Abstract

Sizeable crystals of RbBe2(BO3)F2 (RBBF) were obtained by the flux method. The crystal structure was determined by x-ray data and the space group was proven to be R32, belonging to the uniaxial class. The linear and nonlinear optical parameters, including the cutoff wavelength, refractive indices, phase-matching angles, and effective nonlinear optical coefficients were determined for the first time to our knowledge, and then the Sellmeier equations were also constructed. By using an RBBF prism coupling device (PCD), tunable fourth-harmonic output from a Ti:sapphire laser and the sixth harmonic of an Nd-based laser were also obtained with relatively high power.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. T. Chen, Z. Y. Xu, D. Q. Deng, J. Zhang, and G. K. L. Wong, “The vacuum ultraviolet phase-matching characteristics of nonlinear optical KBe2BO3F2 crystal,” Appl. Phys. Lett. 68, 2930-2932 (1996).
    [CrossRef]
  2. C. T. Chen, N. Y, J. Lin, J. Jiang, W. R. Zeng, and B. C. Wu, “Computer-assisted search for nonlinear optical crystals,” Adv. Mater. (Weinheim, Ger.) 11, 1071-1078 (1999).
    [CrossRef]
  3. Z. S. Lin, Z. Z. W, C. T. Chen, S. K. Chen, and M. H. Lee, “Mechanism for linear and nonlinear optical effects in KBe2BO3F2 crystal,” Chem. Phys. Lett. 367, 523-527 (2003).
    [CrossRef]
  4. X. H. Wen, Ph.D. Dissertation (Institute of Physics and Chemistry, Chinese Academy of Sciences, 2006), China.
  5. C. T. Chen, X. H. Wen, R. K. Li, and C. Q. Zhang, China Patent CN 1904148A, 2006.
  6. C. T. Chen, G. L. Wang, X. Y. Wang, Y. Zhu, Z. Y. Xu, T. Kanai, and S. Watanabe, “Improved Sellmeier equations and phase-matching characteristics in deep-ultraviolet region of KBe2BO3F2 crystal,” IEEE J. Quantum Electron. 44, 617-621 (2008).
    [CrossRef]
  7. I. A. Baydina, V. V. Bakakin, L. P. Bacanova, and N. A. Pal'chik, “X-ray structural study of borato-fluoroberyllates with the composition MBe2(BO3)F2(M=Na,K,Rb,Cs),” Zh. Strukt. Khim. 16, 963-965 (1975).
  8. C. D. McMillen and J. W. Kolis, “Hydrothermal crystal growth of ABe2BO3F2(A=K,Rb,Cs,Tl) NLO crystals,” J. Cryst. Growth 310, 2033-2038 (2008).
    [CrossRef]
  9. L. Mei, X. Huang, Y. Wang, Q. Wu, B. Wu, and C. Chen, “Crystal structure of KBe2BO3F2,” Z. Kristallogr. 210, 93-95 (1995).
    [CrossRef]
  10. C. T. Chen, “Recent advances in deep and vacuum-UV harmonic generation with KBBF crystal,” Opt. Mater. 26, 425-429 (2004).
    [CrossRef]
  11. C. T. Chen and Z. Xu, “Prism coupling technique and deep-UV harmonic output of KBBF crystal,” J. Synth. Cryst. 31, 224-227 (2002).
  12. C. T. Chen, J. H. Lu, G. L. Wang, Z. Y. Xu, J. Y. Wang, C. Q. Zhang, and Y. G. Liu, “Deep ultraviolet harmonic generation with KBe2BO3F2,” Chin. Phys. Lett. 18, 1081 (2001).
    [CrossRef]

2008

C. T. Chen, G. L. Wang, X. Y. Wang, Y. Zhu, Z. Y. Xu, T. Kanai, and S. Watanabe, “Improved Sellmeier equations and phase-matching characteristics in deep-ultraviolet region of KBe2BO3F2 crystal,” IEEE J. Quantum Electron. 44, 617-621 (2008).
[CrossRef]

C. D. McMillen and J. W. Kolis, “Hydrothermal crystal growth of ABe2BO3F2(A=K,Rb,Cs,Tl) NLO crystals,” J. Cryst. Growth 310, 2033-2038 (2008).
[CrossRef]

2004

C. T. Chen, “Recent advances in deep and vacuum-UV harmonic generation with KBBF crystal,” Opt. Mater. 26, 425-429 (2004).
[CrossRef]

2003

Z. S. Lin, Z. Z. W, C. T. Chen, S. K. Chen, and M. H. Lee, “Mechanism for linear and nonlinear optical effects in KBe2BO3F2 crystal,” Chem. Phys. Lett. 367, 523-527 (2003).
[CrossRef]

2002

C. T. Chen and Z. Xu, “Prism coupling technique and deep-UV harmonic output of KBBF crystal,” J. Synth. Cryst. 31, 224-227 (2002).

