Abstract

Atomic-layer-deposited iridium is coated onto three-dimensional tungsten woodpile photonic crystals to modify the optical properties of the structure. As the lattice constant of a metallic photonic bandgap structure decreases to the scale of the near-IR wavelengths, the band edge becomes pinned and cannot be pushed to shorter wavelengths because of limitations inherent in the material. With a thin coating of iridium, the band edge of a pinned tungsten lattice is pushed from 1.6μm to below 1μm. This shift in the reflectance band edge will be accompanied by a reduction in the absorptance of the structure in the 12μm range.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystal with a large IR bandgap,” Nature 417, 52-55 (2002).
    [CrossRef] [PubMed]
  2. S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83, 380-382 (2003).
    [CrossRef]
  3. T. A. Walsh and S. Y. Lin, “Power density and efficiency of thermophotovoltaic energy conversion using a photonic-crystal emitter and a 2-D metal-grid filter,” IEEE Trans. Electron Devices 55, 1101-1108 (2008).
    [CrossRef]
  4. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251-253 (1998).
    [CrossRef]
  5. S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” J. Opt. Soc. Am. B 20, 1538-1541 (2003).
    [CrossRef]
  6. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143-149 (1997).
    [CrossRef]
  7. S. Y. Lin, D.-X. Ye, T.-M. Lu, J. Bur, Y. S. Kim, and K. M. Ho, “Achieving a photonic band edge near visible wavelengths by metallic coatings,” J. Appl. Phys. 99, 083104 (2006).
    [CrossRef]
  8. J. D. Jackson, Classical Electrodynamics (Wiley, 1999).
  9. S.-Y. Lin, J. G. Fleming, and I. El-Kady, “Experimental observation of photonic-crystal emission near a photonic band edge,” Appl. Phys. Lett. 83, 593-595 (2003).
    [CrossRef]
  10. S.-Y. Lin, J. G. Fleming, and I. El-Kady, “Three-dimensional photonic-crystal emission through thermal excitation,” Opt. Lett. 28, 1909-1911 (2003).
    [CrossRef] [PubMed]
  11. S. Y. Lin, J. G. Fleming, and I. El-Kady, “Highly efficient light emission at λ=1.5 μm, by a three-dimensional tungsten photonic crystal,” Opt. Lett. 28, 1683-1685 (2003).
    [CrossRef] [PubMed]
  12. For a review, see, for example, M. Leskalä and M. Ritala, “Atomic layer deposition (ALD): from precursors to thin film structures,”Thin Solid Films 409, 138-146 (2002).
    [CrossRef]
  13. G. A. T. Eyck, J. J. Senkevich, F. Tang, D. Liu, S. Pimanpang, T. Karaback, G.-C. Wang, T.-M. Lu, C. Jezewski, and W. A. Lanford, “Plasma-assisted atomic layer deposition of palladium,” Chem. Vap. Deposition 11, 60-66 (2005).
    [CrossRef]
  14. G. A. T. Eyck, S. Pimanpang, H. Bakhru, T.-M. Lu, and G.-C. Wang, “Atomic layer deposition of Pd on an oxidized metal substrate,” Chem. Vap. Deposition 12, 290-294 (2006).
    [CrossRef]
  15. R. L. Puurunen, “Growth per cycle in atomic layer deposition: a theoretical model,” Chem. Vap. Deposition 9, 249-257 (2003).
    [CrossRef]
  16. R. G. Gordon, D. Hausmann, E. Kim, and J. Shepard, “A kinetic model for step coverage by atomic layer deposition in narrow holes or trenches,” Chem. Vap. Deposition 9, 73-78 (2003).
    [CrossRef]
  17. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1997).
  18. Z.-Y. Li and L.-L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E 67, 046607 (2003).
    [CrossRef]
  19. Z.-Y. Li, I. El-Kady, K.-M. Ho, S. Y. Lin, and J. G. Fleming, “Photonic band gap effect in layer-by-layer metallic photonic crystals,” J. Appl. Phys. 93, 38-42 (2003).
    [CrossRef]
  20. T. Aaltonen, M. Ritala, V. Sammelselg, and M. Leskelä, “Atomic layer deposition of iridium thin films,” J. Electrochem. Soc. 151, G489-G492 (2004).
    [CrossRef]
  21. R. A. Waldo, M. C. Militello, and S. W. Gaarenstroom, “Quantitative thin-film analysis with an energy-dispersive x-ray detector,” Surf. Interface Anal. 20, 111-114 (1993).
    [CrossRef]

