Abstract

A thorough analysis of the shape and strength of Doppler-broadened wavelength-modulated noise-immune cavity-enhanced optical heterodyne molecular spectroscopy signals is presented, and their dependence on modulation frequency, modulation amplitude, and detection phase is investigated in detail. The conditions that maximize the on-resonance signal are identified. The analysis is based on standard frequency modulation spectroscopy formalism and the Fourier description of wavelength modulation spectroscopy and is verified by fits to experimental signals from C2H2 and CO2 measured at 1531nm. In addition, the line strengths of two CO2 transitions in the ν23ν1+ν2+ν3 hot band [Pe(7) and Pe(9)] were found to differ by 20% from those given in the HITRAN database.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Ye, L. S. Ma, and J. L. Hall, “Sub-Doppler optical frequency reference at 1.064 μm by means of ultrasensitive cavity-enhanced frequency modulation spectroscopy of a C2HD overtone transition,” Opt. Lett. 21, 1000-1002 (1996).
    [CrossRef] [PubMed]
  2. J. Ye, L. S. Ma, and J. L. Hall, “Ultrastable optical frequency reference at 1.064 μm using a C2HD molecular overtone transition,” IEEE Trans. Instrum. Meas. 46, 178-182 (1997).
    [CrossRef]
  3. C. Ishibashi and H. Sasada, “Highly sensitive cavity-enhanced sub-Doppler spectroscopy of a molecular overtone band with a 1.66 μm tunable diode laser,” Jpn. J. Appl. Phys., Part 1 38, 920-922 (1999).
    [CrossRef]
  4. M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, “Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared,” Spectrochim. Acta, Part A 60, 3457-3468 (2004).
    [CrossRef]
  5. A. Foltynowicz, W. Ma, and O. Axner, “Characterization of fiber-laser-based sub-Doppler NICE-OHMS for trace gas detection,” Opt. Express 16, 14689-14702 (2008).
    [CrossRef] [PubMed]
  6. L. S. Ma, J. Ye, P. Dube, and J. L. Hall, “Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C2H2 and C2HD,” J. Opt. Soc. Am. B 16, 2255-2268 (1999).
    [CrossRef]
  7. O. Axner, W. Ma, and A. Foltynowicz, “Sub-Doppler dispersion and noise-immune cavity-enhanced optical heterodyne molecular spectroscopy revised,” J. Opt. Soc. Am. B 25, 1166-1177 (2008).
    [CrossRef]
  8. L. Gianfrani, R. W. Fox, and L. Hollberg, “Cavity-enhanced absorption spectroscopy of molecular oxygen,” J. Opt. Soc. Am. B 16, 2247-2254 (1999).
    [CrossRef]
  9. N. J. van Leeuwen and A. C. Wilson, “Measurement of pressure-broadened, ultraweak transitions with noise-immune cavity-enhanced optical heterodyne molecular spectroscopy,” J. Opt. Soc. Am. B 21, 1713-1721 (2004).
    [CrossRef]
  10. N. J. van Leeuwen, H. G. Kjaergaard, D. L. Howard, and A. C. Wilson, “Measurement of ultraweak transitions in the visible region of molecular oxygen,” J. Mol. Spectrosc. 228, 83-91 (2004).
    [CrossRef]
  11. J. Bood, A. McIlroy, and D. L. Osborn, “Measurement of the sixth overtone band of nitric oxide, and its dipole moment function, using cavity-enhanced frequency modulation spectroscopy,” J. Chem. Phys. 124, 084311 (2006).
    [CrossRef] [PubMed]
  12. F. M. Schmidt, A. Foltynowicz, W. Ma, and O. Axner, “Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry for Doppler-broadened detection of C2H2 in the parts per trillion range,” J. Opt. Soc. Am. B 24, 1392-1405 (2007).
    [CrossRef]
  13. F. M. Schmidt, A. Foltynowicz, W. Ma, T. Lock, and O. Axner, “Doppler-broadened fiber-laser-based NICE-OHMS--Improved detectability,” Opt. Express 15, 10822-10831 (2007).
    [CrossRef] [PubMed]
  14. J. Ye, L. S. Ma, and J. L. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B 15, 6-15 (1998).
    [CrossRef]
  15. A. Foltynowicz, F. M. Schmidt, W. Ma, and O. Axner, “Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: current status and future potential,” Appl. Phys. B: Lasers Opt. 92, 313-326 (2008).
    [CrossRef]
  16. G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Oritz, “Frequency modulation (FM) spectroscopy: theory of lineshapes and signal-to-noise analysis,” Appl. Phys. B: Photophys. Laser Chem. 32, 145-152 (1983).
    [CrossRef]
  17. P. Kluczynski, J. Gustafsson, A. M. Lindberg, and O. Axner, “Wavelength modulation absorption spectrometry--an extensive scrutiny of the generation of signals,” Spectrochim. Acta, Part B 56, 1277-1354 (2001).
    [CrossRef]
  18. S. W. North, X. S. Zheng, R. Fei, and G. E. Hall, “Line shape analysis of Doppler broadened frequency-modulated line spectra,” J. Chem. Phys. 104, 2129-2135 (1996).
    [CrossRef]
  19. W. Ma, A. Foltynowicz, and O. Axner, “Theoretical description of Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy under optically saturated conditions,” J. Opt. Soc. Am. B 25, 1144-1155 (2008).
    [CrossRef]
  20. A. Foltynowicz, W. Ma, F. M. Schmidt, and O. Axner, “Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy signals from optically saturated transitions under low pressure conditions,” J. Opt. Soc. Am. B 25, 1156-1165 (2008).
    [CrossRef]
  21. R. L. Kronig, “On the theory of dispersion of X-rays,” J. Opt. Soc. Am. 12, 547-557 (1926).
    [CrossRef]
  22. H. A. Kramers, “La diffusion de la lumiere par les atomes,” Atti. Congr. Int. Fis. Como. 2, 545-557 (1927).
  23. P. Kluczynski, A. M. Lindberg, and O. Axner, “Wavelength modulation diode laser absorption signals from Doppler broadened absorption profiles,” J. Quant. Spectrosc. Radiat. Transf. 83, 345-360 (2004).
    [CrossRef]
  24. HITRAN 2004 Database (Version 12.0).
  25. R. El Hachtouki and J. Vander Auwera, “Absolute line intensities in acetylene: the 1.5-μm region.,” J. Mol. Spectrosc. 216, 355-362 (2002).
    [CrossRef]
  26. L. D. Le, J. D. Tate, M. B. Seasholtz, M. Gupta, T. Owano, D. Baer, T. Knittel, A. Cowie, and J. Zhu, “Development of a rapid on-line acetylene sensor for industrial hydrogenation reactor optimization using off-axis integrated cavity output spectroscopy,” Appl. Spectrosc. 62, 59-65 (2008).
    [CrossRef] [PubMed]
  27. E. A. Whittaker, M. Gehrtz, and G. C. Bjorklund, “Residual amplitude modulation in laser electro-optic phase modulation,” J. Opt. Soc. Am. B 2, 1320-1326 (1985).
    [CrossRef]

