Abstract

A method to produce magnetic superresolution in all-optical magnetic storage is proposed. Two-zone amplitude-only and phase-only filters are designed to improve the quality of the superresolved magnetization pattern, to increase the magnetic spot intensity, to reduce the magnetic spot size, and to control the sidelobe effect. A procedure for designing a rotationally symmetric pupil-plane mask to control the magnetization intensity distribution near focus is presented. As a practical implementation, we have applied our method to obtain superresolving two-zone phase filters that can improve the all-optical magnetic recording density.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. R. M. Sales and G. M. Morris, “Diffractive superresolution elements,” J. Opt. Soc. Am. A 14, 1637-1646 (1997).
    [CrossRef]
  2. J. Grochmalicki and R. Pike, “Superresolution for digital versatile discs (DVD's),” Appl. Opt. 39, 6341-6349 (2000).
    [CrossRef]
  3. Y. Zhang, H. Xiao, and C. Zheng, “Diffractive super-resolution elements applied to near-field optical data storage with solid immersion lens,” New J. Phys. 6, 75 (2004).
    [CrossRef]
  4. Y. Zhang, “A new three-zone amplitude-only filter for increasing the focal depth of near-field solid immersion lens systems,” J. Mod. Opt. 53, 1919-1925 (2006).
    [CrossRef]
  5. Y. Zhang and X. Ye, “Three-zone phase-only filter increasing the focal depth of optical storage systems with a solid immersion lens,” Appl. Phys. B 86, 97-103 (2007).
    [CrossRef]
  6. S. Zhou and C. Zhou, “Discrete continuous-phase superresolving filters,” Opt. Lett. 29, 2746-2748 (2004).
    [CrossRef] [PubMed]
  7. J. M. Rivas-Moscoso, C. R. Fernández-Pousa, and C. Gómez-Reino, “Hybrid refractive-diffractive-gradient-index superresolving focusing device,” Appl. Opt. 47, E68-E75 (2008).
    [CrossRef] [PubMed]
  8. J. Wei and M. Xiao, “Laser tunable Toraldo superresolution with a uniform nonlinear pupil filter,” Appl. Opt. 47, 3689-3693 (2008).
    [CrossRef] [PubMed]
  9. J. Jia, C. Zhou, and L. Liu, “Superresolution technology for reduction of the far-field diffraction spot size in the laser free-space communication system,” Opt. Commun. 228, 271-278 (2003).
    [CrossRef]
  10. J. Jia, C. Zhou, X. Sun, and L. Liu, “Superresolution laser beam shaping,” Appl. Opt. 43, 2112-2117 (2004).
    [CrossRef] [PubMed]
  11. A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and T. Rasing, “Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature 435, 655-657 (2005).
    [CrossRef] [PubMed]
  12. F. Hansteen, A. Kimel, A. Kirilyuk, and T. Rasing, “Femtosecond photomagnetic switching of spins in ferrimagnetic garnet films,” Phys. Rev. Lett. 95, 047402 (2005).
    [CrossRef] [PubMed]
  13. C. D. Stanciu, A. V. Kimel, F. Hansteen, A. Tsukamoto, A. Itoh, A. Kirilyuk, and Th. Rasing, “Ultrafast spin dynamics across compensation points in ferrimagnetic GdFeCo: The role of angular momentum compensation,” Phys. Rev. B 73, 220402(R) (2006).
    [CrossRef]
  14. C. A. Perroni and A. Liebsch, “Coherent control of magnetization via inverse Faraday Effect,” J. Phys.: Condens. Matter 18, 7063-7078 (2006).
    [CrossRef]
  15. C. A. Perroni and A. Liebsch, “Magnetization dynamics in dysprosium orthoferrites via the inverse Faraday effect,” Phys. Rev. B 74, 134430 (2006).
    [CrossRef]
  16. C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and Th. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99, 047601 (2007).
    [CrossRef] [PubMed]
  17. V. V. Kruglyak, M. E. Portnoi, and R. J. Hickenc, “Use of the Faraday optical transformer for ultrafast magnetization reversal of nanomagnets,” J. Nanophotonics 1, 013502 (2007).
    [CrossRef]
  18. C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Tsukamoto, A. Itoh, A. Kirilyuk, and Th. Rasing, “Ultrafast interaction of the angular momentum of photons with spins in the metallic amorphous alloy GdFeCo,” Phys. Rev. Lett. 98, 207401 (2007).
    [CrossRef] [PubMed]
  19. A. Rebei and J. Hohlfeld, “The magneto-optical Barnett effect: Circularly polarized light induced femtosecond magnetization reversal,” Phys. Lett. A 372, 1915-1918 (2008).
    [CrossRef]
  20. M. I. Kurkin, N. B. Bakulina, and R. V. Pisarev, “Transient inverse Faraday effect and ultrafast optical switching of magnetization,” Phys. Rev. B 78, 134430 (2008).
    [CrossRef]
  21. Y. Zhang and J. Bai, “High-density all-optical magnetic recording using a high-NA lens illuminated by circularly polarized pulse lights,” Phys. Lett. A 372, 6294-6297 (2008).
    [CrossRef]
  22. L. E. Helseth, “Strongly focused electromagnetic waves in E×E* media,” Opt. Commun. 281, 5671-5673 (2008).
    [CrossRef]
  23. Y. Zhang and J. Bai, “Theoretical study on all-optical magnetic recording using a solid immersion lens,” J. Opt. Soc. Am. B 26, 176-182 (2009).
    [CrossRef]
  24. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London 253, 358-379 (1959).
    [CrossRef]
  25. J. P. van der Ziel, P. S. Pershan, and L. D. Malmstrom, “Optically-induced magnetization resulting from the inverse Faraday effect,” Phys. Rev. Lett. 15, 190-193 (1965).
    [CrossRef]
  26. R. Hertel, “Theory of the inverse Faraday effect in metals,” J. Magn. Magn. Mater. 303, L1-L4 (2006).
    [CrossRef]
  27. P. V. Volkov and M. A. Novikov, “Inverse Faraday effect in anisotropic media,” Crystallogr. Rep. 47, 824-828 (2002).
    [CrossRef]