2001

C. T. Chen, J. H. Lu, G. L. Wang, Z. Y. Xu, J. Y. Wang, C. Q. Zhang, and Y. G. Liu, “Deep ultraviolet harmonic generation with KBe2BO3F2,” Chin. Phys. Lett. 18, 1081 (2001).
[CrossRef]

1999

C. T. Chen, N. Y, J. Lin, J. Jiang, W. R. Zeng, and B. C. Wu, “Computer-assisted search for nonlinear optical crystals,” Adv. Mater. (Weinheim, Ger.) 11, 1071-1078 (1999).
[CrossRef]

1996

C. T. Chen, Z. Y. Xu, D. Q. Deng, J. Zhang, and G. K. L. Wong, “The vacuum ultraviolet phase-matching characteristics of nonlinear optical KBe2BO3F2 crystal,” Appl. Phys. Lett. 68, 2930-2932 (1996).
[CrossRef]

1995

L. Mei, X. Huang, Y. Wang, Q. Wu, B. Wu, and C. Chen, “Crystal structure of KBe2BO3F2,” Z. Kristallogr. 210, 93-95 (1995).
[CrossRef]

1975

I. A. Baydina, V. V. Bakakin, L. P. Bacanova, and N. A. Pal'chik, “X-ray structural study of borato-fluoroberyllates with the composition MBe2(BO3)F2(M=Na,K,Rb,Cs),” Zh. Strukt. Khim. 16, 963-965 (1975).

Bacanova, L. P.

I. A. Baydina, V. V. Bakakin, L. P. Bacanova, and N. A. Pal'chik, “X-ray structural study of borato-fluoroberyllates with the composition MBe2(BO3)F2(M=Na,K,Rb,Cs),” Zh. Strukt. Khim. 16, 963-965 (1975).

Bakakin, V. V.

I. A. Baydina, V. V. Bakakin, L. P. Bacanova, and N. A. Pal'chik, “X-ray structural study of borato-fluoroberyllates with the composition MBe2(BO3)F2(M=Na,K,Rb,Cs),” Zh. Strukt. Khim. 16, 963-965 (1975).

Baydina, I. A.

I. A. Baydina, V. V. Bakakin, L. P. Bacanova, and N. A. Pal'chik, “X-ray structural study of borato-fluoroberyllates with the composition MBe2(BO3)F2(M=Na,K,Rb,Cs),” Zh. Strukt. Khim. 16, 963-965 (1975).

Chen, C.

L. Mei, X. Huang, Y. Wang, Q. Wu, B. Wu, and C. Chen, “Crystal structure of KBe2BO3F2,” Z. Kristallogr. 210, 93-95 (1995).
[CrossRef]

Chen, C. T.

C. T. Chen, G. L. Wang, X. Y. Wang, Y. Zhu, Z. Y. Xu, T. Kanai, and S. Watanabe, “Improved Sellmeier equations and phase-matching characteristics in deep-ultraviolet region of KBe2BO3F2 crystal,” IEEE J. Quantum Electron. 44, 617-621 (2008).
[CrossRef]

C. T. Chen, “Recent advances in deep and vacuum-UV harmonic generation with KBBF crystal,” Opt. Mater. 26, 425-429 (2004).
[CrossRef]

Z. S. Lin, Z. Z. W, C. T. Chen, S. K. Chen, and M. H. Lee, “Mechanism for linear and nonlinear optical effects in KBe2BO3F2 crystal,” Chem. Phys. Lett. 367, 523-527 (2003).
[CrossRef]

C. T. Chen and Z. Xu, “Prism coupling technique and deep-UV harmonic output of KBBF crystal,” J. Synth. Cryst. 31, 224-227 (2002).

