Abstract

A triangular resonator has fewer modes than other polygonal lasers such as microdisk and square lasers with similar areas. However, a large resonator with a side of 8μm can still resonate at many distinct wavelengths. We show experimentally that the introduction of air trenches to the sides of the triangular resonator can lead to single-mode operation of the laser device. The air trenches will considerably increase the radiation losses of most of the resonant modes, except for a mode with weak magnetic fields at the position of the trenches. This high quality factor mode will be the only mode able to reach lasing in the modified structure, as we show experimentally.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Painter, R. K. Lee, A. Scherrer, A. Yariv, J. D. O'Brien, and P. D. Dapkus, “Two-dimensional photonic bandgap defect mode laser,” Science 284, 1819-1821 (1999).
    [CrossRef] [PubMed]
  2. H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, and Y. H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron. 38, 1353-1365 (2002).
    [CrossRef]
  3. D. S. Song, S. H. Kim, H. G. Park, C. K. Kim, and Y. H. Lee, “Single-fundamental-mode photonic crystal surface-emitting lasers,” Appl. Phys. Lett. 80, 3608-3610 (2003).
  4. H. T. Hattori, H. H. Tan, and C. Jagadish, “Optically pumped in-plane photonic crystal micro-cavity laser arrays coupled to waveguides,” J. Lightwave Technol. 26, 1374-1380 (2008).
    [CrossRef]
  5. V. S. Amaratunga, H. T. Hattori, M. Premaratne, H. H. Tan, and C. Jagadish, “Photonic crystal phase detector,” J. Opt. Soc. Am. B 25, 1532-1536 (2008).
    [CrossRef]
  6. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39-46 (2007).
    [CrossRef] [PubMed]
  7. E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nature Photon. 2, 161-164 (2008).
    [CrossRef]
  8. N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Hofler, “Plasmonic quantum cascade laser antenna,” Appl. Phys. Lett. 91, 173113 (2007).
    [CrossRef]
  9. T. Baba, “Photonic crystals and microdisk cavities based on GaInAsP/InP system,” IEEE J. Sel. Top. Quantum Electron. 3, 808-830 (1997).
    [CrossRef]
  10. M. Fujita, A. Sakai, and T. Baba, “Ultra-small and ultra-low threshold microdisk injection laser-design, fabrication, lasing characteristics and spontaneous emission factor,” IEEE J. Sel. Top. Quantum Electron. 5, 673-681 (1999).
    [CrossRef]
  11. A. F. J. Levi, R. E. Slusher, S. L. McCall, J. L. Glass, S. J. Pearton, and R. A. Logan, “Directional light coupling from microdisk lasers,” Appl. Phys. Lett. 62, 562-563 (1993).
    [CrossRef]
  12. S. V. Boriskina, T. M. Benson, P. D. Sewell, and A. I. Nosich, “Directional emission, increased free spectral range, and mode Q-factors in 2-D wavelength-scale optical microcavity structures,” IEEE J. Sel. Top. Quantum Electron. 12, 1175-1182 (2006).
    [CrossRef]
  13. H. T. Hattori, C. Seassal, E. Touraille, P. Rojo-Romeo, X. Letartre, G. Hollinger, P. Viktorovitch, L. DiCioccio, M. Zussy, L. El Melhaoui, and J. M. Fedeli, “Heterogeneous integration of microdisk lasers on silicon strip waveguides for optical interconnects,” IEEE Photon. Technol. Lett. 18, 223-225 (2006).
    [CrossRef]
  14. H. T. Hattori, “Analysis of optically pumped equilateral triangular microlasers with three mode-selective trenches,” Appl. Opt. 47, 2178-2185 (2008).
    [CrossRef] [PubMed]
  15. S. Ando, N. Kobayashi, and H. Ando, “Triangular-facet lasers coupled by a rectangular optical waveguide,” Jpn. J. Appl. Phys., Part 2 36, L76-L78 (1997).
    [CrossRef]
  16. Y. Z. Huang, W. H. Guo, and Q. M. Wang, “Analysis and numerical simulation of eigenmode characteristics for semiconductor lasers with an equilateral triangle micro-resonator,” IEEE J. Quantum Electron. 37, 100-107 (2001).
    [CrossRef]
  17. Y. Z. Huang, W. H. Guo, L. J. Yu, and H. B. Lei, “Analysis of semiconductor microlasers with an equilateral triangle resonator by rate equations,” IEEE J. Quantum Electron. 37, 1259-1264 (2001).
    [CrossRef]
  18. Y. Z. Huang, Y. H. Hu, Q. Chen, S. J. Wang, Y. Du, and Z. C. Fan, “Room-temperature continuous-wave electrically injected InP-GaInAsP equilateral-triangle-resonator lasers,” IEEE Photon. Technol. Lett. 19, 963-965 (2007).
    [CrossRef]
  19. W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Mode quality factor based on far-field emission for square resonators,” IEEE Photon. Technol. Lett. 16, 479-481 (2004).
    [CrossRef]
  20. W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Whispering-gallery-like modes in square resonators,” IEEE J. Quantum Electron. 29, 1106-1110 (2003).
  21. H. T. Hattori, “Modal analysis of one-dimensional nonuniform arrays of square resonators,” J. Opt. Soc. Am. B 25, 1873-1881 (2008).
    [CrossRef]
  22. D. Ohnishi, T. Okano, M. Imada, and S. Noda, “Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser,” Opt. Express 12, 1562-1568 (2004).
    [CrossRef] [PubMed]
  23. I. H. Song, Y. A. Peter, and M. Meunier, “Smoothing dry-etched microstructure sidewalls using focused ion beam milling for optical applications,” J. Micromech. Microeng. 17, 1593-1597 (2007).
    [CrossRef]
  24. Fullwave 4.0 RSOFT Design Group, 1999, http://www.rsoftdesign.com.
  25. A. I. Nosich, E. I. Smotrova, S. V. Boriskina, T. M. Benson, and P. Sewell, “Trends in microdisk laser research and linear optical modelling,” Opt. Quantum Electron. 39, 1253-1272 (2007).
    [CrossRef]
  26. H. T. Hattori, V. M. Schneider, R. M. Cazo, and C. L. Barbosa, “Analysis of strategies to improve the directionality of square lattice band-edge photonic crystal structures,” Appl. Opt. 44, 3069-3076 (2005).
    [CrossRef] [PubMed]
  27. X. Letartre, C. Monat, C. Seassal, and P. Viktorovitch, “Analytical modeling and an experimental investigation of two-dimensional photonic crystal microlasers: defect state (microcavity) versus band-edge state (distributed feedback) structures,” J. Opt. Soc. Am. B 22, 2581-2595 (2005).
    [CrossRef]