2009 (1)

2008 (6)

J. M. Rivas-Moscoso, C. R. Fernández-Pousa, and C. Gómez-Reino, “Hybrid refractive-diffractive-gradient-index superresolving focusing device,” Appl. Opt. 47, E68-E75 (2008).
[CrossRef] [PubMed]

J. Wei and M. Xiao, “Laser tunable Toraldo superresolution with a uniform nonlinear pupil filter,” Appl. Opt. 47, 3689-3693 (2008).
[CrossRef] [PubMed]

A. Rebei and J. Hohlfeld, “The magneto-optical Barnett effect: Circularly polarized light induced femtosecond magnetization reversal,” Phys. Lett. A 372, 1915-1918 (2008).
[CrossRef]

M. I. Kurkin, N. B. Bakulina, and R. V. Pisarev, “Transient inverse Faraday effect and ultrafast optical switching of magnetization,” Phys. Rev. B 78, 134430 (2008).
[CrossRef]

Y. Zhang and J. Bai, “High-density all-optical magnetic recording using a high-NA lens illuminated by circularly polarized pulse lights,” Phys. Lett. A 372, 6294-6297 (2008).
[CrossRef]

L. E. Helseth, “Strongly focused electromagnetic waves in E×E* media,” Opt. Commun. 281, 5671-5673 (2008).
[CrossRef]

2007 (4)

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and Th. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99, 047601 (2007).
[CrossRef] [PubMed]

V. V. Kruglyak, M. E. Portnoi, and R. J. Hickenc, “Use of the Faraday optical transformer for ultrafast magnetization reversal of nanomagnets,” J. Nanophotonics 1, 013502 (2007).
[CrossRef]

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Tsukamoto, A. Itoh, A. Kirilyuk, and Th. Rasing, “Ultrafast interaction of the angular momentum of photons with spins in the metallic amorphous alloy GdFeCo,” Phys. Rev. Lett. 98, 207401 (2007).
[CrossRef] [PubMed]

Y. Zhang and X. Ye, “Three-zone phase-only filter increasing the focal depth of optical storage systems with a solid immersion lens,” Appl. Phys. B 86, 97-103 (2007).
[CrossRef]

2006 (5)

Y. Zhang, “A new three-zone amplitude-only filter for increasing the focal depth of near-field solid immersion lens systems,” J. Mod. Opt. 53, 1919-1925 (2006).
[CrossRef]

