos ( θ i ) λ ,

Metrics