C. T. Chen, J. H. Lu, G. L. Wang, Z. Y. Xu, J. Y. Wang, C. Q. Zhang, and Y. G. Liu, “Deep ultraviolet harmonic generation with KBe2BO3F2,” Chin. Phys. Lett. 18, 1081 (2001).
[CrossRef]

C. T. Chen, N. Y, J. Lin, J. Jiang, W. R. Zeng, and B. C. Wu, “Computer-assisted search for nonlinear optical crystals,” Adv. Mater. (Weinheim, Ger.) 11, 1071-1078 (1999).
[CrossRef]

C. T. Chen, Z. Y. Xu, D. Q. Deng, J. Zhang, and G. K. L. Wong, “The vacuum ultraviolet phase-matching characteristics of nonlinear optical KBe2BO3F2 crystal,” Appl. Phys. Lett. 68, 2930-2932 (1996).
[CrossRef]

C. T. Chen, X. H. Wen, R. K. Li, and C. Q. Zhang, China Patent CN 1904148A, 2006.

Chen, S. K.

Z. S. Lin, Z. Z. W, C. T. Chen, S. K. Chen, and M. H. Lee, “Mechanism for linear and nonlinear optical effects in KBe2BO3F2 crystal,” Chem. Phys. Lett. 367, 523-527 (2003).
[CrossRef]

Deng, D. Q.

C. T. Chen, Z. Y. Xu, D. Q. Deng, J. Zhang, and G. K. L. Wong, “The vacuum ultraviolet phase-matching characteristics of nonlinear optical KBe2BO3F2 crystal,” Appl. Phys. Lett. 68, 2930-2932 (1996).
[CrossRef]

Huang, X.

L. Mei, X. Huang, Y. Wang, Q. Wu, B. Wu, and C. Chen, “Crystal structure of KBe2BO3F2,” Z. Kristallogr. 210, 93-95 (1995).
[CrossRef]

Jiang, J.

C. T. Chen, N. Y, J. Lin, J. Jiang, W. R. Zeng, and B. C. Wu, “Computer-assisted search for nonlinear optical crystals,” Adv. Mater. (Weinheim, Ger.) 11, 1071-1078 (1999).
[CrossRef]

Kanai, T.

C. T. Chen, G. L. Wang, X. Y. Wang, Y. Zhu, Z. Y. Xu, T. Kanai, and S. Watanabe, “Improved Sellmeier equations and phase-matching characteristics in deep-ultraviolet region of KBe2BO3F2 crystal,” IEEE J. Quantum Electron. 44, 617-621 (2008).
[CrossRef]

Kolis, J. W.

C. D. McMillen and J. W. Kolis, “Hydrothermal crystal growth of ABe2BO3F2(A=K,Rb,Cs,Tl) NLO crystals,” J. Cryst. Growth 310, 2033-2038 (2008).
[CrossRef]

Lee, M. H.

Z. S. Lin, Z. Z. W, C. T. Chen, S. K. Chen, and M. H. Lee, “Mechanism for linear and nonlinear optical effects in KBe2BO3F2 crystal,” Chem. Phys. Lett. 367, 523-527 (2003).
[CrossRef]

Li, R. K.

C. T. Chen, X. H. Wen, R. K. Li, and C. Q. Zhang, China Patent CN 1904148A, 2006.

Lin, J.

C. T. Chen, N. Y, J. Lin, J. Jiang, W. R. Zeng, and B. C. Wu, “Computer-assisted search for nonlinear optical crystals,” Adv. Mater. (Weinheim, Ger.) 11, 1071-1078 (1999).
[CrossRef]

Lin, Z. S.

Z. S. Lin, Z. Z. W, C. T. Chen, S. K. Chen, and M. H. Lee, “Mechanism for linear and nonlinear optical effects in KBe2BO3F2 crystal,” Chem. Phys. Lett. 367, 523-527 (2003).
[CrossRef]

Liu, Y. G.

C. T. Chen, J. H. Lu, G. L. Wang, Z. Y. Xu, J. Y. Wang, C. Q. Zhang, and Y. G. Liu, “Deep ultraviolet harmonic generation with KBe2BO3F2,” Chin. Phys. Lett. 18, 1081 (2001).
[CrossRef]

Lu, J. H.

C. T. Chen, J. H. Lu, G. L. Wang, Z. Y. Xu, J. Y. Wang, C. Q. Zhang, and Y. G. Liu, “Deep ultraviolet harmonic generation with KBe2BO3F2,” Chin. Phys. Lett. 18, 1081 (2001).
[CrossRef]

McMillen, C. D.