2008 (5)

2007 (5)

N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Hofler, “Plasmonic quantum cascade laser antenna,” Appl. Phys. Lett. 91, 173113 (2007).
[CrossRef]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39-46 (2007).
[CrossRef] [PubMed]

Y. Z. Huang, Y. H. Hu, Q. Chen, S. J. Wang, Y. Du, and Z. C. Fan, “Room-temperature continuous-wave electrically injected InP-GaInAsP equilateral-triangle-resonator lasers,” IEEE Photon. Technol. Lett. 19, 963-965 (2007).
[CrossRef]

I. H. Song, Y. A. Peter, and M. Meunier, “Smoothing dry-etched microstructure sidewalls using focused ion beam milling for optical applications,” J. Micromech. Microeng. 17, 1593-1597 (2007).
[CrossRef]

A. I. Nosich, E. I. Smotrova, S. V. Boriskina, T. M. Benson, and P. Sewell, “Trends in microdisk laser research and linear optical modelling,” Opt. Quantum Electron. 39, 1253-1272 (2007).
[CrossRef]

2006 (2)

S. V. Boriskina, T. M. Benson, P. D. Sewell, and A. I. Nosich, “Directional emission, increased free spectral range, and mode Q-factors in 2-D wavelength-scale optical microcavity structures,” IEEE J. Sel. Top. Quantum Electron. 12, 1175-1182 (2006).
[CrossRef]

H. T. Hattori, C. Seassal, E. Touraille, P. Rojo-Romeo, X. Letartre, G. Hollinger, P. Viktorovitch, L. DiCioccio, M. Zussy, L. El Melhaoui, and J. M. Fedeli, “Heterogeneous integration of microdisk lasers on silicon strip waveguides for optical interconnects,” IEEE Photon. Technol. Lett. 18, 223-225 (2006).
[CrossRef]

2005 (2)

2004 (2)

D. Ohnishi, T. Okano, M. Imada, and S. Noda, “Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser,” Opt. Express 12, 1562-1568 (2004).
[CrossRef] [PubMed]

W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Mode quality factor based on far-field emission for square resonators,” IEEE Photon. Technol. Lett. 16, 479-481 (2004).
[CrossRef]

2003 (2)

W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Whispering-gallery-like modes in square resonators,” IEEE J. Quantum Electron. 29, 1106-1110 (2003).

D. S. Song, S. H. Kim, H. G. Park, C. K. Kim, and Y. H. Lee, “Single-fundamental-mode photonic crystal surface-emitting lasers,” Appl. Phys. Lett. 80, 3608-3610 (2003).

2002 (1)

H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, and Y. H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron. 38, 1353-1365 (2002).
[CrossRef]

2001 (2)

Y. Z. Huang, W. H. Guo, and Q. M. Wang, “Analysis and numerical simulation of eigenmode characteristics for semiconductor lasers with an equilateral triangle micro-resonator,” IEEE J. Quantum Electron. 37, 100-107 (2001).
[CrossRef]

Y. Z. Huang, W. H. Guo, L. J. Yu, and H. B. Lei, “Analysis of semiconductor microlasers with an equilateral triangle resonator by rate equations,” IEEE J. Quantum Electron. 37, 1259-1264 (2001).
[CrossRef]

1999 (2)

O. Painter, R. K. Lee, A. Scherrer, A. Yariv, J. D. O'Brien, and P. D. Dapkus, “Two-dimensional photonic bandgap defect mode laser,” Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