2008 (6)

2007 (2)

2006 (1)

J. Bood, A. McIlroy, and D. L. Osborn, “Measurement of the sixth overtone band of nitric oxide, and its dipole moment function, using cavity-enhanced frequency modulation spectroscopy,” J. Chem. Phys. 124, 084311 (2006).
[CrossRef] [PubMed]

2004 (4)

P. Kluczynski, A. M. Lindberg, and O. Axner, “Wavelength modulation diode laser absorption signals from Doppler broadened absorption profiles,” J. Quant. Spectrosc. Radiat. Transf. 83, 345-360 (2004).
[CrossRef]

N. J. van Leeuwen and A. C. Wilson, “Measurement of pressure-broadened, ultraweak transitions with noise-immune cavity-enhanced optical heterodyne molecular spectroscopy,” J. Opt. Soc. Am. B 21, 1713-1721 (2004).
[CrossRef]

N. J. van Leeuwen, H. G. Kjaergaard, D. L. Howard, and A. C. Wilson, “Measurement of ultraweak transitions in the visible region of molecular oxygen,” J. Mol. Spectrosc. 228, 83-91 (2004).
[CrossRef]

M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, “Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared,” Spectrochim. Acta, Part A 60, 3457-3468 (2004).
[CrossRef]

2002 (1)

R. El Hachtouki and J. Vander Auwera, “Absolute line intensities in acetylene: the 1.5-μm region.,” J. Mol. Spectrosc. 216, 355-362 (2002).
[CrossRef]

2001 (1)

P. Kluczynski, J. Gustafsson, A. M. Lindberg, and O. Axner, “Wavelength modulation absorption spectrometry--an extensive scrutiny of the generation of signals,” Spectrochim. Acta, Part B 56, 1277-1354 (2001).
[CrossRef]

1999 (3)