2008 (1)

T. A. Walsh and S. Y. Lin, “Power density and efficiency of thermophotovoltaic energy conversion using a photonic-crystal emitter and a 2-D metal-grid filter,” IEEE Trans. Electron Devices 55, 1101-1108 (2008).
[CrossRef]

2006 (2)

G. A. T. Eyck, S. Pimanpang, H. Bakhru, T.-M. Lu, and G.-C. Wang, “Atomic layer deposition of Pd on an oxidized metal substrate,” Chem. Vap. Deposition 12, 290-294 (2006).
[CrossRef]

S. Y. Lin, D.-X. Ye, T.-M. Lu, J. Bur, Y. S. Kim, and K. M. Ho, “Achieving a photonic band edge near visible wavelengths by metallic coatings,” J. Appl. Phys. 99, 083104 (2006).
[CrossRef]

2005 (1)

G. A. T. Eyck, J. J. Senkevich, F. Tang, D. Liu, S. Pimanpang, T. Karaback, G.-C. Wang, T.-M. Lu, C. Jezewski, and W. A. Lanford, “Plasma-assisted atomic layer deposition of palladium,” Chem. Vap. Deposition 11, 60-66 (2005).
[CrossRef]

2004 (1)

T. Aaltonen, M. Ritala, V. Sammelselg, and M. Leskelä, “Atomic layer deposition of iridium thin films,” J. Electrochem. Soc. 151, G489-G492 (2004).
[CrossRef]

2003 (9)

S.-Y. Lin, J. G. Fleming, and I. El-Kady, “Experimental observation of photonic-crystal emission near a photonic band edge,” Appl. Phys. Lett. 83, 593-595 (2003).
[CrossRef]

S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” J. Opt. Soc. Am. B 20, 1538-1541 (2003).
[CrossRef]

S. Y. Lin, J. G. Fleming, and I. El-Kady, “Highly efficient light emission at λ=1.5 μm, by a three-dimensional tungsten photonic crystal,” Opt. Lett. 28, 1683-1685 (2003).
[CrossRef] [PubMed]

S.-Y. Lin, J. G. Fleming, and I. El-Kady, “Three-dimensional photonic-crystal emission through thermal excitation,” Opt. Lett. 28, 1909-1911 (2003).
[CrossRef] [PubMed]

R. L. Puurunen, “Growth per cycle in atomic layer deposition: a theoretical model,” Chem. Vap. Deposition 9, 249-257 (2003).
[CrossRef]

R. G. Gordon, D. Hausmann, E. Kim, and J. Shepard, “A kinetic model for step coverage by atomic layer deposition in narrow holes or trenches,” Chem. Vap. Deposition 9, 73-78 (2003).
[CrossRef]

Z.-Y. Li and L.-L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E 67, 046607 (2003).
[CrossRef]

Z.-Y. Li, I. El-Kady, K.-M. Ho, S. Y. Lin, and J. G. Fleming, “Photonic band gap effect in layer-by-layer metallic photonic crystals,” J. Appl. Phys. 93, 38-42 (2003).
[CrossRef]

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83, 380-382 (2003).
[CrossRef]

2002 (2)

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystal with a large IR bandgap,” Nature 417, 52-55 (2002).
[CrossRef] [PubMed]

For a review, see, for example, M. Leskalä and M. Ritala, “Atomic layer deposition (ALD): from precursors to thin film structures,”Thin Solid Films 409, 138-146 (2002).
[CrossRef]

1998 (1)

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251-253 (1998).
[CrossRef]

1997 (1)

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143-149 (1997).
[CrossRef]

1993 (1)

R. A. Waldo, M. C. Militello, and S. W. Gaarenstroom, “Quantitative thin-film analysis with an energy-dispersive x-ray detector,” Surf. Interface Anal. 20, 111-114 (1993).
[CrossRef]

Aaltonen, T.