C. D. McMillen and J. W. Kolis, “Hydrothermal crystal growth of ABe2BO3F2(A=K,Rb,Cs,Tl) NLO crystals,” J. Cryst. Growth 310, 2033-2038 (2008).
[CrossRef]

Mei, L.

L. Mei, X. Huang, Y. Wang, Q. Wu, B. Wu, and C. Chen, “Crystal structure of KBe2BO3F2,” Z. Kristallogr. 210, 93-95 (1995).
[CrossRef]

Pal'chik, N. A.

I. A. Baydina, V. V. Bakakin, L. P. Bacanova, and N. A. Pal'chik, “X-ray structural study of borato-fluoroberyllates with the composition MBe2(BO3)F2(M=Na,K,Rb,Cs),” Zh. Strukt. Khim. 16, 963-965 (1975).

W, Z. Z.

Z. S. Lin, Z. Z. W, C. T. Chen, S. K. Chen, and M. H. Lee, “Mechanism for linear and nonlinear optical effects in KBe2BO3F2 crystal,” Chem. Phys. Lett. 367, 523-527 (2003).
[CrossRef]

Wang, G. L.

C. T. Chen, G. L. Wang, X. Y. Wang, Y. Zhu, Z. Y. Xu, T. Kanai, and S. Watanabe, “Improved Sellmeier equations and phase-matching characteristics in deep-ultraviolet region of KBe2BO3F2 crystal,” IEEE J. Quantum Electron. 44, 617-621 (2008).
[CrossRef]

C. T. Chen, J. H. Lu, G. L. Wang, Z. Y. Xu, J. Y. Wang, C. Q. Zhang, and Y. G. Liu, “Deep ultraviolet harmonic generation with KBe2BO3F2,” Chin. Phys. Lett. 18, 1081 (2001).
[CrossRef]

Wang, J. Y.

C. T. Chen, J. H. Lu, G. L. Wang, Z. Y. Xu, J. Y. Wang, C. Q. Zhang, and Y. G. Liu, “Deep ultraviolet harmonic generation with KBe2BO3F2,” Chin. Phys. Lett. 18, 1081 (2001).
[CrossRef]

Wang, X. Y.

C. T. Chen, G. L. Wang, X. Y. Wang, Y. Zhu, Z. Y. Xu, T. Kanai, and S. Watanabe, “Improved Sellmeier equations and phase-matching characteristics in deep-ultraviolet region of KBe2BO3F2 crystal,” IEEE J. Quantum Electron. 44, 617-621 (2008).
[CrossRef]

Wang, Y.

L. Mei, X. Huang, Y. Wang, Q. Wu, B. Wu, and C. Chen, “Crystal structure of KBe2BO3F2,” Z. Kristallogr. 210, 93-95 (1995).
[CrossRef]

Watanabe, S.

C. T. Chen, G. L. Wang, X. Y. Wang, Y. Zhu, Z. Y. Xu, T. Kanai, and S. Watanabe, “Improved Sellmeier equations and phase-matching characteristics in deep-ultraviolet region of KBe2BO3F2 crystal,” IEEE J. Quantum Electron. 44, 617-621 (2008).
[CrossRef]

Wen, X. H.

X. H. Wen, Ph.D. Dissertation (Institute of Physics and Chemistry, Chinese Academy of Sciences, 2006), China.

C. T. Chen, X. H. Wen, R. K. Li, and C. Q. Zhang, China Patent CN 1904148A, 2006.

Wong, G. K. L.

C. T. Chen, Z. Y. Xu, D. Q. Deng, J. Zhang, and G. K. L. Wong, “The vacuum ultraviolet phase-matching characteristics of nonlinear optical KBe2BO3F2 crystal,” Appl. Phys. Lett. 68, 2930-2932 (1996).
[CrossRef]

Wu, B.

L. Mei, X. Huang, Y. Wang, Q. Wu, B. Wu, and C. Chen, “Crystal structure of KBe2BO3F2,” Z. Kristallogr. 210, 93-95 (1995).
[CrossRef]

Wu, B. C.

C. T. Chen, N. Y, J. Lin, J. Jiang, W. R. Zeng, and B. C. Wu, “Computer-assisted search for nonlinear optical crystals,” Adv. Mater. (Weinheim, Ger.) 11, 1071-1078 (1999).
[CrossRef]

Wu, Q.

L. Mei, X. Huang, Y. Wang, Q. Wu, B. Wu, and C. Chen, “Crystal structure of KBe2BO3F2,” Z. Kristallogr. 210, 93-95 (1995).
[CrossRef]

Xu, Z.