M. Fujita, A. Sakai, and T. Baba, “Ultra-small and ultra-low threshold microdisk injection laser-design, fabrication, lasing characteristics and spontaneous emission factor,” IEEE J. Sel. Top. Quantum Electron. 5, 673-681 (1999).
[CrossRef]

1997 (2)

T. Baba, “Photonic crystals and microdisk cavities based on GaInAsP/InP system,” IEEE J. Sel. Top. Quantum Electron. 3, 808-830 (1997).
[CrossRef]

S. Ando, N. Kobayashi, and H. Ando, “Triangular-facet lasers coupled by a rectangular optical waveguide,” Jpn. J. Appl. Phys., Part 2 36, L76-L78 (1997).
[CrossRef]

1993 (1)

A. F. J. Levi, R. E. Slusher, S. L. McCall, J. L. Glass, S. J. Pearton, and R. A. Logan, “Directional light coupling from microdisk lasers,” Appl. Phys. Lett. 62, 562-563 (1993).
[CrossRef]

Amaratunga, V. S.

Ando, H.

S. Ando, N. Kobayashi, and H. Ando, “Triangular-facet lasers coupled by a rectangular optical waveguide,” Jpn. J. Appl. Phys., Part 2 36, L76-L78 (1997).
[CrossRef]

Ando, S.

S. Ando, N. Kobayashi, and H. Ando, “Triangular-facet lasers coupled by a rectangular optical waveguide,” Jpn. J. Appl. Phys., Part 2 36, L76-L78 (1997).
[CrossRef]

Baba, T.

M. Fujita, A. Sakai, and T. Baba, “Ultra-small and ultra-low threshold microdisk injection laser-design, fabrication, lasing characteristics and spontaneous emission factor,” IEEE J. Sel. Top. Quantum Electron. 5, 673-681 (1999).
[CrossRef]

T. Baba, “Photonic crystals and microdisk cavities based on GaInAsP/InP system,” IEEE J. Sel. Top. Quantum Electron. 3, 808-830 (1997).
[CrossRef]

Barbosa, C. L.

Belkin, M. A.

N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Hofler, “Plasmonic quantum cascade laser antenna,” Appl. Phys. Lett. 91, 173113 (2007).
[CrossRef]

Benson, T. M.

A. I. Nosich, E. I. Smotrova, S. V. Boriskina, T. M. Benson, and P. Sewell, “Trends in microdisk laser research and linear optical modelling,” Opt. Quantum Electron. 39, 1253-1272 (2007).
[CrossRef]

S. V. Boriskina, T. M. Benson, P. D. Sewell, and A. I. Nosich, “Directional emission, increased free spectral range, and mode Q-factors in 2-D wavelength-scale optical microcavity structures,” IEEE J. Sel. Top. Quantum Electron. 12, 1175-1182 (2006).
[CrossRef]

Boriskina, S. V.

A. I. Nosich, E. I. Smotrova, S. V. Boriskina, T. M. Benson, and P. Sewell, “Trends in microdisk laser research and linear optical modelling,” Opt. Quantum Electron. 39, 1253-1272 (2007).
[CrossRef]

S. V. Boriskina, T. M. Benson, P. D. Sewell, and A. I. Nosich, “Directional emission, increased free spectral range, and mode Q-factors in 2-D wavelength-scale optical microcavity structures,” IEEE J. Sel. Top. Quantum Electron. 12, 1175-1182 (2006).
[CrossRef]

Bour, D.

N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Hofler, “Plasmonic quantum cascade laser antenna,” Appl. Phys. Lett. 91, 173113 (2007).
[CrossRef]

Capasso, F.

N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Hofler, “Plasmonic quantum cascade laser antenna,” Appl. Phys. Lett. 91, 173113 (2007).
[CrossRef]

Cazo, R. M.

Chen, Q.

Y. Z. Huang, Y. H. Hu, Q. Chen, S. J. Wang, Y. Du, and Z. C. Fan, “Room-temperature continuous-wave electrically injected InP-GaInAsP equilateral-triangle-resonator lasers,” IEEE Photon. Technol. Lett. 19, 963-965 (2007).
[CrossRef]

Corzine, S.

N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Hofler, “Plasmonic quantum cascade laser antenna,” Appl. Phys. Lett. 91, 173113 (2007).
[CrossRef]

Crozier, K. B.

N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Hofler, “Plasmonic quantum cascade laser antenna,” Appl. Phys. Lett. 91, 173113 (2007).
[CrossRef]

Cubukcu, E.

N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Hofler, “Plasmonic quantum cascade laser antenna,” Appl. Phys. Lett. 91, 173113 (2007).
[CrossRef]

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherrer, A. Yariv, J. D. O'Brien, and P. D. Dapkus, “Two-dimensional photonic bandgap defect mode laser,” Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

DiCioccio, L.

H. T. Hattori, C. Seassal, E. Touraille, P. Rojo-Romeo, X. Letartre, G. Hollinger, P. Viktorovitch, L. DiCioccio, M. Zussy, L. El Melhaoui, and J. M. Fedeli, “Heterogeneous integration of microdisk lasers on silicon strip waveguides for optical interconnects,” IEEE Photon. Technol. Lett. 18, 223-225 (2006).
[CrossRef]

Diehl, L.