T. Aaltonen, M. Ritala, V. Sammelselg, and M. Leskelä, “Atomic layer deposition of iridium thin films,” J. Electrochem. Soc. 151, G489-G492 (2004).
[CrossRef]

Bakhru, H.

G. A. T. Eyck, S. Pimanpang, H. Bakhru, T.-M. Lu, and G.-C. Wang, “Atomic layer deposition of Pd on an oxidized metal substrate,” Chem. Vap. Deposition 12, 290-294 (2006).
[CrossRef]

Biswas, R.

S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” J. Opt. Soc. Am. B 20, 1538-1541 (2003).
[CrossRef]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystal with a large IR bandgap,” Nature 417, 52-55 (2002).
[CrossRef] [PubMed]

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251-253 (1998).
[CrossRef]

Bur, J.

S. Y. Lin, D.-X. Ye, T.-M. Lu, J. Bur, Y. S. Kim, and K. M. Ho, “Achieving a photonic band edge near visible wavelengths by metallic coatings,” J. Appl. Phys. 99, 083104 (2006).
[CrossRef]

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251-253 (1998).
[CrossRef]

El-Kady, I.

Z.-Y. Li, I. El-Kady, K.-M. Ho, S. Y. Lin, and J. G. Fleming, “Photonic band gap effect in layer-by-layer metallic photonic crystals,” J. Appl. Phys. 93, 38-42 (2003).
[CrossRef]

S. Y. Lin, J. G. Fleming, and I. El-Kady, “Highly efficient light emission at λ=1.5 μm, by a three-dimensional tungsten photonic crystal,” Opt. Lett. 28, 1683-1685 (2003).
[CrossRef] [PubMed]

S.-Y. Lin, J. G. Fleming, and I. El-Kady, “Three-dimensional photonic-crystal emission through thermal excitation,” Opt. Lett. 28, 1909-1911 (2003).
[CrossRef] [PubMed]

S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” J. Opt. Soc. Am. B 20, 1538-1541 (2003).
[CrossRef]

S.-Y. Lin, J. G. Fleming, and I. El-Kady, “Experimental observation of photonic-crystal emission near a photonic band edge,” Appl. Phys. Lett. 83, 593-595 (2003).
[CrossRef]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystal with a large IR bandgap,” Nature 417, 52-55 (2002).
[CrossRef] [PubMed]

Eyck, G. A. T.

G. A. T. Eyck, S. Pimanpang, H. Bakhru, T.-M. Lu, and G.-C. Wang, “Atomic layer deposition of Pd on an oxidized metal substrate,” Chem. Vap. Deposition 12, 290-294 (2006).
[CrossRef]

G. A. T. Eyck, J. J. Senkevich, F. Tang, D. Liu, S. Pimanpang, T. Karaback, G.-C. Wang, T.-M. Lu, C. Jezewski, and W. A. Lanford, “Plasma-assisted atomic layer deposition of palladium,” Chem. Vap. Deposition 11, 60-66 (2005).
[CrossRef]

Fan, S.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143-149 (1997).
[CrossRef]

Fleming, J. G.