C. T. Chen and Z. Xu, “Prism coupling technique and deep-UV harmonic output of KBBF crystal,” J. Synth. Cryst. 31, 224-227 (2002).

Xu, Z. Y.

C. T. Chen, G. L. Wang, X. Y. Wang, Y. Zhu, Z. Y. Xu, T. Kanai, and S. Watanabe, “Improved Sellmeier equations and phase-matching characteristics in deep-ultraviolet region of KBe2BO3F2 crystal,” IEEE J. Quantum Electron. 44, 617-621 (2008).
[CrossRef]

C. T. Chen, J. H. Lu, G. L. Wang, Z. Y. Xu, J. Y. Wang, C. Q. Zhang, and Y. G. Liu, “Deep ultraviolet harmonic generation with KBe2BO3F2,” Chin. Phys. Lett. 18, 1081 (2001).
[CrossRef]

C. T. Chen, Z. Y. Xu, D. Q. Deng, J. Zhang, and G. K. L. Wong, “The vacuum ultraviolet phase-matching characteristics of nonlinear optical KBe2BO3F2 crystal,” Appl. Phys. Lett. 68, 2930-2932 (1996).
[CrossRef]

Y, N.

C. T. Chen, N. Y, J. Lin, J. Jiang, W. R. Zeng, and B. C. Wu, “Computer-assisted search for nonlinear optical crystals,” Adv. Mater. (Weinheim, Ger.) 11, 1071-1078 (1999).
[CrossRef]

Zeng, W. R.

C. T. Chen, N. Y, J. Lin, J. Jiang, W. R. Zeng, and B. C. Wu, “Computer-assisted search for nonlinear optical crystals,” Adv. Mater. (Weinheim, Ger.) 11, 1071-1078 (1999).
[CrossRef]

Zhang, C. Q.

C. T. Chen, J. H. Lu, G. L. Wang, Z. Y. Xu, J. Y. Wang, C. Q. Zhang, and Y. G. Liu, “Deep ultraviolet harmonic generation with KBe2BO3F2,” Chin. Phys. Lett. 18, 1081 (2001).
[CrossRef]

C. T. Chen, X. H. Wen, R. K. Li, and C. Q. Zhang, China Patent CN 1904148A, 2006.

Zhang, J.

C. T. Chen, Z. Y. Xu, D. Q. Deng, J. Zhang, and G. K. L. Wong, “The vacuum ultraviolet phase-matching characteristics of nonlinear optical KBe2BO3F2 crystal,” Appl. Phys. Lett. 68, 2930-2932 (1996).
[CrossRef]

Zhu, Y.

C. T. Chen, G. L. Wang, X. Y. Wang, Y. Zhu, Z. Y. Xu, T. Kanai, and S. Watanabe, “Improved Sellmeier equations and phase-matching characteristics in deep-ultraviolet region of KBe2BO3F2 crystal,” IEEE J. Quantum Electron. 44, 617-621 (2008).
[CrossRef]

Adv. Mater. (Weinheim, Ger.)

C. T. Chen, N. Y, J. Lin, J. Jiang, W. R. Zeng, and B. C. Wu, “Computer-assisted search for nonlinear optical crystals,” Adv. Mater. (Weinheim, Ger.) 11, 1071-1078 (1999).
[CrossRef]

Appl. Phys. Lett.

C. T. Chen, Z. Y. Xu, D. Q. Deng, J. Zhang, and G. K. L. Wong, “The vacuum ultraviolet phase-matching characteristics of nonlinear optical KBe2BO3F2 crystal,” Appl. Phys. Lett. 68, 2930-2932 (1996).
[CrossRef]

Chem. Phys. Lett.

Z. S. Lin, Z. Z. W, C. T. Chen, S. K. Chen, and M. H. Lee, “Mechanism for linear and nonlinear optical effects in KBe2BO3F2 crystal,” Chem. Phys. Lett. 367, 523-527 (2003).
[CrossRef]

Chin. Phys. Lett.

C. T. Chen, J. H. Lu, G. L. Wang, Z. Y. Xu, J. Y. Wang, C. Q. Zhang, and Y. G. Liu, “Deep ultraviolet harmonic generation with KBe2BO3F2,” Chin. Phys. Lett. 18, 1081 (2001).
[CrossRef]

IEEE J. Quantum Electron.