1998 (1)

1997 (1)

J. Ye, L. S. Ma, and J. L. Hall, “Ultrastable optical frequency reference at 1.064 μm using a C2HD molecular overtone transition,” IEEE Trans. Instrum. Meas. 46, 178-182 (1997).
[CrossRef]

1996 (2)

1985 (1)

1983 (1)

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Oritz, “Frequency modulation (FM) spectroscopy: theory of lineshapes and signal-to-noise analysis,” Appl. Phys. B: Photophys. Laser Chem. 32, 145-152 (1983).
[CrossRef]

1927 (1)

H. A. Kramers, “La diffusion de la lumiere par les atomes,” Atti. Congr. Int. Fis. Como. 2, 545-557 (1927).

1926 (1)

Axner, O.

A. Foltynowicz, W. Ma, and O. Axner, “Characterization of fiber-laser-based sub-Doppler NICE-OHMS for trace gas detection,” Opt. Express 16, 14689-14702 (2008).
[CrossRef] [PubMed]

O. Axner, W. Ma, and A. Foltynowicz, “Sub-Doppler dispersion and noise-immune cavity-enhanced optical heterodyne molecular spectroscopy revised,” J. Opt. Soc. Am. B 25, 1166-1177 (2008).
[CrossRef]

A. Foltynowicz, F. M. Schmidt, W. Ma, and O. Axner, “Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: current status and future potential,” Appl. Phys. B: Lasers Opt. 92, 313-326 (2008).
[CrossRef]

W. Ma, A. Foltynowicz, and O. Axner, “Theoretical description of Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy under optically saturated conditions,” J. Opt. Soc. Am. B 25, 1144-1155 (2008).
[CrossRef]

A. Foltynowicz, W. Ma, F. M. Schmidt, and O. Axner, “Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy signals from optically saturated transitions under low pressure conditions,” J. Opt. Soc. Am. B 25, 1156-1165 (2008).
[CrossRef]

F. M. Schmidt, A. Foltynowicz, W. Ma, and O. Axner, “Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry for Doppler-broadened detection of C2H2 in the parts per trillion range,” J. Opt. Soc. Am. B 24, 1392-1405 (2007).
[CrossRef]

F. M. Schmidt, A. Foltynowicz, W. Ma, T. Lock, and O. Axner, “Doppler-broadened fiber-laser-based NICE-OHMS--Improved detectability,” Opt. Express 15, 10822-10831 (2007).
[CrossRef] [PubMed]

P. Kluczynski, A. M. Lindberg, and O. Axner, “Wavelength modulation diode laser absorption signals from Doppler broadened absorption profiles,” J. Quant. Spectrosc. Radiat. Transf. 83, 345-360 (2004).
[CrossRef]

P. Kluczynski, J. Gustafsson, A. M. Lindberg, and O. Axner, “Wavelength modulation absorption spectrometry--an extensive scrutiny of the generation of signals,” Spectrochim. Acta, Part B 56, 1277-1354 (2001).
[CrossRef]

Baer, D.

Bjorklund, G. C.

E. A. Whittaker, M. Gehrtz, and G. C. Bjorklund, “Residual amplitude modulation in laser electro-optic phase modulation,” J. Opt. Soc. Am. B 2, 1320-1326 (1985).
[CrossRef]

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Oritz, “Frequency modulation (FM) spectroscopy: theory of lineshapes and signal-to-noise analysis,” Appl. Phys. B: Photophys. Laser Chem. 32, 145-152 (1983).
[CrossRef]

Bood, J.

J. Bood, A. McIlroy, and D. L. Osborn, “Measurement of the sixth overtone band of nitric oxide, and its dipole moment function, using cavity-enhanced frequency modulation spectroscopy,” J. Chem. Phys. 124, 084311 (2006).
[CrossRef] [PubMed]

Cannon, B. D.

M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, “Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared,” Spectrochim. Acta, Part A 60, 3457-3468 (2004).
[CrossRef]

Cowie, A.

Dube, P.

El Hachtouki, R.

R. El Hachtouki and J. Vander Auwera, “Absolute line intensities in acetylene: the 1.5-μm region.,” J. Mol. Spectrosc. 216, 355-362 (2002).
[CrossRef]

Fei, R.

S. W. North, X. S. Zheng, R. Fei, and G. E. Hall, “Line shape analysis of Doppler broadened frequency-modulated line spectra,” J. Chem. Phys. 104, 2129-2135 (1996).
[CrossRef]

Foltynowicz, A.