Z.-Y. Li, I. El-Kady, K.-M. Ho, S. Y. Lin, and J. G. Fleming, “Photonic band gap effect in layer-by-layer metallic photonic crystals,” J. Appl. Phys. 93, 38-42 (2003).
[CrossRef]

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83, 380-382 (2003).
[CrossRef]

S.-Y. Lin, J. G. Fleming, and I. El-Kady, “Three-dimensional photonic-crystal emission through thermal excitation,” Opt. Lett. 28, 1909-1911 (2003).
[CrossRef] [PubMed]

S. Y. Lin, J. G. Fleming, and I. El-Kady, “Highly efficient light emission at λ=1.5 μm, by a three-dimensional tungsten photonic crystal,” Opt. Lett. 28, 1683-1685 (2003).
[CrossRef] [PubMed]

S.-Y. Lin, J. G. Fleming, and I. El-Kady, “Experimental observation of photonic-crystal emission near a photonic band edge,” Appl. Phys. Lett. 83, 593-595 (2003).
[CrossRef]

S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” J. Opt. Soc. Am. B 20, 1538-1541 (2003).
[CrossRef]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystal with a large IR bandgap,” Nature 417, 52-55 (2002).
[CrossRef] [PubMed]

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251-253 (1998).
[CrossRef]

Gaarenstroom, S. W.

R. A. Waldo, M. C. Militello, and S. W. Gaarenstroom, “Quantitative thin-film analysis with an energy-dispersive x-ray detector,” Surf. Interface Anal. 20, 111-114 (1993).
[CrossRef]

Gordon, R. G.

R. G. Gordon, D. Hausmann, E. Kim, and J. Shepard, “A kinetic model for step coverage by atomic layer deposition in narrow holes or trenches,” Chem. Vap. Deposition 9, 73-78 (2003).
[CrossRef]

Hausmann, D.

R. G. Gordon, D. Hausmann, E. Kim, and J. Shepard, “A kinetic model for step coverage by atomic layer deposition in narrow holes or trenches,” Chem. Vap. Deposition 9, 73-78 (2003).
[CrossRef]

Hetherington, D. L.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251-253 (1998).
[CrossRef]

Ho, K. M.

S. Y. Lin, D.-X. Ye, T.-M. Lu, J. Bur, Y. S. Kim, and K. M. Ho, “Achieving a photonic band edge near visible wavelengths by metallic coatings,” J. Appl. Phys. 99, 083104 (2006).
[CrossRef]

S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” J. Opt. Soc. Am. B 20, 1538-1541 (2003).
[CrossRef]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystal with a large IR bandgap,” Nature 417, 52-55 (2002).
[CrossRef] [PubMed]

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251-253 (1998).
[CrossRef]

Ho, K.-M.

Z.-Y. Li, I. El-Kady, K.-M. Ho, S. Y. Lin, and J. G. Fleming, “Photonic band gap effect in layer-by-layer metallic photonic crystals,” J. Appl. Phys. 93, 38-42 (2003).
[CrossRef]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, 1999).

Jezewski, C.

G. A. T. Eyck, J. J. Senkevich, F. Tang, D. Liu, S. Pimanpang, T. Karaback, G.-C. Wang, T.-M. Lu, C. Jezewski, and W. A. Lanford, “Plasma-assisted atomic layer deposition of palladium,” Chem. Vap. Deposition 11, 60-66 (2005).
[CrossRef]

Joannopoulos, J. D.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143-149 (1997).
[CrossRef]

Karaback, T.

G. A. T. Eyck, J. J. Senkevich, F. Tang, D. Liu, S. Pimanpang, T. Karaback, G.-C. Wang, T.-M. Lu, C. Jezewski, and W. A. Lanford, “Plasma-assisted atomic layer deposition of palladium,” Chem. Vap. Deposition 11, 60-66 (2005).
[CrossRef]

Kim, E.

R. G. Gordon, D. Hausmann, E. Kim, and J. Shepard, “A kinetic model for step coverage by atomic layer deposition in narrow holes or trenches,” Chem. Vap. Deposition 9, 73-78 (2003).
[CrossRef]

Kim, Y. S.

