Abstract

A fast and efficient three-dimensional generalized rectangular wide-angle beam propagation method (GR-WA-BPM) based on a recently proposed modified Padé (1,1) approximant is presented. In our method, at each propagation step, the beam propagation equation is recast in terms of a Helmholtz equation with a source term, which is solved quickly and accurately by a recently introduced complex Jacobi iterative (CJI) method. The efficiency of the GR-WA-BPM for the analysis of tilted optical waveguides is demonstrated in comparison with the standard wide-angle beam propagation method based on Hadley’s scheme. In addition, since the utility of the CJI method depends mostly on its execution speed in comparison with the traditional direct matrix inversion, several performance comparisons are also presented.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription