Abstract

We numerically investigated the transmission of a bunch of solitons resulting from the breakup of pulses with duration of several tens of picoseconds (ps) through a nonlinear optical loop mirror (NOLM) and found that under some conditions an individual soliton can be extracted. The NOLM selectivity can be adjusted by the amplification of the bunch of solitons before it is launched into the NOLM. The results demonstrate that an appropriate choice of the amplification and of the NOLM loop length makes it possible to extract one fundamental soliton and to tune the soliton duration. For a particular case of 20ps input pulses, the duration of the extracted soliton was tuned in the range between 0.23 and 0.61ps. We believe that the suggested method can be useful for producing solitons with desirable duration.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. F. Mollenauer, R. H. Stolen, J. P. Gordon, and W. J. Tomlinson, “Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers,” Opt. Lett. 8, 289-291 (1983).
    [CrossRef] [PubMed]
  2. F. M. Mitschke and L. F. Mollenauer, “Ultrashort pulses from the soliton laser,” Opt. Lett. 12, 407-409 (1987).
    [CrossRef] [PubMed]
  3. A. S. Gouveia-Neto, A. S. L. Gomes, and J. R. Taylor, “Generation of 33 fsec pulses at 1.32 μm through a high-order soliton effect in a single-mode optical fiber,” Opt. Lett. 12, 395-397 (1987).
    [CrossRef] [PubMed]
  4. P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. QE-23, 1938-1946 (1987).
    [CrossRef]
  5. G. P. Agrawal, “Effect of intrapulse stimulated Raman scattering on soliton-effect pulse compression in optical fibers,” Opt. Lett. 15, 224-226 (1990).
    [CrossRef] [PubMed]
  6. K. C. Chan and H. F. Liu, “Effects of Raman scattering and frequency chirping on soliton-effect pulse compression,” Opt. Lett. 14, 1150-1152 (1993).
    [CrossRef]
  7. K.-T. Chan and W.-H. Cao, “Improved soliton-effect pulse compression by combined action of negative third-order dispersion and Raman self-scattering in optical fibers,” J. Opt. Soc. Am. B 15, 2371-2375 (1998).
    [CrossRef]
  8. C.-M. Chen and P. L. Kelley, “Nonlinear pulse compression in optical fibers: scaling laws and numerical analysis,” J. Opt. Soc. Am. B 19, 1961-1967 (2002).
    [CrossRef]
  9. Y. Ozeki and T. Inoue, “Stationary rescaled pulse in dispersion-decreasing fiber for pedestal-free pulse compression,” Opt. Lett. 31, 1606-1608 (2006).
    [CrossRef] [PubMed]
  10. N. J. Doran and D. Wood, “Nonlinear-optical loop mirror,” Opt. Lett. 13, 56-58 (1988).
    [CrossRef] [PubMed]
  11. N. J. Doran and D. Wood, “Soliton processing element for all-optical switching and logic,” J. Opt. Soc. Am. B 4, 1843-1846 (1987).
    [CrossRef]
  12. M. N. Islam, E. R. Sunderman, R. H. Stolen, W. Pleibel, and J. R. Simpson, “Soliton switching in a fiber nonlinear loop mirror,” Opt. Lett. 14, 811-813 (1989).
    [CrossRef] [PubMed]
  13. K. J. Blow, N. J. Doran, and B. K. Nayar, “Experimental demonstration of optical soliton switching in an all-fiber nonlinear Sagnac interferometer,” Opt. Lett. 14, 754-756 (1989).
    [CrossRef] [PubMed]
  14. K. J. Blow, N. J. Doran, and S. J. D. Phoenix, “The soliton phase,” Opt. Commun. 88, 137-140 (1992).
    [CrossRef]
  15. H. Y. Rhy, B. Y. Kim, and H.-W. Lee, “Optical switching with nonlinear loop mirror using vector solitons status in a nearly isotropic fiber,” Opt. Commun. 147, 47-50 (1998).
    [CrossRef]
  16. Y. Zhao and P. Ye, “Impact of initial chirp on nonlinear optical loop mirror switches in switching solitons,” Opt. Commun. 199, 361-368 (2001).
    [CrossRef]
  17. K. Smith, N. J. Doran, and P. G. J. Wigley, “Pulse shaping, compression, and pedestal suppression employing a nonlinear-optical loop mirror,” Opt. Lett. 15, 1294-1296 (1990).
    [CrossRef] [PubMed]
  18. K. Smith, E. J. Greer, N. J. Doran, D. M. Bird, and K. H. Cameron, “Pulse amplification and shaping using a nonlinear loop mirror that incorporates a saturable gain,” Opt. Lett. 17, 408-410 (1992).
    [CrossRef] [PubMed]
  19. W. S. Wong, S. Namiki, M. Margalit, H. A. Haus, and E. P. Ippen, “Self-switching of optical pulses in dispersion-imbalanced nonlinear loop mirrors,” Opt. Lett. 22, 1150-1152 (1997).
    [CrossRef] [PubMed]
  20. I. Y. Khrushchev, I. H. White, and R. V. Plenty, “High-quality laser diode pulse compression in a dispersion-imbalanced loop mirror,” Electron. Lett. 34, 1009-1010 (1998).
    [CrossRef]
  21. K. R. Tamura and M. Nakazawa, “Spectral smoothing and pedestal reduction of wavelength tunable quasi-adiabatically compressed femtosecond solitons using a dispersion-flattened dispersion-imbalanced loop mirror,” IEEE Photonics Technol. Lett. 11, 230-232 (1999).
    [CrossRef]
  22. K. R. Tamura and M. Nakazawa, “A polarization-maintaining pedestal-free femtosecond pulse compressor incorporating an ultrafast dispersion-imbalanced nonlinear optical loop mirror,” IEEE Photonics Technol. Lett. 13, 526-528 (2001).
    [CrossRef]
  23. L. Chusseau and E. Delevaque, “250 fs optical pulse generation by simultaneous soliton compression and shaping in a nonlinear optical loop mirror including a weak attenuation,” Opt. Lett. 19, 734-736 (1994).
    [CrossRef] [PubMed]
  24. J. Wu, Y. Li, C. Lou, and Y. Gao, “Optimization of pulse compression with an unbalanced nonlinear optical loop mirror,” Opt. Commun. 180, 43-47 (2000).
    [CrossRef]
  25. P. K. A. Wai and W.-H. Cao, “Ultrashort soliton generation through higher-order soliton compression in a nonlinear optical loop mirror constructed from dispersion-decreasing fiber,” J. Opt. Soc. Am. B 20, 1346-1355 (2003).
    [CrossRef]
  26. E. A. Kuzin, J. A. Andrarde-Lucio, B. Ibarra-Escamilla, R. Rojas-Laguna, and J. Sanchez-Mondragon, “Nonlinear optical loop mirror using the nonlinear polarization rotation effect,” Opt. Commun. 144, 60-64 (1997).
    [CrossRef]
  27. C. Tsao, Optical Fiber Waveguide Analysis (Oxford U. Press, 1992).
  28. T. Tanemura and K. Kikuchi, “Circular-birefringence fiber for nonlinear optical signal processing,” J. Lightwave Technol. 24, 4108-4119 (2006).
    [CrossRef]
  29. B. Ibarra-Escamilla, E. A. Kuzin, P. Zaca-Morán, R. Grajales-Coutiño, F. Mendez-Martinez, O. Pottiez, R. Rojas-Laguna, and J. W. Haus, “Experimental investigation of the nonlinear optical loop mirror with twisted fiber and birefringence bias,” Opt. Express 13, 10760-10767 (2005).
    [CrossRef] [PubMed]
  30. O. Pottiez, B. Ibarra-Escamilla, and E. A. Kuzin, “High-quality amplitude jitter reduction and extinction enhancement using a power symmetric NOLM and a polarizer,” Opt. Express 15, 2564-2572 (2007).
    [CrossRef] [PubMed]
  31. G. P. Agrawal, Nonlinear Fiber Optics3rd ed. (Academic, 2001).
  32. J. M. Dudley, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135-1184 (2006).
    [CrossRef]
  33. V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media,” Sov. Phys. JETP 61, 62-69 (1972).
  34. B. A. Malomed, “Soliton-collision problem in the nonlinear Schrödinger equation with a nonlinear damping term,” Phys. Rev. A 44, 1412-1414 (1991).
    [CrossRef] [PubMed]
  35. A. V. Husakou and J. Hermann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fiber,” Phys. Rev. Lett. 87, 203901 (2001).
    [CrossRef] [PubMed]
  36. A. Peleg, “Log-normal distribution of pulse amplitudes due to Raman cross talk in wavelength division multiplexing soliton transmission,” Opt. Lett. 29, 1980-1982 (2004).
    [CrossRef] [PubMed]
  37. N. Korneev, E. A. Kuzin, B. Ibarra-Escamilla, M. Bello-Jiménez, and A. Flores-Rosas, “Initial development of supercontinuum in fibers with anomalous dispersion pumped by nanosecond-long pulses,” Opt. Express 16, 2636-2645 (2008).
    [CrossRef] [PubMed]
  38. O. Pottiez, E. A. Kuzin, B. Ibarra-Escamilla, and F. Méndez-Martínez, “Theoretical investigation of the NOLM with highly twisted fiber and a λ/4 birefringence bias,” Opt. Commun. 254, 152-167 (2005).
    [CrossRef]
  39. Y. Silberberg and Y. Barad, “Rotating vector solitary waves in isotropic fibers,” Opt. Lett. 20, 246-248 (1995).
    [CrossRef] [PubMed]
  40. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11, 662-664 (1986).
    [CrossRef] [PubMed]
  41. J. Satsuma and N. Yajima, “Initial value problems of one dimensional self-modulation of nonlinear waves in dispersive media,” Suppl. Prog. Theor. Phys. 55, 284-306 (1974).
    [CrossRef]
  42. A. Hasegawa and M. Matsumoto, Optical Solitons in Fibers, 3rd ed., Springer Series in Photonics (Springer, 2003).

2008 (1)

2007 (1)

2006 (3)

2005 (2)

2004 (1)

2003 (1)

2002 (1)

2001 (3)

Y. Zhao and P. Ye, “Impact of initial chirp on nonlinear optical loop mirror switches in switching solitons,” Opt. Commun. 199, 361-368 (2001).
[CrossRef]

K. R. Tamura and M. Nakazawa, “A polarization-maintaining pedestal-free femtosecond pulse compressor incorporating an ultrafast dispersion-imbalanced nonlinear optical loop mirror,” IEEE Photonics Technol. Lett. 13, 526-528 (2001).
[CrossRef]

A. V. Husakou and J. Hermann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fiber,” Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

2000 (1)

J. Wu, Y. Li, C. Lou, and Y. Gao, “Optimization of pulse compression with an unbalanced nonlinear optical loop mirror,” Opt. Commun. 180, 43-47 (2000).
[CrossRef]

1999 (1)

K. R. Tamura and M. Nakazawa, “Spectral smoothing and pedestal reduction of wavelength tunable quasi-adiabatically compressed femtosecond solitons using a dispersion-flattened dispersion-imbalanced loop mirror,” IEEE Photonics Technol. Lett. 11, 230-232 (1999).
[CrossRef]

1998 (3)

I. Y. Khrushchev, I. H. White, and R. V. Plenty, “High-quality laser diode pulse compression in a dispersion-imbalanced loop mirror,” Electron. Lett. 34, 1009-1010 (1998).
[CrossRef]

H. Y. Rhy, B. Y. Kim, and H.-W. Lee, “Optical switching with nonlinear loop mirror using vector solitons status in a nearly isotropic fiber,” Opt. Commun. 147, 47-50 (1998).
[CrossRef]

K.-T. Chan and W.-H. Cao, “Improved soliton-effect pulse compression by combined action of negative third-order dispersion and Raman self-scattering in optical fibers,” J. Opt. Soc. Am. B 15, 2371-2375 (1998).
[CrossRef]

1997 (2)