C. D. Stanciu, A. V. Kimel, F. Hansteen, A. Tsukamoto, A. Itoh, A. Kirilyuk, and Th. Rasing, “Ultrafast spin dynamics across compensation points in ferrimagnetic GdFeCo: The role of angular momentum compensation,” Phys. Rev. B 73, 220402(R) (2006).
[CrossRef]

C. A. Perroni and A. Liebsch, “Coherent control of magnetization via inverse Faraday Effect,” J. Phys.: Condens. Matter 18, 7063-7078 (2006).
[CrossRef]

C. A. Perroni and A. Liebsch, “Magnetization dynamics in dysprosium orthoferrites via the inverse Faraday effect,” Phys. Rev. B 74, 134430 (2006).
[CrossRef]

R. Hertel, “Theory of the inverse Faraday effect in metals,” J. Magn. Magn. Mater. 303, L1-L4 (2006).
[CrossRef]

2005 (2)

A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and T. Rasing, “Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature 435, 655-657 (2005).
[CrossRef] [PubMed]

F. Hansteen, A. Kimel, A. Kirilyuk, and T. Rasing, “Femtosecond photomagnetic switching of spins in ferrimagnetic garnet films,” Phys. Rev. Lett. 95, 047402 (2005).
[CrossRef] [PubMed]

2004 (3)

2003 (1)

J. Jia, C. Zhou, and L. Liu, “Superresolution technology for reduction of the far-field diffraction spot size in the laser free-space communication system,” Opt. Commun. 228, 271-278 (2003).
[CrossRef]

2002 (1)

P. V. Volkov and M. A. Novikov, “Inverse Faraday effect in anisotropic media,” Crystallogr. Rep. 47, 824-828 (2002).
[CrossRef]

2000 (1)

1997 (1)

1965 (1)

J. P. van der Ziel, P. S. Pershan, and L. D. Malmstrom, “Optically-induced magnetization resulting from the inverse Faraday effect,” Phys. Rev. Lett. 15, 190-193 (1965).
[CrossRef]

1959 (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London 253, 358-379 (1959).
[CrossRef]

Bai, J.

Y. Zhang and J. Bai, “Theoretical study on all-optical magnetic recording using a solid immersion lens,” J. Opt. Soc. Am. B 26, 176-182 (2009).
[CrossRef]

Y. Zhang and J. Bai, “High-density all-optical magnetic recording using a high-NA lens illuminated by circularly polarized pulse lights,” Phys. Lett. A 372, 6294-6297 (2008).
[CrossRef]

Bakulina, N. B.

M. I. Kurkin, N. B. Bakulina, and R. V. Pisarev, “Transient inverse Faraday effect and ultrafast optical switching of magnetization,” Phys. Rev. B 78, 134430 (2008).
[CrossRef]

Balbashov, A. M.

A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and T. Rasing, “Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature 435, 655-657 (2005).
[CrossRef] [PubMed]

Fernández-Pousa, C. R.

Gómez-Reino, C.

Grochmalicki, J.

Hansteen, F.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and Th. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99, 047601 (2007).
[CrossRef] [PubMed]

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Tsukamoto, A. Itoh, A. Kirilyuk, and Th. Rasing, “Ultrafast interaction of the angular momentum of photons with spins in the metallic amorphous alloy GdFeCo,” Phys. Rev. Lett. 98, 207401 (2007).
[CrossRef] [PubMed]

C. D. Stanciu, A. V. Kimel, F. Hansteen, A. Tsukamoto, A. Itoh, A. Kirilyuk, and Th. Rasing, “Ultrafast spin dynamics across compensation points in ferrimagnetic GdFeCo: The role of angular momentum compensation,” Phys. Rev. B 73, 220402(R) (2006).
[CrossRef]

F. Hansteen, A. Kimel, A. Kirilyuk, and T. Rasing, “Femtosecond photomagnetic switching of spins in ferrimagnetic garnet films,” Phys. Rev. Lett. 95, 047402 (2005).
[CrossRef] [PubMed]

Helseth, L. E.

L. E. Helseth, “Strongly focused electromagnetic waves in E×E* media,” Opt. Commun. 281, 5671-5673 (2008).
[CrossRef]

Hertel, R.