N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Hofler, “Plasmonic quantum cascade laser antenna,” Appl. Phys. Lett. 91, 173113 (2007).
[CrossRef]

Du, Y.

Y. Z. Huang, Y. H. Hu, Q. Chen, S. J. Wang, Y. Du, and Z. C. Fan, “Room-temperature continuous-wave electrically injected InP-GaInAsP equilateral-triangle-resonator lasers,” IEEE Photon. Technol. Lett. 19, 963-965 (2007).
[CrossRef]

Ebbesen, T. W.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nature Photon. 2, 161-164 (2008).
[CrossRef]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39-46 (2007).
[CrossRef] [PubMed]

El Melhaoui, L.

H. T. Hattori, C. Seassal, E. Touraille, P. Rojo-Romeo, X. Letartre, G. Hollinger, P. Viktorovitch, L. DiCioccio, M. Zussy, L. El Melhaoui, and J. M. Fedeli, “Heterogeneous integration of microdisk lasers on silicon strip waveguides for optical interconnects,” IEEE Photon. Technol. Lett. 18, 223-225 (2006).
[CrossRef]

Fan, Z. C.

Y. Z. Huang, Y. H. Hu, Q. Chen, S. J. Wang, Y. Du, and Z. C. Fan, “Room-temperature continuous-wave electrically injected InP-GaInAsP equilateral-triangle-resonator lasers,” IEEE Photon. Technol. Lett. 19, 963-965 (2007).
[CrossRef]

Fedeli, J. M.

H. T. Hattori, C. Seassal, E. Touraille, P. Rojo-Romeo, X. Letartre, G. Hollinger, P. Viktorovitch, L. DiCioccio, M. Zussy, L. El Melhaoui, and J. M. Fedeli, “Heterogeneous integration of microdisk lasers on silicon strip waveguides for optical interconnects,” IEEE Photon. Technol. Lett. 18, 223-225 (2006).
[CrossRef]

Fujita, M.

M. Fujita, A. Sakai, and T. Baba, “Ultra-small and ultra-low threshold microdisk injection laser-design, fabrication, lasing characteristics and spontaneous emission factor,” IEEE J. Sel. Top. Quantum Electron. 5, 673-681 (1999).
[CrossRef]

Genet, C.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nature Photon. 2, 161-164 (2008).
[CrossRef]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39-46 (2007).
[CrossRef] [PubMed]

Glass, J. L.

A. F. J. Levi, R. E. Slusher, S. L. McCall, J. L. Glass, S. J. Pearton, and R. A. Logan, “Directional light coupling from microdisk lasers,” Appl. Phys. Lett. 62, 562-563 (1993).
[CrossRef]

Guo, W. H.

W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Mode quality factor based on far-field emission for square resonators,” IEEE Photon. Technol. Lett. 16, 479-481 (2004).
[CrossRef]

W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Whispering-gallery-like modes in square resonators,” IEEE J. Quantum Electron. 29, 1106-1110 (2003).

Y. Z. Huang, W. H. Guo, and Q. M. Wang, “Analysis and numerical simulation of eigenmode characteristics for semiconductor lasers with an equilateral triangle micro-resonator,” IEEE J. Quantum Electron. 37, 100-107 (2001).
[CrossRef]

Y. Z. Huang, W. H. Guo, L. J. Yu, and H. B. Lei, “Analysis of semiconductor microlasers with an equilateral triangle resonator by rate equations,” IEEE J. Quantum Electron. 37, 1259-1264 (2001).
[CrossRef]

Hattori, H. T.

Hofler, G.

N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Hofler, “Plasmonic quantum cascade laser antenna,” Appl. Phys. Lett. 91, 173113 (2007).
[CrossRef]

Hollinger, G.

H. T. Hattori, C. Seassal, E. Touraille, P. Rojo-Romeo, X. Letartre, G. Hollinger, P. Viktorovitch, L. DiCioccio, M. Zussy, L. El Melhaoui, and J. M. Fedeli, “Heterogeneous integration of microdisk lasers on silicon strip waveguides for optical interconnects,” IEEE Photon. Technol. Lett. 18, 223-225 (2006).
[CrossRef]

Hu, Y. H.

Y. Z. Huang, Y. H. Hu, Q. Chen, S. J. Wang, Y. Du, and Z. C. Fan, “Room-temperature continuous-wave electrically injected InP-GaInAsP equilateral-triangle-resonator lasers,” IEEE Photon. Technol. Lett. 19, 963-965 (2007).
[CrossRef]

Huang, Y. Z.

Y. Z. Huang, Y. H. Hu, Q. Chen, S. J. Wang, Y. Du, and Z. C. Fan, “Room-temperature continuous-wave electrically injected InP-GaInAsP equilateral-triangle-resonator lasers,” IEEE Photon. Technol. Lett. 19, 963-965 (2007).
[CrossRef]

W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Mode quality factor based on far-field emission for square resonators,” IEEE Photon. Technol. Lett. 16, 479-481 (2004).
[CrossRef]

W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Whispering-gallery-like modes in square resonators,” IEEE J. Quantum Electron. 29, 1106-1110 (2003).