W. Ma, A. Foltynowicz, and O. Axner, “Theoretical description of Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy under optically saturated conditions,” J. Opt. Soc. Am. B 25, 1144-1155 (2008).
[CrossRef]

A. Foltynowicz, W. Ma, F. M. Schmidt, and O. Axner, “Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy signals from optically saturated transitions under low pressure conditions,” J. Opt. Soc. Am. B 25, 1156-1165 (2008).
[CrossRef]

A. Foltynowicz, F. M. Schmidt, W. Ma, and O. Axner, “Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: current status and future potential,” Appl. Phys. B: Lasers Opt. 92, 313-326 (2008).
[CrossRef]

O. Axner, W. Ma, and A. Foltynowicz, “Sub-Doppler dispersion and noise-immune cavity-enhanced optical heterodyne molecular spectroscopy revised,” J. Opt. Soc. Am. B 25, 1166-1177 (2008).
[CrossRef]

A. Foltynowicz, W. Ma, and O. Axner, “Characterization of fiber-laser-based sub-Doppler NICE-OHMS for trace gas detection,” Opt. Express 16, 14689-14702 (2008).
[CrossRef] [PubMed]

F. M. Schmidt, A. Foltynowicz, W. Ma, T. Lock, and O. Axner, “Doppler-broadened fiber-laser-based NICE-OHMS--Improved detectability,” Opt. Express 15, 10822-10831 (2007).
[CrossRef] [PubMed]

F. M. Schmidt, A. Foltynowicz, W. Ma, and O. Axner, “Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry for Doppler-broadened detection of C2H2 in the parts per trillion range,” J. Opt. Soc. Am. B 24, 1392-1405 (2007).
[CrossRef]

Fox, R. W.

Gehrtz, M.

Gianfrani, L.

Gupta, M.

Gustafsson, J.

P. Kluczynski, J. Gustafsson, A. M. Lindberg, and O. Axner, “Wavelength modulation absorption spectrometry--an extensive scrutiny of the generation of signals,” Spectrochim. Acta, Part B 56, 1277-1354 (2001).
[CrossRef]

Hall, G. E.

S. W. North, X. S. Zheng, R. Fei, and G. E. Hall, “Line shape analysis of Doppler broadened frequency-modulated line spectra,” J. Chem. Phys. 104, 2129-2135 (1996).
[CrossRef]

Hall, J. L.

Hollberg, L.

Howard, D. L.

N. J. van Leeuwen, H. G. Kjaergaard, D. L. Howard, and A. C. Wilson, “Measurement of ultraweak transitions in the visible region of molecular oxygen,” J. Mol. Spectrosc. 228, 83-91 (2004).
[CrossRef]

Ishibashi, C.

C. Ishibashi and H. Sasada, “Highly sensitive cavity-enhanced sub-Doppler spectroscopy of a molecular overtone band with a 1.66 μm tunable diode laser,” Jpn. J. Appl. Phys., Part 1 38, 920-922 (1999).
[CrossRef]

Kjaergaard, H. G.

N. J. van Leeuwen, H. G. Kjaergaard, D. L. Howard, and A. C. Wilson, “Measurement of ultraweak transitions in the visible region of molecular oxygen,” J. Mol. Spectrosc. 228, 83-91 (2004).
[CrossRef]

Kluczynski, P.

P. Kluczynski, A. M. Lindberg, and O. Axner, “Wavelength modulation diode laser absorption signals from Doppler broadened absorption profiles,” J. Quant. Spectrosc. Radiat. Transf. 83, 345-360 (2004).
[CrossRef]

P. Kluczynski, J. Gustafsson, A. M. Lindberg, and O. Axner, “Wavelength modulation absorption spectrometry--an extensive scrutiny of the generation of signals,” Spectrochim. Acta, Part B 56, 1277-1354 (2001).
[CrossRef]

Knittel, T.

Kramers, H. A.

H. A. Kramers, “La diffusion de la lumiere par les atomes,” Atti. Congr. Int. Fis. Como. 2, 545-557 (1927).

Kronig, R. L.

Le, L. D.

Lenth, W.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Oritz, “Frequency modulation (FM) spectroscopy: theory of lineshapes and signal-to-noise analysis,” Appl. Phys. B: Photophys. Laser Chem. 32, 145-152 (1983).
[CrossRef]

Levenson, M. D.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Oritz, “Frequency modulation (FM) spectroscopy: theory of lineshapes and signal-to-noise analysis,” Appl. Phys. B: Photophys. Laser Chem. 32, 145-152 (1983).
[CrossRef]

Lindberg, A. M.