S. Y. Lin, D.-X. Ye, T.-M. Lu, J. Bur, Y. S. Kim, and K. M. Ho, “Achieving a photonic band edge near visible wavelengths by metallic coatings,” J. Appl. Phys. 99, 083104 (2006).
[CrossRef]

Kurtz, S. R.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251-253 (1998).
[CrossRef]

Lanford, W. A.

G. A. T. Eyck, J. J. Senkevich, F. Tang, D. Liu, S. Pimanpang, T. Karaback, G.-C. Wang, T.-M. Lu, C. Jezewski, and W. A. Lanford, “Plasma-assisted atomic layer deposition of palladium,” Chem. Vap. Deposition 11, 60-66 (2005).
[CrossRef]

Leskalä, M.

For a review, see, for example, M. Leskalä and M. Ritala, “Atomic layer deposition (ALD): from precursors to thin film structures,”Thin Solid Films 409, 138-146 (2002).
[CrossRef]

Leskelä, M.

T. Aaltonen, M. Ritala, V. Sammelselg, and M. Leskelä, “Atomic layer deposition of iridium thin films,” J. Electrochem. Soc. 151, G489-G492 (2004).
[CrossRef]

Li, Z. Y.

Li, Z.-Y.

Z.-Y. Li, I. El-Kady, K.-M. Ho, S. Y. Lin, and J. G. Fleming, “Photonic band gap effect in layer-by-layer metallic photonic crystals,” J. Appl. Phys. 93, 38-42 (2003).
[CrossRef]

Z.-Y. Li and L.-L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E 67, 046607 (2003).
[CrossRef]

Lin, L.-L.

Z.-Y. Li and L.-L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E 67, 046607 (2003).
[CrossRef]

Lin, S. Y.

T. A. Walsh and S. Y. Lin, “Power density and efficiency of thermophotovoltaic energy conversion using a photonic-crystal emitter and a 2-D metal-grid filter,” IEEE Trans. Electron Devices 55, 1101-1108 (2008).
[CrossRef]

S. Y. Lin, D.-X. Ye, T.-M. Lu, J. Bur, Y. S. Kim, and K. M. Ho, “Achieving a photonic band edge near visible wavelengths by metallic coatings,” J. Appl. Phys. 99, 083104 (2006).
[CrossRef]

S. Y. Lin, J. G. Fleming, and I. El-Kady, “Highly efficient light emission at λ=1.5 μm, by a three-dimensional tungsten photonic crystal,” Opt. Lett. 28, 1683-1685 (2003).
[CrossRef] [PubMed]

Z.-Y. Li, I. El-Kady, K.-M. Ho, S. Y. Lin, and J. G. Fleming, “Photonic band gap effect in layer-by-layer metallic photonic crystals,” J. Appl. Phys. 93, 38-42 (2003).
[CrossRef]

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83, 380-382 (2003).
[CrossRef]

S. Y. Lin, J. G. Fleming, Z. Y. Li, I. El-Kady, R. Biswas, and K. M. Ho, “Origin of absorption enhancement in a tungsten, three-dimensional photonic crystal,” J. Opt. Soc. Am. B 20, 1538-1541 (2003).
[CrossRef]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystal with a large IR bandgap,” Nature 417, 52-55 (2002).
[CrossRef] [PubMed]

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251-253 (1998).
[CrossRef]

Lin, S.-Y.

S.-Y. Lin, J. G. Fleming, and I. El-Kady, “Three-dimensional photonic-crystal emission through thermal excitation,” Opt. Lett. 28, 1909-1911 (2003).
[CrossRef] [PubMed]

S.-Y. Lin, J. G. Fleming, and I. El-Kady, “Experimental observation of photonic-crystal emission near a photonic band edge,” Appl. Phys. Lett. 83, 593-595 (2003).
[CrossRef]

Liu, D.

G. A. T. Eyck, J. J. Senkevich, F. Tang, D. Liu, S. Pimanpang, T. Karaback, G.-C. Wang, T.-M. Lu, C. Jezewski, and W. A. Lanford, “Plasma-assisted atomic layer deposition of palladium,” Chem. Vap. Deposition 11, 60-66 (2005).
[CrossRef]

Lu, T.-M.