R. Hertel, “Theory of the inverse Faraday effect in metals,” J. Magn. Magn. Mater. 303, L1-L4 (2006).
[CrossRef]

Hickenc, R. J.

V. V. Kruglyak, M. E. Portnoi, and R. J. Hickenc, “Use of the Faraday optical transformer for ultrafast magnetization reversal of nanomagnets,” J. Nanophotonics 1, 013502 (2007).
[CrossRef]

Hohlfeld, J.

A. Rebei and J. Hohlfeld, “The magneto-optical Barnett effect: Circularly polarized light induced femtosecond magnetization reversal,” Phys. Lett. A 372, 1915-1918 (2008).
[CrossRef]

Itoh, A.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Tsukamoto, A. Itoh, A. Kirilyuk, and Th. Rasing, “Ultrafast interaction of the angular momentum of photons with spins in the metallic amorphous alloy GdFeCo,” Phys. Rev. Lett. 98, 207401 (2007).
[CrossRef] [PubMed]

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and Th. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99, 047601 (2007).
[CrossRef] [PubMed]

C. D. Stanciu, A. V. Kimel, F. Hansteen, A. Tsukamoto, A. Itoh, A. Kirilyuk, and Th. Rasing, “Ultrafast spin dynamics across compensation points in ferrimagnetic GdFeCo: The role of angular momentum compensation,” Phys. Rev. B 73, 220402(R) (2006).
[CrossRef]

Jia, J.

J. Jia, C. Zhou, X. Sun, and L. Liu, “Superresolution laser beam shaping,” Appl. Opt. 43, 2112-2117 (2004).
[CrossRef] [PubMed]

J. Jia, C. Zhou, and L. Liu, “Superresolution technology for reduction of the far-field diffraction spot size in the laser free-space communication system,” Opt. Commun. 228, 271-278 (2003).
[CrossRef]

Kimel, A.

F. Hansteen, A. Kimel, A. Kirilyuk, and T. Rasing, “Femtosecond photomagnetic switching of spins in ferrimagnetic garnet films,” Phys. Rev. Lett. 95, 047402 (2005).
[CrossRef] [PubMed]

Kimel, A. V.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and Th. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99, 047601 (2007).
[CrossRef] [PubMed]

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Tsukamoto, A. Itoh, A. Kirilyuk, and Th. Rasing, “Ultrafast interaction of the angular momentum of photons with spins in the metallic amorphous alloy GdFeCo,” Phys. Rev. Lett. 98, 207401 (2007).
[CrossRef] [PubMed]

C. D. Stanciu, A. V. Kimel, F. Hansteen, A. Tsukamoto, A. Itoh, A. Kirilyuk, and Th. Rasing, “Ultrafast spin dynamics across compensation points in ferrimagnetic GdFeCo: The role of angular momentum compensation,” Phys. Rev. B 73, 220402(R) (2006).
[CrossRef]

A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and T. Rasing, “Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature 435, 655-657 (2005).
[CrossRef] [PubMed]

Kirilyuk, A.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Tsukamoto, A. Itoh, A. Kirilyuk, and Th. Rasing, “Ultrafast interaction of the angular momentum of photons with spins in the metallic amorphous alloy GdFeCo,” Phys. Rev. Lett. 98, 207401 (2007).
[CrossRef] [PubMed]

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and Th. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99, 047601 (2007).
[CrossRef] [PubMed]

C. D. Stanciu, A. V. Kimel, F. Hansteen, A. Tsukamoto, A. Itoh, A. Kirilyuk, and Th. Rasing, “Ultrafast spin dynamics across compensation points in ferrimagnetic GdFeCo: The role of angular momentum compensation,” Phys. Rev. B 73, 220402(R) (2006).
[CrossRef]

A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and T. Rasing, “Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature 435, 655-657 (2005).
[CrossRef] [PubMed]

F. Hansteen, A. Kimel, A. Kirilyuk, and T. Rasing, “Femtosecond photomagnetic switching of spins in ferrimagnetic garnet films,” Phys. Rev. Lett. 95, 047402 (2005).
[CrossRef] [PubMed]

Kruglyak, V. V.

V. V. Kruglyak, M. E. Portnoi, and R. J. Hickenc, “Use of the Faraday optical transformer for ultrafast magnetization reversal of nanomagnets,” J. Nanophotonics 1, 013502 (2007).
[CrossRef]

Kurkin, M. I.