P. Kluczynski, A. M. Lindberg, and O. Axner, “Wavelength modulation diode laser absorption signals from Doppler broadened absorption profiles,” J. Quant. Spectrosc. Radiat. Transf. 83, 345-360 (2004).
[CrossRef]

P. Kluczynski, J. Gustafsson, A. M. Lindberg, and O. Axner, “Wavelength modulation absorption spectrometry--an extensive scrutiny of the generation of signals,” Spectrochim. Acta, Part B 56, 1277-1354 (2001).
[CrossRef]

Lock, T.

Ma, L. S.

Ma, W.

A. Foltynowicz, W. Ma, and O. Axner, “Characterization of fiber-laser-based sub-Doppler NICE-OHMS for trace gas detection,” Opt. Express 16, 14689-14702 (2008).
[CrossRef] [PubMed]

O. Axner, W. Ma, and A. Foltynowicz, “Sub-Doppler dispersion and noise-immune cavity-enhanced optical heterodyne molecular spectroscopy revised,” J. Opt. Soc. Am. B 25, 1166-1177 (2008).
[CrossRef]

A. Foltynowicz, F. M. Schmidt, W. Ma, and O. Axner, “Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: current status and future potential,” Appl. Phys. B: Lasers Opt. 92, 313-326 (2008).
[CrossRef]

W. Ma, A. Foltynowicz, and O. Axner, “Theoretical description of Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy under optically saturated conditions,” J. Opt. Soc. Am. B 25, 1144-1155 (2008).
[CrossRef]

A. Foltynowicz, W. Ma, F. M. Schmidt, and O. Axner, “Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy signals from optically saturated transitions under low pressure conditions,” J. Opt. Soc. Am. B 25, 1156-1165 (2008).
[CrossRef]

F. M. Schmidt, A. Foltynowicz, W. Ma, and O. Axner, “Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry for Doppler-broadened detection of C2H2 in the parts per trillion range,” J. Opt. Soc. Am. B 24, 1392-1405 (2007).
[CrossRef]

F. M. Schmidt, A. Foltynowicz, W. Ma, T. Lock, and O. Axner, “Doppler-broadened fiber-laser-based NICE-OHMS--Improved detectability,” Opt. Express 15, 10822-10831 (2007).
[CrossRef] [PubMed]

McIlroy, A.

J. Bood, A. McIlroy, and D. L. Osborn, “Measurement of the sixth overtone band of nitric oxide, and its dipole moment function, using cavity-enhanced frequency modulation spectroscopy,” J. Chem. Phys. 124, 084311 (2006).
[CrossRef] [PubMed]

Myers, T. L.

M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, “Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared,” Spectrochim. Acta, Part A 60, 3457-3468 (2004).
[CrossRef]

North, S. W.

S. W. North, X. S. Zheng, R. Fei, and G. E. Hall, “Line shape analysis of Doppler broadened frequency-modulated line spectra,” J. Chem. Phys. 104, 2129-2135 (1996).
[CrossRef]

Oritz, C.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Oritz, “Frequency modulation (FM) spectroscopy: theory of lineshapes and signal-to-noise analysis,” Appl. Phys. B: Photophys. Laser Chem. 32, 145-152 (1983).
[CrossRef]

Osborn, D. L.

J. Bood, A. McIlroy, and D. L. Osborn, “Measurement of the sixth overtone band of nitric oxide, and its dipole moment function, using cavity-enhanced frequency modulation spectroscopy,” J. Chem. Phys. 124, 084311 (2006).
[CrossRef] [PubMed]

Owano, T.

Sasada, H.

C. Ishibashi and H. Sasada, “Highly sensitive cavity-enhanced sub-Doppler spectroscopy of a molecular overtone band with a 1.66 μm tunable diode laser,” Jpn. J. Appl. Phys., Part 1 38, 920-922 (1999).
[CrossRef]

Schmidt, F. M.

Seasholtz, M. B.

Tate, J. D.

Taubman, M. S.

M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, “Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared,” Spectrochim. Acta, Part A 60, 3457-3468 (2004).
[CrossRef]

van Leeuwen, N. J.

N. J. van Leeuwen, H. G. Kjaergaard, D. L. Howard, and A. C. Wilson, “Measurement of ultraweak transitions in the visible region of molecular oxygen,” J. Mol. Spectrosc. 228, 83-91 (2004).
[CrossRef]

N. J. van Leeuwen and A. C. Wilson, “Measurement of pressure-broadened, ultraweak transitions with noise-immune cavity-enhanced optical heterodyne molecular spectroscopy,” J. Opt. Soc. Am. B 21, 1713-1721 (2004).
[CrossRef]

Vander Auwera, J.