G. A. T. Eyck, S. Pimanpang, H. Bakhru, T.-M. Lu, and G.-C. Wang, “Atomic layer deposition of Pd on an oxidized metal substrate,” Chem. Vap. Deposition 12, 290-294 (2006).
[CrossRef]

S. Y. Lin, D.-X. Ye, T.-M. Lu, J. Bur, Y. S. Kim, and K. M. Ho, “Achieving a photonic band edge near visible wavelengths by metallic coatings,” J. Appl. Phys. 99, 083104 (2006).
[CrossRef]

G. A. T. Eyck, J. J. Senkevich, F. Tang, D. Liu, S. Pimanpang, T. Karaback, G.-C. Wang, T.-M. Lu, C. Jezewski, and W. A. Lanford, “Plasma-assisted atomic layer deposition of palladium,” Chem. Vap. Deposition 11, 60-66 (2005).
[CrossRef]

Militello, M. C.

R. A. Waldo, M. C. Militello, and S. W. Gaarenstroom, “Quantitative thin-film analysis with an energy-dispersive x-ray detector,” Surf. Interface Anal. 20, 111-114 (1993).
[CrossRef]

Moreno, J.

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83, 380-382 (2003).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1997).

Pimanpang, S.

G. A. T. Eyck, S. Pimanpang, H. Bakhru, T.-M. Lu, and G.-C. Wang, “Atomic layer deposition of Pd on an oxidized metal substrate,” Chem. Vap. Deposition 12, 290-294 (2006).
[CrossRef]

G. A. T. Eyck, J. J. Senkevich, F. Tang, D. Liu, S. Pimanpang, T. Karaback, G.-C. Wang, T.-M. Lu, C. Jezewski, and W. A. Lanford, “Plasma-assisted atomic layer deposition of palladium,” Chem. Vap. Deposition 11, 60-66 (2005).
[CrossRef]

Puurunen, R. L.

R. L. Puurunen, “Growth per cycle in atomic layer deposition: a theoretical model,” Chem. Vap. Deposition 9, 249-257 (2003).
[CrossRef]

Ritala, M.

T. Aaltonen, M. Ritala, V. Sammelselg, and M. Leskelä, “Atomic layer deposition of iridium thin films,” J. Electrochem. Soc. 151, G489-G492 (2004).
[CrossRef]

For a review, see, for example, M. Leskalä and M. Ritala, “Atomic layer deposition (ALD): from precursors to thin film structures,”Thin Solid Films 409, 138-146 (2002).
[CrossRef]

Sammelselg, V.

T. Aaltonen, M. Ritala, V. Sammelselg, and M. Leskelä, “Atomic layer deposition of iridium thin films,” J. Electrochem. Soc. 151, G489-G492 (2004).
[CrossRef]

Senkevich, J. J.

G. A. T. Eyck, J. J. Senkevich, F. Tang, D. Liu, S. Pimanpang, T. Karaback, G.-C. Wang, T.-M. Lu, C. Jezewski, and W. A. Lanford, “Plasma-assisted atomic layer deposition of palladium,” Chem. Vap. Deposition 11, 60-66 (2005).
[CrossRef]

Shepard, J.

R. G. Gordon, D. Hausmann, E. Kim, and J. Shepard, “A kinetic model for step coverage by atomic layer deposition in narrow holes or trenches,” Chem. Vap. Deposition 9, 73-78 (2003).
[CrossRef]

Sigalas, M. M.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251-253 (1998).
[CrossRef]

Smith, B. K.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251-253 (1998).
[CrossRef]

Tang, F.

G. A. T. Eyck, J. J. Senkevich, F. Tang, D. Liu, S. Pimanpang, T. Karaback, G.-C. Wang, T.-M. Lu, C. Jezewski, and W. A. Lanford, “Plasma-assisted atomic layer deposition of palladium,” Chem. Vap. Deposition 11, 60-66 (2005).
[CrossRef]

Villeneuve, P. R.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143-149 (1997).
[CrossRef]

Waldo, R. A.