M. I. Kurkin, N. B. Bakulina, and R. V. Pisarev, “Transient inverse Faraday effect and ultrafast optical switching of magnetization,” Phys. Rev. B 78, 134430 (2008).
[CrossRef]

Liebsch, A.

C. A. Perroni and A. Liebsch, “Coherent control of magnetization via inverse Faraday Effect,” J. Phys.: Condens. Matter 18, 7063-7078 (2006).
[CrossRef]

C. A. Perroni and A. Liebsch, “Magnetization dynamics in dysprosium orthoferrites via the inverse Faraday effect,” Phys. Rev. B 74, 134430 (2006).
[CrossRef]

Liu, L.

J. Jia, C. Zhou, X. Sun, and L. Liu, “Superresolution laser beam shaping,” Appl. Opt. 43, 2112-2117 (2004).
[CrossRef] [PubMed]

J. Jia, C. Zhou, and L. Liu, “Superresolution technology for reduction of the far-field diffraction spot size in the laser free-space communication system,” Opt. Commun. 228, 271-278 (2003).
[CrossRef]

Malmstrom, L. D.

J. P. van der Ziel, P. S. Pershan, and L. D. Malmstrom, “Optically-induced magnetization resulting from the inverse Faraday effect,” Phys. Rev. Lett. 15, 190-193 (1965).
[CrossRef]

Morris, G. M.

Novikov, M. A.

P. V. Volkov and M. A. Novikov, “Inverse Faraday effect in anisotropic media,” Crystallogr. Rep. 47, 824-828 (2002).
[CrossRef]

Perroni, C. A.

C. A. Perroni and A. Liebsch, “Coherent control of magnetization via inverse Faraday Effect,” J. Phys.: Condens. Matter 18, 7063-7078 (2006).
[CrossRef]

C. A. Perroni and A. Liebsch, “Magnetization dynamics in dysprosium orthoferrites via the inverse Faraday effect,” Phys. Rev. B 74, 134430 (2006).
[CrossRef]

Pershan, P. S.

J. P. van der Ziel, P. S. Pershan, and L. D. Malmstrom, “Optically-induced magnetization resulting from the inverse Faraday effect,” Phys. Rev. Lett. 15, 190-193 (1965).
[CrossRef]

Pike, R.

Pisarev, R. V.

M. I. Kurkin, N. B. Bakulina, and R. V. Pisarev, “Transient inverse Faraday effect and ultrafast optical switching of magnetization,” Phys. Rev. B 78, 134430 (2008).
[CrossRef]

A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and T. Rasing, “Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature 435, 655-657 (2005).
[CrossRef] [PubMed]

Portnoi, M. E.

V. V. Kruglyak, M. E. Portnoi, and R. J. Hickenc, “Use of the Faraday optical transformer for ultrafast magnetization reversal of nanomagnets,” J. Nanophotonics 1, 013502 (2007).
[CrossRef]

Rasing, T.

F. Hansteen, A. Kimel, A. Kirilyuk, and T. Rasing, “Femtosecond photomagnetic switching of spins in ferrimagnetic garnet films,” Phys. Rev. Lett. 95, 047402 (2005).
[CrossRef] [PubMed]

A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and T. Rasing, “Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature 435, 655-657 (2005).
[CrossRef] [PubMed]

Rasing, Th.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Tsukamoto, A. Itoh, A. Kirilyuk, and Th. Rasing, “Ultrafast interaction of the angular momentum of photons with spins in the metallic amorphous alloy GdFeCo,” Phys. Rev. Lett. 98, 207401 (2007).
[CrossRef] [PubMed]

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and Th. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99, 047601 (2007).
[CrossRef] [PubMed]

C. D. Stanciu, A. V. Kimel, F. Hansteen, A. Tsukamoto, A. Itoh, A. Kirilyuk, and Th. Rasing, “Ultrafast spin dynamics across compensation points in ferrimagnetic GdFeCo: The role of angular momentum compensation,” Phys. Rev. B 73, 220402(R) (2006).
[CrossRef]

Rebei, A.