R. El Hachtouki and J. Vander Auwera, “Absolute line intensities in acetylene: the 1.5-μm region.,” J. Mol. Spectrosc. 216, 355-362 (2002).
[CrossRef]

Whittaker, E. A.

Williams, R. M.

M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, “Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared,” Spectrochim. Acta, Part A 60, 3457-3468 (2004).
[CrossRef]

Wilson, A. C.

N. J. van Leeuwen and A. C. Wilson, “Measurement of pressure-broadened, ultraweak transitions with noise-immune cavity-enhanced optical heterodyne molecular spectroscopy,” J. Opt. Soc. Am. B 21, 1713-1721 (2004).
[CrossRef]

N. J. van Leeuwen, H. G. Kjaergaard, D. L. Howard, and A. C. Wilson, “Measurement of ultraweak transitions in the visible region of molecular oxygen,” J. Mol. Spectrosc. 228, 83-91 (2004).
[CrossRef]

Ye, J.

Zheng, X. S.

S. W. North, X. S. Zheng, R. Fei, and G. E. Hall, “Line shape analysis of Doppler broadened frequency-modulated line spectra,” J. Chem. Phys. 104, 2129-2135 (1996).
[CrossRef]

Zhu, J.

Appl. Phys. B: Lasers Opt. (1)

A. Foltynowicz, F. M. Schmidt, W. Ma, and O. Axner, “Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: current status and future potential,” Appl. Phys. B: Lasers Opt. 92, 313-326 (2008).
[CrossRef]

Appl. Phys. B: Photophys. Laser Chem. (1)

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Oritz, “Frequency modulation (FM) spectroscopy: theory of lineshapes and signal-to-noise analysis,” Appl. Phys. B: Photophys. Laser Chem. 32, 145-152 (1983).
[CrossRef]

Appl. Spectrosc. (1)

Atti. Congr. Int. Fis. Como. (1)

H. A. Kramers, “La diffusion de la lumiere par les atomes,” Atti. Congr. Int. Fis. Como. 2, 545-557 (1927).

IEEE Trans. Instrum. Meas. (1)

J. Ye, L. S. Ma, and J. L. Hall, “Ultrastable optical frequency reference at 1.064 μm using a C2HD molecular overtone transition,” IEEE Trans. Instrum. Meas. 46, 178-182 (1997).
[CrossRef]

J. Chem. Phys. (2)

S. W. North, X. S. Zheng, R. Fei, and G. E. Hall, “Line shape analysis of Doppler broadened frequency-modulated line spectra,” J. Chem. Phys. 104, 2129-2135 (1996).
[CrossRef]

J. Bood, A. McIlroy, and D. L. Osborn, “Measurement of the sixth overtone band of nitric oxide, and its dipole moment function, using cavity-enhanced frequency modulation spectroscopy,” J. Chem. Phys. 124, 084311 (2006).
[CrossRef] [PubMed]

J. Mol. Spectrosc. (2)

N. J. van Leeuwen, H. G. Kjaergaard, D. L. Howard, and A. C. Wilson, “Measurement of ultraweak transitions in the visible region of molecular oxygen,” J. Mol. Spectrosc. 228, 83-91 (2004).
[CrossRef]

R. El Hachtouki and J. Vander Auwera, “Absolute line intensities in acetylene: the 1.5-μm region.,” J. Mol. Spectrosc. 216, 355-362 (2002).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (9)

E. A. Whittaker, M. Gehrtz, and G. C. Bjorklund, “Residual amplitude modulation in laser electro-optic phase modulation,” J. Opt. Soc. Am. B 2, 1320-1326 (1985).
[CrossRef]

J. Ye, L. S. Ma, and J. L. Hall, “Ultrasensitive detections in atomic and molecular physics: demonstration in molecular overtone spectroscopy,” J. Opt. Soc. Am. B 15, 6-15 (1998).
[CrossRef]

F. M. Schmidt, A. Foltynowicz, W. Ma, and O. Axner, “Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry for Doppler-broadened detection of C2H2 in the parts per trillion range,” J. Opt. Soc. Am. B 24, 1392-1405 (2007).
[CrossRef]