W. S. Wong, S. Namiki, M. Margalit, H. A. Haus, and E. P. Ippen, “Self-switching of optical pulses in dispersion-imbalanced nonlinear loop mirrors,” Opt. Lett. 22, 1150-1152 (1997).
[CrossRef] [PubMed]

E. A. Kuzin, J. A. Andrarde-Lucio, B. Ibarra-Escamilla, R. Rojas-Laguna, and J. Sanchez-Mondragon, “Nonlinear optical loop mirror using the nonlinear polarization rotation effect,” Opt. Commun. 144, 60-64 (1997).
[CrossRef]

1995 (1)

1994 (1)

1993 (1)

K. C. Chan and H. F. Liu, “Effects of Raman scattering and frequency chirping on soliton-effect pulse compression,” Opt. Lett. 14, 1150-1152 (1993).
[CrossRef]

1992 (2)

1991 (1)

B. A. Malomed, “Soliton-collision problem in the nonlinear Schrödinger equation with a nonlinear damping term,” Phys. Rev. A 44, 1412-1414 (1991).
[CrossRef] [PubMed]

1990 (2)

1989 (2)

1988 (1)

1987 (4)

1986 (1)

1983 (1)

1974 (1)

J. Satsuma and N. Yajima, “Initial value problems of one dimensional self-modulation of nonlinear waves in dispersive media,” Suppl. Prog. Theor. Phys. 55, 284-306 (1974).
[CrossRef]

1972 (1)

V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media,” Sov. Phys. JETP 61, 62-69 (1972).

Agrawal, G. P.

Andrarde-Lucio, J. A.

E. A. Kuzin, J. A. Andrarde-Lucio, B. Ibarra-Escamilla, R. Rojas-Laguna, and J. Sanchez-Mondragon, “Nonlinear optical loop mirror using the nonlinear polarization rotation effect,” Opt. Commun. 144, 60-64 (1997).
[CrossRef]

Barad, Y.

Beaud, P.

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. QE-23, 1938-1946 (1987).
[CrossRef]

Bello-Jiménez, M.

Bird, D. M.

Blow, K. J.

Cameron, K. H.

Cao, W.-H.

Chan, K. C.

K. C. Chan and H. F. Liu, “Effects of Raman scattering and frequency chirping on soliton-effect pulse compression,” Opt. Lett. 14, 1150-1152 (1993).
[CrossRef]

Chan, K.-T.

Chen, C.-M.

Chusseau, L.

Delevaque, E.

Doran, N. J.

Dudley, J. M.

J. M. Dudley, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

Flores-Rosas, A.

Gao, Y.

J. Wu, Y. Li, C. Lou, and Y. Gao, “Optimization of pulse compression with an unbalanced nonlinear optical loop mirror,” Opt. Commun. 180, 43-47 (2000).
[CrossRef]

Gomes, A. S. L.

Gordon, J. P.

Gouveia-Neto, A. S.

Grajales-Coutiño, R.

Greer, E. J.

Hasegawa, A.

A. Hasegawa and M. Matsumoto, Optical Solitons in Fibers, 3rd ed., Springer Series in Photonics (Springer, 2003).

Haus, H. A.

Haus, J. W.

Hermann, J.

A. V. Husakou and J. Hermann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fiber,” Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

Hodel, W.

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. QE-23, 1938-1946 (1987).
[CrossRef]

Husakou, A. V.

A. V. Husakou and J. Hermann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fiber,” Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

Ibarra-Escamilla, B.

Inoue, T.

Ippen, E. P.

Islam, M. N.

Kelley, P. L.

Khrushchev, I. Y.

I. Y. Khrushchev, I. H. White, and R. V. Plenty, “High-quality laser diode pulse compression in a dispersion-imbalanced loop mirror,” Electron. Lett. 34, 1009-1010 (1998).
[CrossRef]

Kikuchi, K.

Kim, B. Y.

H. Y. Rhy, B. Y. Kim, and H.-W. Lee, “Optical switching with nonlinear loop mirror using vector solitons status in a nearly isotropic fiber,” Opt. Commun. 147, 47-50 (1998).
[CrossRef]

Korneev, N.