A. Rebei and J. Hohlfeld, “The magneto-optical Barnett effect: Circularly polarized light induced femtosecond magnetization reversal,” Phys. Lett. A 372, 1915-1918 (2008).
[CrossRef]

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London 253, 358-379 (1959).
[CrossRef]

Rivas-Moscoso, J. M.

Sales, T. R. M.

Stanciu, C. D.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and Th. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99, 047601 (2007).
[CrossRef] [PubMed]

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Tsukamoto, A. Itoh, A. Kirilyuk, and Th. Rasing, “Ultrafast interaction of the angular momentum of photons with spins in the metallic amorphous alloy GdFeCo,” Phys. Rev. Lett. 98, 207401 (2007).
[CrossRef] [PubMed]

C. D. Stanciu, A. V. Kimel, F. Hansteen, A. Tsukamoto, A. Itoh, A. Kirilyuk, and Th. Rasing, “Ultrafast spin dynamics across compensation points in ferrimagnetic GdFeCo: The role of angular momentum compensation,” Phys. Rev. B 73, 220402(R) (2006).
[CrossRef]

Sun, X.

Tsukamoto, A.

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Tsukamoto, A. Itoh, A. Kirilyuk, and Th. Rasing, “Ultrafast interaction of the angular momentum of photons with spins in the metallic amorphous alloy GdFeCo,” Phys. Rev. Lett. 98, 207401 (2007).
[CrossRef] [PubMed]

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and Th. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99, 047601 (2007).
[CrossRef] [PubMed]

C. D. Stanciu, A. V. Kimel, F. Hansteen, A. Tsukamoto, A. Itoh, A. Kirilyuk, and Th. Rasing, “Ultrafast spin dynamics across compensation points in ferrimagnetic GdFeCo: The role of angular momentum compensation,” Phys. Rev. B 73, 220402(R) (2006).
[CrossRef]

Usachev, P. A.

A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and T. Rasing, “Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature 435, 655-657 (2005).
[CrossRef] [PubMed]

van der Ziel, J. P.

J. P. van der Ziel, P. S. Pershan, and L. D. Malmstrom, “Optically-induced magnetization resulting from the inverse Faraday effect,” Phys. Rev. Lett. 15, 190-193 (1965).
[CrossRef]

Volkov, P. V.

P. V. Volkov and M. A. Novikov, “Inverse Faraday effect in anisotropic media,” Crystallogr. Rep. 47, 824-828 (2002).
[CrossRef]

Wei, J.

Wolf, E.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London 253, 358-379 (1959).
[CrossRef]

Xiao, H.

Y. Zhang, H. Xiao, and C. Zheng, “Diffractive super-resolution elements applied to near-field optical data storage with solid immersion lens,” New J. Phys. 6, 75 (2004).
[CrossRef]

Xiao, M.

Ye, X.

Y. Zhang and X. Ye, “Three-zone phase-only filter increasing the focal depth of optical storage systems with a solid immersion lens,” Appl. Phys. B 86, 97-103 (2007).
[CrossRef]

Zhang, Y.

Y. Zhang and J. Bai, “Theoretical study on all-optical magnetic recording using a solid immersion lens,” J. Opt. Soc. Am. B 26, 176-182 (2009).
[CrossRef]

Y. Zhang and J. Bai, “High-density all-optical magnetic recording using a high-NA lens illuminated by circularly polarized pulse lights,” Phys. Lett. A 372, 6294-6297 (2008).
[CrossRef]

Y. Zhang and X. Ye, “Three-zone phase-only filter increasing the focal depth of optical storage systems with a solid immersion lens,” Appl. Phys. B 86, 97-103 (2007).
[CrossRef]

Y. Zhang, “A new three-zone amplitude-only filter for increasing the focal depth of near-field solid immersion lens systems,” J. Mod. Opt. 53, 1919-1925 (2006).
[CrossRef]

Y. Zhang, H. Xiao, and C. Zheng, “Diffractive super-resolution elements applied to near-field optical data storage with solid immersion lens,” New J. Phys. 6, 75 (2004).
[CrossRef]

Zheng, C.

Y. Zhang, H. Xiao, and C. Zheng, “Diffractive super-resolution elements applied to near-field optical data storage with solid immersion lens,” New J. Phys. 6, 75 (2004).
[CrossRef]

Zhou, C.