W. Ma, A. Foltynowicz, and O. Axner, “Theoretical description of Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy under optically saturated conditions,” J. Opt. Soc. Am. B 25, 1144-1155 (2008).
[CrossRef]

A. Foltynowicz, W. Ma, F. M. Schmidt, and O. Axner, “Doppler-broadened noise-immune cavity-enhanced optical heterodyne molecular spectroscopy signals from optically saturated transitions under low pressure conditions,” J. Opt. Soc. Am. B 25, 1156-1165 (2008).
[CrossRef]

L. S. Ma, J. Ye, P. Dube, and J. L. Hall, “Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C2H2 and C2HD,” J. Opt. Soc. Am. B 16, 2255-2268 (1999).
[CrossRef]

O. Axner, W. Ma, and A. Foltynowicz, “Sub-Doppler dispersion and noise-immune cavity-enhanced optical heterodyne molecular spectroscopy revised,” J. Opt. Soc. Am. B 25, 1166-1177 (2008).
[CrossRef]

L. Gianfrani, R. W. Fox, and L. Hollberg, “Cavity-enhanced absorption spectroscopy of molecular oxygen,” J. Opt. Soc. Am. B 16, 2247-2254 (1999).
[CrossRef]

N. J. van Leeuwen and A. C. Wilson, “Measurement of pressure-broadened, ultraweak transitions with noise-immune cavity-enhanced optical heterodyne molecular spectroscopy,” J. Opt. Soc. Am. B 21, 1713-1721 (2004).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transf. (1)

P. Kluczynski, A. M. Lindberg, and O. Axner, “Wavelength modulation diode laser absorption signals from Doppler broadened absorption profiles,” J. Quant. Spectrosc. Radiat. Transf. 83, 345-360 (2004).
[CrossRef]

Jpn. J. Appl. Phys., Part 1 (1)

C. Ishibashi and H. Sasada, “Highly sensitive cavity-enhanced sub-Doppler spectroscopy of a molecular overtone band with a 1.66 μm tunable diode laser,” Jpn. J. Appl. Phys., Part 1 38, 920-922 (1999).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Spectrochim. Acta, Part A (1)

M. S. Taubman, T. L. Myers, B. D. Cannon, and R. M. Williams, “Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared,” Spectrochim. Acta, Part A 60, 3457-3468 (2004).
[CrossRef]

Spectrochim. Acta, Part B (1)

P. Kluczynski, J. Gustafsson, A. M. Lindberg, and O. Axner, “Wavelength modulation absorption spectrometry--an extensive scrutiny of the generation of signals,” Spectrochim. Acta, Part B 56, 1277-1354 (2001).
[CrossRef]

Other (1)

HITRAN 2004 Database (Version 12.0).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic illustration of the NICE-OHMS signal acquisition process. Laser light is modulated at an RF frequency ν m equal to the FSR of an external cavity to which the carrier of the FM triplet is locked (locking circuit not shown). WM dither f m is applied to the carrier via a modulation of the cavity length (via the cavity PZT). The cavity transmitted light is detected by a fast photo detector (PD) and demodulated first at the RF frequency by a double balanced mixer (DBM) and then at the WM dither frequency by a lock-in amplifier.

Fig. 2
Fig. 2

(a) wm -NICE-OHMS dispersion line shape (solid curve) for a normalized WM modulation amplitude of 1.35 and a normalized FM modulation frequency of 2, i.e., χ ¯ 1 wm n o ( ν ¯ d , 1.35 , 2 , 0 ) . The dotted and dashed curves show the 1 f -WM dispersion signals of the two sidebands, i.e. χ ¯ 1 disp , even ( ν ¯ d ± 2 , 1.35 ) and the carrier, 2 χ ¯ 1 disp , even ( ν ¯ d , 1.35 ) , respectively. b) The wm -NICE-OHMS absorption line shape (solid curve) for a normalized WM modulation amplitude of 1.6 and a normalized FM modulation frequency of 2, i.e., χ ¯ 1 wm n o ( ν ¯ d , 1.6 , 2 , π 2 ) . The dotted curves show the 1 f -WM absorption signals of the two sidebands, i.e., χ ¯ 1 abs , even ( ν ¯ d ± 2 , 1.6 ) .

Fig. 3
Fig. 3

Wavelength-modulated NICE-OHMS line shapes as functions of detuning. The columns correspond to FM detection phases of 0, π 4 , π 2 , and 3 π 4 and the rows to normalized FM modulation frequencies of 0.5, 1.0, 1.5, 2.0, and 2.5. The three curves (solid, dashed, and dotted) in each panel represent signals obtained at a given phase and modulation frequency for three normalized WM modulation amplitudes ( ν ¯ a = 0.5 , 1.25, and 2.0, respectively).