Kuzin, E. A.

Lee, H.-W.

H. Y. Rhy, B. Y. Kim, and H.-W. Lee, “Optical switching with nonlinear loop mirror using vector solitons status in a nearly isotropic fiber,” Opt. Commun. 147, 47-50 (1998).
[CrossRef]

Li, Y.

J. Wu, Y. Li, C. Lou, and Y. Gao, “Optimization of pulse compression with an unbalanced nonlinear optical loop mirror,” Opt. Commun. 180, 43-47 (2000).
[CrossRef]

Liu, H. F.

K. C. Chan and H. F. Liu, “Effects of Raman scattering and frequency chirping on soliton-effect pulse compression,” Opt. Lett. 14, 1150-1152 (1993).
[CrossRef]

Lou, C.

J. Wu, Y. Li, C. Lou, and Y. Gao, “Optimization of pulse compression with an unbalanced nonlinear optical loop mirror,” Opt. Commun. 180, 43-47 (2000).
[CrossRef]

Malomed, B. A.

B. A. Malomed, “Soliton-collision problem in the nonlinear Schrödinger equation with a nonlinear damping term,” Phys. Rev. A 44, 1412-1414 (1991).
[CrossRef] [PubMed]

Margalit, M.

Matsumoto, M.

A. Hasegawa and M. Matsumoto, Optical Solitons in Fibers, 3rd ed., Springer Series in Photonics (Springer, 2003).

Mendez-Martinez, F.

Méndez-Martínez, F.

O. Pottiez, E. A. Kuzin, B. Ibarra-Escamilla, and F. Méndez-Martínez, “Theoretical investigation of the NOLM with highly twisted fiber and a λ/4 birefringence bias,” Opt. Commun. 254, 152-167 (2005).
[CrossRef]

Mitschke, F. M.

Mollenauer, L. F.

Nakazawa, M.

K. R. Tamura and M. Nakazawa, “A polarization-maintaining pedestal-free femtosecond pulse compressor incorporating an ultrafast dispersion-imbalanced nonlinear optical loop mirror,” IEEE Photonics Technol. Lett. 13, 526-528 (2001).
[CrossRef]

K. R. Tamura and M. Nakazawa, “Spectral smoothing and pedestal reduction of wavelength tunable quasi-adiabatically compressed femtosecond solitons using a dispersion-flattened dispersion-imbalanced loop mirror,” IEEE Photonics Technol. Lett. 11, 230-232 (1999).
[CrossRef]

Namiki, S.

Nayar, B. K.

Ozeki, Y.

Peleg, A.

Phoenix, S. J. D.

K. J. Blow, N. J. Doran, and S. J. D. Phoenix, “The soliton phase,” Opt. Commun. 88, 137-140 (1992).
[CrossRef]

Pleibel, W.

Plenty, R. V.

I. Y. Khrushchev, I. H. White, and R. V. Plenty, “High-quality laser diode pulse compression in a dispersion-imbalanced loop mirror,” Electron. Lett. 34, 1009-1010 (1998).
[CrossRef]

Pottiez, O.

Rhy, H. Y.

H. Y. Rhy, B. Y. Kim, and H.-W. Lee, “Optical switching with nonlinear loop mirror using vector solitons status in a nearly isotropic fiber,” Opt. Commun. 147, 47-50 (1998).
[CrossRef]

Rojas-Laguna, R.

B. Ibarra-Escamilla, E. A. Kuzin, P. Zaca-Morán, R. Grajales-Coutiño, F. Mendez-Martinez, O. Pottiez, R. Rojas-Laguna, and J. W. Haus, “Experimental investigation of the nonlinear optical loop mirror with twisted fiber and birefringence bias,” Opt. Express 13, 10760-10767 (2005).
[CrossRef] [PubMed]

E. A. Kuzin, J. A. Andrarde-Lucio, B. Ibarra-Escamilla, R. Rojas-Laguna, and J. Sanchez-Mondragon, “Nonlinear optical loop mirror using the nonlinear polarization rotation effect,” Opt. Commun. 144, 60-64 (1997).
[CrossRef]

Sanchez-Mondragon, J.