C. T. Chen, G. L. Wang, X. Y. Wang, Y. Zhu, Z. Y. Xu, T. Kanai, and S. Watanabe, “Improved Sellmeier equations and phase-matching characteristics in deep-ultraviolet region of KBe2BO3F2 crystal,” IEEE J. Quantum Electron. 44, 617-621 (2008).
[CrossRef]

J. Cryst. Growth

C. D. McMillen and J. W. Kolis, “Hydrothermal crystal growth of ABe2BO3F2(A=K,Rb,Cs,Tl) NLO crystals,” J. Cryst. Growth 310, 2033-2038 (2008).
[CrossRef]

J. Synth. Cryst.

C. T. Chen and Z. Xu, “Prism coupling technique and deep-UV harmonic output of KBBF crystal,” J. Synth. Cryst. 31, 224-227 (2002).

Opt. Mater.

C. T. Chen, “Recent advances in deep and vacuum-UV harmonic generation with KBBF crystal,” Opt. Mater. 26, 425-429 (2004).
[CrossRef]

Z. Kristallogr.

L. Mei, X. Huang, Y. Wang, Q. Wu, B. Wu, and C. Chen, “Crystal structure of KBe2BO3F2,” Z. Kristallogr. 210, 93-95 (1995).
[CrossRef]

Zh. Strukt. Khim.

I. A. Baydina, V. V. Bakakin, L. P. Bacanova, and N. A. Pal'chik, “X-ray structural study of borato-fluoroberyllates with the composition MBe2(BO3)F2(M=Na,K,Rb,Cs),” Zh. Strukt. Khim. 16, 963-965 (1975).

Other

X. H. Wen, Ph.D. Dissertation (Institute of Physics and Chemistry, Chinese Academy of Sciences, 2006), China.

C. T. Chen, X. H. Wen, R. K. Li, and C. Q. Zhang, China Patent CN 1904148A, 2006.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Large single crystal of RBBF with a transparent area greater than 40 × 40 mm 2 .

Fig. 2
Fig. 2

Interference pattern of RBBF along the c axis.

Fig. 3
Fig. 3

(a) Crystal structure of RBBF. (b) Two-dimensional network structure of ( Be 2 B O 3 F 2 ) .

Fig. 4
Fig. 4

Transmittance of RBBF crystal in the UV region.

Fig. 5
Fig. 5

Transmittance of RBBF crystal in the IR region.

Fig. 6
Fig. 6

Dispersion of refractive indices. The triangles are experimental data. The curves are calculated from the Sellmeier equations (1).

Fig. 7
Fig. 7

Type I SHG phase-matching angles versus fundamental wavelength for RBBF in the whole spectral region. Solid line, curve calculated from the Sellmeier equations; circles, data from the experiments.

Fig. 8
Fig. 8

Arrangement of the sample axes for the determination of the d 11 coefficient of RBBF.

Fig. 9
Fig. 9

Maker fringes of the d 11 coefficient of RBBF. Solid curve, experimental Maker fringe (type-I) of d 11 ; dashed curves, theoretical fringe and theoretical envelope.

Fig. 10
Fig. 10

Schematic of the special prism coupling device with RBBF.

Fig. 11
Fig. 11

Tunable fourth-harmonic generation of a Ti:sapphire laser versus fundamental wavelength with an RBBF-PCD device. Squares, output power of SHG generated through BBO; dots, output power of fourth-harmonic generation produced by RBBF-PCD.

Fig. 12
Fig. 12

177.3 nm output power as a function of 355 nm fundamental power with an RBBF-PCD.

Tables (3)

Tables Icon

Table 1 Crystallographic Data of RBBF a

Tables Icon

Table 2 Measured and Calculated Refractive Indices of RBBF with Δ as the Absolute Value of the Difference Between the Measured and Calculated Values

Tables Icon

Table 3 Phase-matching Angles for Type I SHG with RBBF a

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n o 2 = 1 + 1.18675 λ 2 λ 2 0.00750 0.00910 λ 2 n e 2 = 1 + 0.97530 λ 2 λ 2 0.00665 0.00145 λ 2 ( λ is in μ m ) .
( d 11 d 11 0 d 14 0 0 0 0 0 0 d 14 d 11 0 0 0 0 0 0 )     .
d 11 cos θ cos 3 ϕ ( type - I ) ,
d 11 cos 2 θ sin 3 ϕ ( type - II ) .

Metrics