Y. Z. Huang, W. H. Guo, and Q. M. Wang, “Analysis and numerical simulation of eigenmode characteristics for semiconductor lasers with an equilateral triangle micro-resonator,” IEEE J. Quantum Electron. 37, 100-107 (2001).
[CrossRef]

Y. Z. Huang, W. H. Guo, L. J. Yu, and H. B. Lei, “Analysis of semiconductor microlasers with an equilateral triangle resonator by rate equations,” IEEE J. Quantum Electron. 37, 1259-1264 (2001).
[CrossRef]

Huh, J.

H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, and Y. H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron. 38, 1353-1365 (2002).
[CrossRef]

Hwang, J. K.

H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, and Y. H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron. 38, 1353-1365 (2002).
[CrossRef]

Imada, M.

Jagadish, C.

Kim, C. K.

D. S. Song, S. H. Kim, H. G. Park, C. K. Kim, and Y. H. Lee, “Single-fundamental-mode photonic crystal surface-emitting lasers,” Appl. Phys. Lett. 80, 3608-3610 (2003).

Kim, J. S.

H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, and Y. H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron. 38, 1353-1365 (2002).
[CrossRef]

Kim, S. H.

D. S. Song, S. H. Kim, H. G. Park, C. K. Kim, and Y. H. Lee, “Single-fundamental-mode photonic crystal surface-emitting lasers,” Appl. Phys. Lett. 80, 3608-3610 (2003).

H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, and Y. H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron. 38, 1353-1365 (2002).
[CrossRef]

Kobayashi, N.

S. Ando, N. Kobayashi, and H. Ando, “Triangular-facet lasers coupled by a rectangular optical waveguide,” Jpn. J. Appl. Phys., Part 2 36, L76-L78 (1997).
[CrossRef]

Laux, E.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nature Photon. 2, 161-164 (2008).
[CrossRef]

Lee, R. K.

O. Painter, R. K. Lee, A. Scherrer, A. Yariv, J. D. O'Brien, and P. D. Dapkus, “Two-dimensional photonic bandgap defect mode laser,” Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Lee, Y. H.

D. S. Song, S. H. Kim, H. G. Park, C. K. Kim, and Y. H. Lee, “Single-fundamental-mode photonic crystal surface-emitting lasers,” Appl. Phys. Lett. 80, 3608-3610 (2003).

H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, and Y. H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron. 38, 1353-1365 (2002).
[CrossRef]

Lei, H. B.

Y. Z. Huang, W. H. Guo, L. J. Yu, and H. B. Lei, “Analysis of semiconductor microlasers with an equilateral triangle resonator by rate equations,” IEEE J. Quantum Electron. 37, 1259-1264 (2001).
[CrossRef]

Letartre, X.

H. T. Hattori, C. Seassal, E. Touraille, P. Rojo-Romeo, X. Letartre, G. Hollinger, P. Viktorovitch, L. DiCioccio, M. Zussy, L. El Melhaoui, and J. M. Fedeli, “Heterogeneous integration of microdisk lasers on silicon strip waveguides for optical interconnects,” IEEE Photon. Technol. Lett. 18, 223-225 (2006).
[CrossRef]

X. Letartre, C. Monat, C. Seassal, and P. Viktorovitch, “Analytical modeling and an experimental investigation of two-dimensional photonic crystal microlasers: defect state (microcavity) versus band-edge state (distributed feedback) structures,” J. Opt. Soc. Am. B 22, 2581-2595 (2005).
[CrossRef]

Levi, A. F. J.

A. F. J. Levi, R. E. Slusher, S. L. McCall, J. L. Glass, S. J. Pearton, and R. A. Logan, “Directional light coupling from microdisk lasers,” Appl. Phys. Lett. 62, 562-563 (1993).
[CrossRef]

Logan, R. A.

A. F. J. Levi, R. E. Slusher, S. L. McCall, J. L. Glass, S. J. Pearton, and R. A. Logan, “Directional light coupling from microdisk lasers,” Appl. Phys. Lett. 62, 562-563 (1993).
[CrossRef]

Lu, Q. Y.

W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Mode quality factor based on far-field emission for square resonators,” IEEE Photon. Technol. Lett. 16, 479-481 (2004).
[CrossRef]

W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Whispering-gallery-like modes in square resonators,” IEEE J. Quantum Electron. 29, 1106-1110 (2003).

McCall, S. L.

A. F. J. Levi, R. E. Slusher, S. L. McCall, J. L. Glass, S. J. Pearton, and R. A. Logan, “Directional light coupling from microdisk lasers,” Appl. Phys. Lett. 62, 562-563 (1993).
[CrossRef]

Meunier, M.

I. H. Song, Y. A. Peter, and M. Meunier, “Smoothing dry-etched microstructure sidewalls using focused ion beam milling for optical applications,” J. Micromech. Microeng. 17, 1593-1597 (2007).
[CrossRef]

Monat, C.

Noda, S.

Nosich, A. I.