E. A. Kuzin, J. A. Andrarde-Lucio, B. Ibarra-Escamilla, R. Rojas-Laguna, and J. Sanchez-Mondragon, “Nonlinear optical loop mirror using the nonlinear polarization rotation effect,” Opt. Commun. 144, 60-64 (1997).
[CrossRef]

Satsuma, J.

J. Satsuma and N. Yajima, “Initial value problems of one dimensional self-modulation of nonlinear waves in dispersive media,” Suppl. Prog. Theor. Phys. 55, 284-306 (1974).
[CrossRef]

Shabat, A. B.

V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media,” Sov. Phys. JETP 61, 62-69 (1972).

Silberberg, Y.

Simpson, J. R.

Smith, K.

Stolen, R. H.

Sunderman, E. R.

Tamura, K. R.

K. R. Tamura and M. Nakazawa, “A polarization-maintaining pedestal-free femtosecond pulse compressor incorporating an ultrafast dispersion-imbalanced nonlinear optical loop mirror,” IEEE Photonics Technol. Lett. 13, 526-528 (2001).
[CrossRef]

K. R. Tamura and M. Nakazawa, “Spectral smoothing and pedestal reduction of wavelength tunable quasi-adiabatically compressed femtosecond solitons using a dispersion-flattened dispersion-imbalanced loop mirror,” IEEE Photonics Technol. Lett. 11, 230-232 (1999).
[CrossRef]

Tanemura, T.

Taylor, J. R.

Tomlinson, W. J.

Tsao, C.

C. Tsao, Optical Fiber Waveguide Analysis (Oxford U. Press, 1992).

Wai, P. K. A.

Weber, H. P.

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. QE-23, 1938-1946 (1987).
[CrossRef]

White, I. H.

I. Y. Khrushchev, I. H. White, and R. V. Plenty, “High-quality laser diode pulse compression in a dispersion-imbalanced loop mirror,” Electron. Lett. 34, 1009-1010 (1998).
[CrossRef]

Wigley, P. G. J.

Wong, W. S.

Wood, D.

Wu, J.

J. Wu, Y. Li, C. Lou, and Y. Gao, “Optimization of pulse compression with an unbalanced nonlinear optical loop mirror,” Opt. Commun. 180, 43-47 (2000).
[CrossRef]

Yajima, N.

J. Satsuma and N. Yajima, “Initial value problems of one dimensional self-modulation of nonlinear waves in dispersive media,” Suppl. Prog. Theor. Phys. 55, 284-306 (1974).
[CrossRef]

Ye, P.

Y. Zhao and P. Ye, “Impact of initial chirp on nonlinear optical loop mirror switches in switching solitons,” Opt. Commun. 199, 361-368 (2001).
[CrossRef]

Zaca-Morán, P.

Zakharov, V. E.

V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media,” Sov. Phys. JETP 61, 62-69 (1972).

Zhao, Y.

Y. Zhao and P. Ye, “Impact of initial chirp on nonlinear optical loop mirror switches in switching solitons,” Opt. Commun. 199, 361-368 (2001).
[CrossRef]

Zysset, B.

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. QE-23, 1938-1946 (1987).
[CrossRef]

Electron. Lett. (1)

I. Y. Khrushchev, I. H. White, and R. V. Plenty, “High-quality laser diode pulse compression in a dispersion-imbalanced loop mirror,” Electron. Lett. 34, 1009-1010 (1998).
[CrossRef]

IEEE J. Quantum Electron. (1)

P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. QE-23, 1938-1946 (1987).
[CrossRef]

IEEE Photonics Technol. Lett. (2)

K. R. Tamura and M. Nakazawa, “Spectral smoothing and pedestal reduction of wavelength tunable quasi-adiabatically compressed femtosecond solitons using a dispersion-flattened dispersion-imbalanced loop mirror,” IEEE Photonics Technol. Lett. 11, 230-232 (1999).
[CrossRef]