R. A. Waldo, M. C. Militello, and S. W. Gaarenstroom, “Quantitative thin-film analysis with an energy-dispersive x-ray detector,” Surf. Interface Anal. 20, 111-114 (1993).
[CrossRef]

Walsh, T. A.

T. A. Walsh and S. Y. Lin, “Power density and efficiency of thermophotovoltaic energy conversion using a photonic-crystal emitter and a 2-D metal-grid filter,” IEEE Trans. Electron Devices 55, 1101-1108 (2008).
[CrossRef]

Wang, G.-C.

G. A. T. Eyck, S. Pimanpang, H. Bakhru, T.-M. Lu, and G.-C. Wang, “Atomic layer deposition of Pd on an oxidized metal substrate,” Chem. Vap. Deposition 12, 290-294 (2006).
[CrossRef]

G. A. T. Eyck, J. J. Senkevich, F. Tang, D. Liu, S. Pimanpang, T. Karaback, G.-C. Wang, T.-M. Lu, C. Jezewski, and W. A. Lanford, “Plasma-assisted atomic layer deposition of palladium,” Chem. Vap. Deposition 11, 60-66 (2005).
[CrossRef]

Ye, D.-X.

S. Y. Lin, D.-X. Ye, T.-M. Lu, J. Bur, Y. S. Kim, and K. M. Ho, “Achieving a photonic band edge near visible wavelengths by metallic coatings,” J. Appl. Phys. 99, 083104 (2006).
[CrossRef]

Zubrzycki, W.

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251-253 (1998).
[CrossRef]

Appl. Phys. Lett. (2)

S. Y. Lin, J. Moreno, and J. G. Fleming, “Three-dimensional photonic-crystal emitter for thermal photovoltaic power generation,” Appl. Phys. Lett. 83, 380-382 (2003).
[CrossRef]

S.-Y. Lin, J. G. Fleming, and I. El-Kady, “Experimental observation of photonic-crystal emission near a photonic band edge,” Appl. Phys. Lett. 83, 593-595 (2003).
[CrossRef]

Chem. Vap. Deposition (4)

G. A. T. Eyck, J. J. Senkevich, F. Tang, D. Liu, S. Pimanpang, T. Karaback, G.-C. Wang, T.-M. Lu, C. Jezewski, and W. A. Lanford, “Plasma-assisted atomic layer deposition of palladium,” Chem. Vap. Deposition 11, 60-66 (2005).
[CrossRef]

G. A. T. Eyck, S. Pimanpang, H. Bakhru, T.-M. Lu, and G.-C. Wang, “Atomic layer deposition of Pd on an oxidized metal substrate,” Chem. Vap. Deposition 12, 290-294 (2006).
[CrossRef]

R. L. Puurunen, “Growth per cycle in atomic layer deposition: a theoretical model,” Chem. Vap. Deposition 9, 249-257 (2003).
[CrossRef]

R. G. Gordon, D. Hausmann, E. Kim, and J. Shepard, “A kinetic model for step coverage by atomic layer deposition in narrow holes or trenches,” Chem. Vap. Deposition 9, 73-78 (2003).
[CrossRef]

IEEE Trans. Electron Devices (1)

T. A. Walsh and S. Y. Lin, “Power density and efficiency of thermophotovoltaic energy conversion using a photonic-crystal emitter and a 2-D metal-grid filter,” IEEE Trans. Electron Devices 55, 1101-1108 (2008).
[CrossRef]

J. Appl. Phys. (2)

S. Y. Lin, D.-X. Ye, T.-M. Lu, J. Bur, Y. S. Kim, and K. M. Ho, “Achieving a photonic band edge near visible wavelengths by metallic coatings,” J. Appl. Phys. 99, 083104 (2006).
[CrossRef]