Fig. 4
Fig. 4

Contour plot of the on-resonance value of the wm -NICE-OHMS line shape function for a normalized FM modulation amplitude of 2.2 as a function of FM detection phase and normalized WM modulation amplitude.

Fig. 5
Fig. 5

Absolute value of the wm -NICE-OHMS line shape function on resonance as a function of normalized WM modulation amplitude for normalized FM modulation frequencies of (a) 0.5, (b) 1.0, (c) 1.5, (d) 2.0, and (e) 2.5. The six curves in each panel correspond to FM detection phases of 0, π 6 , π 3 , π 2 , 2 π 3 , and 5 π 6 .

Fig. 6
Fig. 6

Optimum normalized WM modulation amplitude (upper curves) and the corresponding absolute value of the wm -NICE-OHMS line shape function on resonance (lower curves) as a function of FM detection phase for normalized FM modulation frequencies of (a) 0.5, (b) 1.0, (c) 1.5, (d) 2.0, and (e) 2.5.

Fig. 7
Fig. 7

Experimental wm -NICE-OHMS signals from C O 2 [measured at the P e ( 9 ) transition at 6529.195 cm 1 ] for various FM detection phases and WM modulation amplitudes (as marked in each panel) for a normalized FM modulation frequency of 2.1. The solid circles show the experimental data, whereas the curves are fits of Eq. (5), with the residuals shown below each panel.

Fig. 8
Fig. 8

Experimental wm -NICE-OHMS signals from C 2 H 2 [measured at the P e ( 11 ) transition at 6529.172 cm 1 ] for various FM detection phases and WM modulation amplitudes (as marked in each panel) for a normalized FM modulation frequency of 1.6. The solid circles show the experimental data, whereas the curves are fits of Eq. (5), with the residuals shown below each panel.

Fig. 9
Fig. 9

Absolute value of the experimental wm -NICE-OHMS on-resonance signal from (a) C O 2 and (b) C 2 H 2 as a function of WM modulation amplitude for four different FM detection phases (solid markers) with plots of the corresponding χ ¯ 1 , 0 wm n o ( ν m , ν a , θ fm ) (solid curves).

Fig. 10
Fig. 10

Pressure dependence of the normalized fm -NICE-OHMS signal strength for five different C O 2 and C 2 H 2 transitions (open markers) with linear fits (solid lines).

Tables (1)

Tables Icon

Table 1 Room Temperature ( 296 K ) Line Strengths of C O 2 Transitions as Given by the HITRAN Database and Corrected in This Study

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

S fm - no ( ν d , ν m , θ fm ) = η fm P 0 F π J 0 ( β ) J 1 ( β ) S χ ( ν 0 ) c rel p L × { [ χ ¯ abs ( ν d ν m ) χ ¯ abs ( ν d + ν m ) ] sin θ fm + [ χ ¯ disp ( ν d ν m ) 2 χ ¯ disp ( ν d ) + χ ¯ disp ( ν d + ν m ) ] cos θ fm } ,
χ ¯ abs ( ν ) = e ln 2 ( ν ν 0 ) 2 δ ν D 2 ,
χ ¯ disp ( ν ) = 2 π e γ 2 0 γ e γ 2 d γ ,
ν ( t ) = ν c + ν a cos ( 2 π f m t ) ,
S wm - no ( ν d , ν a , ν m , θ fm ) = S 0 wm - no χ ¯ 1 wm - no ( ν d , ν a , ν m , θ fm ) .
S 0 wm - no = η wm η fm F π P 0 J 0 ( β ) J 1 ( β ) S χ ( ν 0 ) c rel p L ,
χ ¯ 1 wm - no ( ν d , ν a , ν m , θ fm ) = [ χ ¯ 1 abs , even ( ν d ν m , ν a ) χ ¯ 1 abs , even ( ν d + ν m , ν a ) ] sin θ fm + [ χ ¯ 1 disp , even ( ν d ν m , ν a ) 2 χ ¯ 1 disp , even ( ν d , ν a ) + χ ¯ 1 disp , even ( ν d + ν m , ν a ) ] cos θ fm .
χ ¯ 1 disp , even ( ν , ν a ) = 2 τ 0 τ χ ¯ disp ( ν , ν a , t ) cos ( 2 π f m t ) d t ,

Metrics