A. I. Nosich, E. I. Smotrova, S. V. Boriskina, T. M. Benson, and P. Sewell, “Trends in microdisk laser research and linear optical modelling,” Opt. Quantum Electron. 39, 1253-1272 (2007).
[CrossRef]

S. V. Boriskina, T. M. Benson, P. D. Sewell, and A. I. Nosich, “Directional emission, increased free spectral range, and mode Q-factors in 2-D wavelength-scale optical microcavity structures,” IEEE J. Sel. Top. Quantum Electron. 12, 1175-1182 (2006).
[CrossRef]

O'Brien, J. D.

O. Painter, R. K. Lee, A. Scherrer, A. Yariv, J. D. O'Brien, and P. D. Dapkus, “Two-dimensional photonic bandgap defect mode laser,” Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Ohnishi, D.

Okano, T.

Painter, O.

O. Painter, R. K. Lee, A. Scherrer, A. Yariv, J. D. O'Brien, and P. D. Dapkus, “Two-dimensional photonic bandgap defect mode laser,” Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Park, H. G.

D. S. Song, S. H. Kim, H. G. Park, C. K. Kim, and Y. H. Lee, “Single-fundamental-mode photonic crystal surface-emitting lasers,” Appl. Phys. Lett. 80, 3608-3610 (2003).

H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, and Y. H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron. 38, 1353-1365 (2002).
[CrossRef]

Pearton, S. J.

A. F. J. Levi, R. E. Slusher, S. L. McCall, J. L. Glass, S. J. Pearton, and R. A. Logan, “Directional light coupling from microdisk lasers,” Appl. Phys. Lett. 62, 562-563 (1993).
[CrossRef]

Peter, Y. A.

I. H. Song, Y. A. Peter, and M. Meunier, “Smoothing dry-etched microstructure sidewalls using focused ion beam milling for optical applications,” J. Micromech. Microeng. 17, 1593-1597 (2007).
[CrossRef]

Premaratne, M.

Rojo-Romeo, P.

H. T. Hattori, C. Seassal, E. Touraille, P. Rojo-Romeo, X. Letartre, G. Hollinger, P. Viktorovitch, L. DiCioccio, M. Zussy, L. El Melhaoui, and J. M. Fedeli, “Heterogeneous integration of microdisk lasers on silicon strip waveguides for optical interconnects,” IEEE Photon. Technol. Lett. 18, 223-225 (2006).
[CrossRef]

Ryu, H. Y.

H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, and Y. H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron. 38, 1353-1365 (2002).
[CrossRef]

Sakai, A.

M. Fujita, A. Sakai, and T. Baba, “Ultra-small and ultra-low threshold microdisk injection laser-design, fabrication, lasing characteristics and spontaneous emission factor,” IEEE J. Sel. Top. Quantum Electron. 5, 673-681 (1999).
[CrossRef]

Scherrer, A.

O. Painter, R. K. Lee, A. Scherrer, A. Yariv, J. D. O'Brien, and P. D. Dapkus, “Two-dimensional photonic bandgap defect mode laser,” Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Schneider, V. M.

Seassal, C.

H. T. Hattori, C. Seassal, E. Touraille, P. Rojo-Romeo, X. Letartre, G. Hollinger, P. Viktorovitch, L. DiCioccio, M. Zussy, L. El Melhaoui, and J. M. Fedeli, “Heterogeneous integration of microdisk lasers on silicon strip waveguides for optical interconnects,” IEEE Photon. Technol. Lett. 18, 223-225 (2006).
[CrossRef]

X. Letartre, C. Monat, C. Seassal, and P. Viktorovitch, “Analytical modeling and an experimental investigation of two-dimensional photonic crystal microlasers: defect state (microcavity) versus band-edge state (distributed feedback) structures,” J. Opt. Soc. Am. B 22, 2581-2595 (2005).
[CrossRef]

Sewell, P.

A. I. Nosich, E. I. Smotrova, S. V. Boriskina, T. M. Benson, and P. Sewell, “Trends in microdisk laser research and linear optical modelling,” Opt. Quantum Electron. 39, 1253-1272 (2007).
[CrossRef]

Sewell, P. D.

S. V. Boriskina, T. M. Benson, P. D. Sewell, and A. I. Nosich, “Directional emission, increased free spectral range, and mode Q-factors in 2-D wavelength-scale optical microcavity structures,” IEEE J. Sel. Top. Quantum Electron. 12, 1175-1182 (2006).
[CrossRef]

Skauli, T.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nature Photon. 2, 161-164 (2008).
[CrossRef]

Slusher, R. E.

A. F. J. Levi, R. E. Slusher, S. L. McCall, J. L. Glass, S. J. Pearton, and R. A. Logan, “Directional light coupling from microdisk lasers,” Appl. Phys. Lett. 62, 562-563 (1993).
[CrossRef]

Smotrova, E. I.

A. I. Nosich, E. I. Smotrova, S. V. Boriskina, T. M. Benson, and P. Sewell, “Trends in microdisk laser research and linear optical modelling,” Opt. Quantum Electron. 39, 1253-1272 (2007).
[CrossRef]

Song, D. S.

D. S. Song, S. H. Kim, H. G. Park, C. K. Kim, and Y. H. Lee, “Single-fundamental-mode photonic crystal surface-emitting lasers,” Appl. Phys. Lett. 80, 3608-3610 (2003).