K. R. Tamura and M. Nakazawa, “A polarization-maintaining pedestal-free femtosecond pulse compressor incorporating an ultrafast dispersion-imbalanced nonlinear optical loop mirror,” IEEE Photonics Technol. Lett. 13, 526-528 (2001).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (4)

Opt. Commun. (6)

K. J. Blow, N. J. Doran, and S. J. D. Phoenix, “The soliton phase,” Opt. Commun. 88, 137-140 (1992).
[CrossRef]

H. Y. Rhy, B. Y. Kim, and H.-W. Lee, “Optical switching with nonlinear loop mirror using vector solitons status in a nearly isotropic fiber,” Opt. Commun. 147, 47-50 (1998).
[CrossRef]

Y. Zhao and P. Ye, “Impact of initial chirp on nonlinear optical loop mirror switches in switching solitons,” Opt. Commun. 199, 361-368 (2001).
[CrossRef]

E. A. Kuzin, J. A. Andrarde-Lucio, B. Ibarra-Escamilla, R. Rojas-Laguna, and J. Sanchez-Mondragon, “Nonlinear optical loop mirror using the nonlinear polarization rotation effect,” Opt. Commun. 144, 60-64 (1997).
[CrossRef]

O. Pottiez, E. A. Kuzin, B. Ibarra-Escamilla, and F. Méndez-Martínez, “Theoretical investigation of the NOLM with highly twisted fiber and a λ/4 birefringence bias,” Opt. Commun. 254, 152-167 (2005).
[CrossRef]

J. Wu, Y. Li, C. Lou, and Y. Gao, “Optimization of pulse compression with an unbalanced nonlinear optical loop mirror,” Opt. Commun. 180, 43-47 (2000).
[CrossRef]

Opt. Express (3)

Opt. Lett. (16)

M. N. Islam, E. R. Sunderman, R. H. Stolen, W. Pleibel, and J. R. Simpson, “Soliton switching in a fiber nonlinear loop mirror,” Opt. Lett. 14, 811-813 (1989).
[CrossRef] [PubMed]

K. J. Blow, N. J. Doran, and B. K. Nayar, “Experimental demonstration of optical soliton switching in an all-fiber nonlinear Sagnac interferometer,” Opt. Lett. 14, 754-756 (1989).
[CrossRef] [PubMed]

Y. Silberberg and Y. Barad, “Rotating vector solitary waves in isotropic fibers,” Opt. Lett. 20, 246-248 (1995).
[CrossRef] [PubMed]

J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11, 662-664 (1986).
[CrossRef] [PubMed]

K. Smith, N. J. Doran, and P. G. J. Wigley, “Pulse shaping, compression, and pedestal suppression employing a nonlinear-optical loop mirror,” Opt. Lett. 15, 1294-1296 (1990).
[CrossRef] [PubMed]

K. Smith, E. J. Greer, N. J. Doran, D. M. Bird, and K. H. Cameron, “Pulse amplification and shaping using a nonlinear loop mirror that incorporates a saturable gain,” Opt. Lett. 17, 408-410 (1992).
[CrossRef] [PubMed]

W. S. Wong, S. Namiki, M. Margalit, H. A. Haus, and E. P. Ippen, “Self-switching of optical pulses in dispersion-imbalanced nonlinear loop mirrors,” Opt. Lett. 22, 1150-1152 (1997).
[CrossRef] [PubMed]

L. Chusseau and E. Delevaque, “250 fs optical pulse generation by simultaneous soliton compression and shaping in a nonlinear optical loop mirror including a weak attenuation,” Opt. Lett. 19, 734-736 (1994).
[CrossRef] [PubMed]

Y. Ozeki and T. Inoue, “Stationary rescaled pulse in dispersion-decreasing fiber for pedestal-free pulse compression,” Opt. Lett. 31, 1606-1608 (2006).
[CrossRef] [PubMed]

N. J. Doran and D. Wood, “Nonlinear-optical loop mirror,” Opt. Lett. 13, 56-58 (1988).
[CrossRef] [PubMed]

G. P. Agrawal, “Effect of intrapulse stimulated Raman scattering on soliton-effect pulse compression in optical fibers,” Opt. Lett. 15, 224-226 (1990).
[CrossRef] [PubMed]