Z.-Y. Li, I. El-Kady, K.-M. Ho, S. Y. Lin, and J. G. Fleming, “Photonic band gap effect in layer-by-layer metallic photonic crystals,” J. Appl. Phys. 93, 38-42 (2003).
[CrossRef]

J. Electrochem. Soc. (1)

T. Aaltonen, M. Ritala, V. Sammelselg, and M. Leskelä, “Atomic layer deposition of iridium thin films,” J. Electrochem. Soc. 151, G489-G492 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (3)

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143-149 (1997).
[CrossRef]

S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths,” Nature 394, 251-253 (1998).
[CrossRef]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystal with a large IR bandgap,” Nature 417, 52-55 (2002).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. E (1)

Z.-Y. Li and L.-L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E 67, 046607 (2003).
[CrossRef]

Surf. Interface Anal. (1)

R. A. Waldo, M. C. Militello, and S. W. Gaarenstroom, “Quantitative thin-film analysis with an energy-dispersive x-ray detector,” Surf. Interface Anal. 20, 111-114 (1993).
[CrossRef]

Thin Solid Films (1)

For a review, see, for example, M. Leskalä and M. Ritala, “Atomic layer deposition (ALD): from precursors to thin film structures,”Thin Solid Films 409, 138-146 (2002).
[CrossRef]

Other (2)

J. D. Jackson, Classical Electrodynamics (Wiley, 1999).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Comparison of the calculated reflectance of eight-layer woodpile photonic crystal structures with lattice constant (rod-to-rod pitch) a = 0.70 μ m , rod width w = 0.30 μ m , and layer height h = 0.35 μ m composed of tungsten (blue solid curve) and iridium (dashed red curve). The dashed vertical lines indicate the band edge (50% reflectance) wavelength of the two structures: 0.92 μ m for the iridium structure, and 1.56 μ m for the tungsten structure. Inset, material reflectance of tungsten and iridium in the mid-IR and near-IR wavelengths.

Fig. 2
Fig. 2

Focused ion beam cross-sectional scanning electron micrograph showing ALD iridium coating on tungsten lattice. (a) View showing all six layers of structure. (b) Enlarged view in which the top three layers of the six layer structure are visible. The iridium is the bright band around the core of the tungsten rod, indicated by the arrows. Scale bar, 200 nm .

Fig. 3
Fig. 3

Simulated reflectance spectra for woodpile structure with dimensions a = 1.05 μ m , w = 0.35 μ m , and h = 0.60 μ m . Changing the material from tungsten to iridium results in a band-edge shift of 200 nm from 1.6 to 1.4 μ m . Changing the dimensions of the tungsten structure has no effect on band-edge position, indicating that the shift is due entirely to the materials engineering.

Fig. 4
Fig. 4

Experimentally measured optical properties of iridium-coated tungsten woodpile photonic crystals with a = 1.05 μ m , w = 0.35 μ m , and h = 0.60 μ m ; 20° incidence Fourier transform infrared spectrometer measurements.

Fig. 5
Fig. 5

Tilt-angle measurements of reflectivity of tungsten woodpile structure ( a = 1.05 μ m , w = 0.35 μ m , h = 0.60 μ m ) coated with 45 nm of iridium. Incident angles range from 20° to 60°. Schematic drawing indicates the measurement geometry.

Fig. 6
Fig. 6

Experimentally measured reflectance of as-fabricated tungsten woodpile photonic crystal ( a = 0.70 μ m , w = 0.30 μ m , h = 0.35 μ m , solid blue curve), as well as structure with 40 nm iridium coating (red dashed curve). Also shown is the reflectance of a simulated tungsten photonic crystal ( a = 0.70 μ m , w = 0.35 μ m , h = 0.45 μ m ) with 40 nm iridium coating (dotted green curve), corresponding most closely to the dimensions of the top two layers of the fabricated structure. The location of the band edge of the iridium structure is indicated on the plot.

Metrics