Song, I. H.

I. H. Song, Y. A. Peter, and M. Meunier, “Smoothing dry-etched microstructure sidewalls using focused ion beam milling for optical applications,” J. Micromech. Microeng. 17, 1593-1597 (2007).
[CrossRef]

Tan, H. H.

Touraille, E.

H. T. Hattori, C. Seassal, E. Touraille, P. Rojo-Romeo, X. Letartre, G. Hollinger, P. Viktorovitch, L. DiCioccio, M. Zussy, L. El Melhaoui, and J. M. Fedeli, “Heterogeneous integration of microdisk lasers on silicon strip waveguides for optical interconnects,” IEEE Photon. Technol. Lett. 18, 223-225 (2006).
[CrossRef]

Viktorovitch, P.

H. T. Hattori, C. Seassal, E. Touraille, P. Rojo-Romeo, X. Letartre, G. Hollinger, P. Viktorovitch, L. DiCioccio, M. Zussy, L. El Melhaoui, and J. M. Fedeli, “Heterogeneous integration of microdisk lasers on silicon strip waveguides for optical interconnects,” IEEE Photon. Technol. Lett. 18, 223-225 (2006).
[CrossRef]

X. Letartre, C. Monat, C. Seassal, and P. Viktorovitch, “Analytical modeling and an experimental investigation of two-dimensional photonic crystal microlasers: defect state (microcavity) versus band-edge state (distributed feedback) structures,” J. Opt. Soc. Am. B 22, 2581-2595 (2005).
[CrossRef]

Wang, Q. M.

Y. Z. Huang, W. H. Guo, and Q. M. Wang, “Analysis and numerical simulation of eigenmode characteristics for semiconductor lasers with an equilateral triangle micro-resonator,” IEEE J. Quantum Electron. 37, 100-107 (2001).
[CrossRef]

Wang, S. J.

Y. Z. Huang, Y. H. Hu, Q. Chen, S. J. Wang, Y. Du, and Z. C. Fan, “Room-temperature continuous-wave electrically injected InP-GaInAsP equilateral-triangle-resonator lasers,” IEEE Photon. Technol. Lett. 19, 963-965 (2007).
[CrossRef]

Yariv, A.

O. Painter, R. K. Lee, A. Scherrer, A. Yariv, J. D. O'Brien, and P. D. Dapkus, “Two-dimensional photonic bandgap defect mode laser,” Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Yu, L. J.

W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Mode quality factor based on far-field emission for square resonators,” IEEE Photon. Technol. Lett. 16, 479-481 (2004).
[CrossRef]

W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Whispering-gallery-like modes in square resonators,” IEEE J. Quantum Electron. 29, 1106-1110 (2003).

Y. Z. Huang, W. H. Guo, L. J. Yu, and H. B. Lei, “Analysis of semiconductor microlasers with an equilateral triangle resonator by rate equations,” IEEE J. Quantum Electron. 37, 1259-1264 (2001).
[CrossRef]

Yu, N.

N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Hofler, “Plasmonic quantum cascade laser antenna,” Appl. Phys. Lett. 91, 173113 (2007).
[CrossRef]

Zussy, M.

H. T. Hattori, C. Seassal, E. Touraille, P. Rojo-Romeo, X. Letartre, G. Hollinger, P. Viktorovitch, L. DiCioccio, M. Zussy, L. El Melhaoui, and J. M. Fedeli, “Heterogeneous integration of microdisk lasers on silicon strip waveguides for optical interconnects,” IEEE Photon. Technol. Lett. 18, 223-225 (2006).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

N. Yu, E. Cubukcu, L. Diehl, M. A. Belkin, K. B. Crozier, F. Capasso, D. Bour, S. Corzine, and G. Hofler, “Plasmonic quantum cascade laser antenna,” Appl. Phys. Lett. 91, 173113 (2007).
[CrossRef]

A. F. J. Levi, R. E. Slusher, S. L. McCall, J. L. Glass, S. J. Pearton, and R. A. Logan, “Directional light coupling from microdisk lasers,” Appl. Phys. Lett. 62, 562-563 (1993).
[CrossRef]

D. S. Song, S. H. Kim, H. G. Park, C. K. Kim, and Y. H. Lee, “Single-fundamental-mode photonic crystal surface-emitting lasers,” Appl. Phys. Lett. 80, 3608-3610 (2003).

IEEE J. Quantum Electron. (4)

W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Whispering-gallery-like modes in square resonators,” IEEE J. Quantum Electron. 29, 1106-1110 (2003).