K. C. Chan and H. F. Liu, “Effects of Raman scattering and frequency chirping on soliton-effect pulse compression,” Opt. Lett. 14, 1150-1152 (1993).
[CrossRef]

L. F. Mollenauer, R. H. Stolen, J. P. Gordon, and W. J. Tomlinson, “Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers,” Opt. Lett. 8, 289-291 (1983).
[CrossRef] [PubMed]

F. M. Mitschke and L. F. Mollenauer, “Ultrashort pulses from the soliton laser,” Opt. Lett. 12, 407-409 (1987).
[CrossRef] [PubMed]

A. S. Gouveia-Neto, A. S. L. Gomes, and J. R. Taylor, “Generation of 33 fsec pulses at 1.32 μm through a high-order soliton effect in a single-mode optical fiber,” Opt. Lett. 12, 395-397 (1987).
[CrossRef] [PubMed]

A. Peleg, “Log-normal distribution of pulse amplitudes due to Raman cross talk in wavelength division multiplexing soliton transmission,” Opt. Lett. 29, 1980-1982 (2004).
[CrossRef] [PubMed]

Phys. Rev. A (1)

B. A. Malomed, “Soliton-collision problem in the nonlinear Schrödinger equation with a nonlinear damping term,” Phys. Rev. A 44, 1412-1414 (1991).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

A. V. Husakou and J. Hermann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fiber,” Phys. Rev. Lett. 87, 203901 (2001).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

J. M. Dudley, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

Sov. Phys. JETP (1)

V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media,” Sov. Phys. JETP 61, 62-69 (1972).

Suppl. Prog. Theor. Phys. (1)

J. Satsuma and N. Yajima, “Initial value problems of one dimensional self-modulation of nonlinear waves in dispersive media,” Suppl. Prog. Theor. Phys. 55, 284-306 (1974).
[CrossRef]

Other (3)

A. Hasegawa and M. Matsumoto, Optical Solitons in Fibers, 3rd ed., Springer Series in Photonics (Springer, 2003).

C. Tsao, Optical Fiber Waveguide Analysis (Oxford U. Press, 1992).

G. P. Agrawal, Nonlinear Fiber Optics3rd ed. (Academic, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Proposed scheme to extract a single soliton using a symmetrical NOLM.

Fig. 2
Fig. 2

Transmission of solitons through the 37 m NOLM.

Fig. 3
Fig. 3

Optimum loop length to obtain complete transmission for solitons with T FWHM ranging from 0.1 ps to 1.7 ps . Circles show the calculated optimum lengths and the curve shows the approximation L = 5.7 L D .

Fig. 4
Fig. 4

Input (thin solid) and output (thick solid) waveforms from Fiber 1.

Fig. 5
Fig. 5

Transmitted waveforms at the NOLM output considering different amplifications of the EDFA: (a) 1.5, (b) 3, (c) 4.5, and (d) 6.

Fig. 6
Fig. 6

Output pulses from the 100 m Fiber 2 considering the waveforms at the NOLM output shown in Fig. 5. (a) Strong dispersive effect for low-amplitude pulses. (b–d) Dispersive and nonlinear effects improve the quality of the transmitted pulse, achieving higher contrast and forming a fundamental soliton.

Fig. 7
Fig. 7

(a) Energy ratio between the energy of the desired and the remaining pulses. (b) Power ratio between the peak power of the strongest pulse and the next one.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

A + z = Δ β 2 A + T i β 2 2 2 A + T + i 2 3 γ ( A + 2 + 2 A 2 ) A + ,
A z = Δ β 2 A T i β 2 2 2 A T + i 2 3 γ ( A 2 + 2 A + 2 ) A ,
A z + i β 2 2 2 A T = i γ ( A 2 A T R A A 2 T ) ,
T = ( α 1 ) 2 + α 2 2 α ( 1 α ) cos [ α L L NL ( 1 α ) L L NLC ] ,

Metrics