Y. Z. Huang, W. H. Guo, and Q. M. Wang, “Analysis and numerical simulation of eigenmode characteristics for semiconductor lasers with an equilateral triangle micro-resonator,” IEEE J. Quantum Electron. 37, 100-107 (2001).
[CrossRef]

Y. Z. Huang, W. H. Guo, L. J. Yu, and H. B. Lei, “Analysis of semiconductor microlasers with an equilateral triangle resonator by rate equations,” IEEE J. Quantum Electron. 37, 1259-1264 (2001).
[CrossRef]

H. G. Park, J. K. Hwang, J. Huh, H. Y. Ryu, S. H. Kim, J. S. Kim, and Y. H. Lee, “Characteristics of modified single-defect two-dimensional photonic crystal lasers,” IEEE J. Quantum Electron. 38, 1353-1365 (2002).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

S. V. Boriskina, T. M. Benson, P. D. Sewell, and A. I. Nosich, “Directional emission, increased free spectral range, and mode Q-factors in 2-D wavelength-scale optical microcavity structures,” IEEE J. Sel. Top. Quantum Electron. 12, 1175-1182 (2006).
[CrossRef]

T. Baba, “Photonic crystals and microdisk cavities based on GaInAsP/InP system,” IEEE J. Sel. Top. Quantum Electron. 3, 808-830 (1997).
[CrossRef]

M. Fujita, A. Sakai, and T. Baba, “Ultra-small and ultra-low threshold microdisk injection laser-design, fabrication, lasing characteristics and spontaneous emission factor,” IEEE J. Sel. Top. Quantum Electron. 5, 673-681 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

H. T. Hattori, C. Seassal, E. Touraille, P. Rojo-Romeo, X. Letartre, G. Hollinger, P. Viktorovitch, L. DiCioccio, M. Zussy, L. El Melhaoui, and J. M. Fedeli, “Heterogeneous integration of microdisk lasers on silicon strip waveguides for optical interconnects,” IEEE Photon. Technol. Lett. 18, 223-225 (2006).
[CrossRef]

Y. Z. Huang, Y. H. Hu, Q. Chen, S. J. Wang, Y. Du, and Z. C. Fan, “Room-temperature continuous-wave electrically injected InP-GaInAsP equilateral-triangle-resonator lasers,” IEEE Photon. Technol. Lett. 19, 963-965 (2007).
[CrossRef]

W. H. Guo, Y. Z. Huang, Q. Y. Lu, and L. J. Yu, “Mode quality factor based on far-field emission for square resonators,” IEEE Photon. Technol. Lett. 16, 479-481 (2004).
[CrossRef]

J. Lightwave Technol. (1)

J. Micromech. Microeng. (1)

I. H. Song, Y. A. Peter, and M. Meunier, “Smoothing dry-etched microstructure sidewalls using focused ion beam milling for optical applications,” J. Micromech. Microeng. 17, 1593-1597 (2007).
[CrossRef]

J. Opt. Soc. Am. B (3)

Jpn. J. Appl. Phys., Part 2 (1)

S. Ando, N. Kobayashi, and H. Ando, “Triangular-facet lasers coupled by a rectangular optical waveguide,” Jpn. J. Appl. Phys., Part 2 36, L76-L78 (1997).
[CrossRef]

Nature (1)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39-46 (2007).
[CrossRef] [PubMed]

Nature Photon. (1)

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nature Photon. 2, 161-164 (2008).
[CrossRef]

Opt. Express (1)

Opt. Quantum Electron. (1)

A. I. Nosich, E. I. Smotrova, S. V. Boriskina, T. M. Benson, and P. Sewell, “Trends in microdisk laser research and linear optical modelling,” Opt. Quantum Electron. 39, 1253-1272 (2007).
[CrossRef]

Science (1)

O. Painter, R. K. Lee, A. Scherrer, A. Yariv, J. D. O'Brien, and P. D. Dapkus, “Two-dimensional photonic bandgap defect mode laser,” Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Other (1)

Fullwave 4.0 RSOFT Design Group, 1999, http://www.rsoftdesign.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Epitaxially layered structure. (b) Top SEM image of a fabricated triangular laser with triangular trenches.

Fig. 2
Fig. 2

ETR without trenches. (a) Magnetic field spectrum ( H y ) at the center of the waveguide. (b) Magnetic field ( H y ) distribution at λ = 982.4   nm .

Fig. 3
Fig. 3

ETR with trenches. (a) Magnetic field spectrum ( H y ) at the center of the waveguide. (b) Magnetic field ( H y ) distribution at λ = 979.8   nm .

Fig. 4
Fig. 4

ETR with trenches. (a) Quality factor ( Q ) as a function of a variable parameter; the solid curve shows Q as a function of the width of the trenches when its length is 1 μ m , while the solid curve with square markers shows Q as a function of the length of the trenches when its width is 1 μ m . (b) Theoretical power coupled into the waveguide (in each direction) as a function of the pump power. The solid line is for the ETR with trenches and the dashed-dotted line is for the ETR without trenches.

Fig. 5
Fig. 5

Vertically emitted photoluminescence spectra close to the threshold for ETRs (a) without and (b) with trenches.

Fig. 6
Fig. 6

Laser response for the ETR without (dashed line) and with (solid line) trenches.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

λ p , m = 3 n eff L 1 ( p 3 θ / π ) 2 + 3 ( m + 1 ) 2 ,
θ = π + 2 tan 1 [ 3 β p / ( 2 γ o ) ] .
3 β p L 1 + 6 θ = 2 p π ,
3 κ m L 1 = 2 ( m + 1 ) π ,
γ o = β p 2 / 4 + 3 κ m 2 ( 2 π λ ) 2 .

Metrics