S. Zhou and C. Zhou, “Discrete continuous-phase superresolving filters,” Opt. Lett. 29, 2746-2748 (2004).
[CrossRef] [PubMed]

J. Jia, C. Zhou, X. Sun, and L. Liu, “Superresolution laser beam shaping,” Appl. Opt. 43, 2112-2117 (2004).
[CrossRef] [PubMed]

J. Jia, C. Zhou, and L. Liu, “Superresolution technology for reduction of the far-field diffraction spot size in the laser free-space communication system,” Opt. Commun. 228, 271-278 (2003).
[CrossRef]

Zhou, S.

Appl. Opt. (4)

Appl. Phys. B (1)

Y. Zhang and X. Ye, “Three-zone phase-only filter increasing the focal depth of optical storage systems with a solid immersion lens,” Appl. Phys. B 86, 97-103 (2007).
[CrossRef]

Crystallogr. Rep. (1)

P. V. Volkov and M. A. Novikov, “Inverse Faraday effect in anisotropic media,” Crystallogr. Rep. 47, 824-828 (2002).
[CrossRef]

J. Magn. Magn. Mater. (1)

R. Hertel, “Theory of the inverse Faraday effect in metals,” J. Magn. Magn. Mater. 303, L1-L4 (2006).
[CrossRef]

J. Mod. Opt. (1)

Y. Zhang, “A new three-zone amplitude-only filter for increasing the focal depth of near-field solid immersion lens systems,” J. Mod. Opt. 53, 1919-1925 (2006).
[CrossRef]

J. Nanophotonics (1)

V. V. Kruglyak, M. E. Portnoi, and R. J. Hickenc, “Use of the Faraday optical transformer for ultrafast magnetization reversal of nanomagnets,” J. Nanophotonics 1, 013502 (2007).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys.: Condens. Matter (1)

C. A. Perroni and A. Liebsch, “Coherent control of magnetization via inverse Faraday Effect,” J. Phys.: Condens. Matter 18, 7063-7078 (2006).
[CrossRef]

Nature (1)

A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M. Balbashov, and T. Rasing, “Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses,” Nature 435, 655-657 (2005).
[CrossRef] [PubMed]

New J. Phys. (1)

Y. Zhang, H. Xiao, and C. Zheng, “Diffractive super-resolution elements applied to near-field optical data storage with solid immersion lens,” New J. Phys. 6, 75 (2004).
[CrossRef]

Opt. Commun. (2)

J. Jia, C. Zhou, and L. Liu, “Superresolution technology for reduction of the far-field diffraction spot size in the laser free-space communication system,” Opt. Commun. 228, 271-278 (2003).
[CrossRef]

L. E. Helseth, “Strongly focused electromagnetic waves in E×E* media,” Opt. Commun. 281, 5671-5673 (2008).
[CrossRef]

Opt. Lett. (1)

Phys. Lett. A (2)

Y. Zhang and J. Bai, “High-density all-optical magnetic recording using a high-NA lens illuminated by circularly polarized pulse lights,” Phys. Lett. A 372, 6294-6297 (2008).
[CrossRef]

A. Rebei and J. Hohlfeld, “The magneto-optical Barnett effect: Circularly polarized light induced femtosecond magnetization reversal,” Phys. Lett. A 372, 1915-1918 (2008).
[CrossRef]

Phys. Rev. B (3)

M. I. Kurkin, N. B. Bakulina, and R. V. Pisarev, “Transient inverse Faraday effect and ultrafast optical switching of magnetization,” Phys. Rev. B 78, 134430 (2008).
[CrossRef]

C. D. Stanciu, A. V. Kimel, F. Hansteen, A. Tsukamoto, A. Itoh, A. Kirilyuk, and Th. Rasing, “Ultrafast spin dynamics across compensation points in ferrimagnetic GdFeCo: The role of angular momentum compensation,” Phys. Rev. B 73, 220402(R) (2006).
[CrossRef]

C. A. Perroni and A. Liebsch, “Magnetization dynamics in dysprosium orthoferrites via the inverse Faraday effect,” Phys. Rev. B 74, 134430 (2006).
[CrossRef]

Phys. Rev. Lett. (4)

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and Th. Rasing, “All-optical magnetic recording with circularly polarized light,” Phys. Rev. Lett. 99, 047601 (2007).
[CrossRef] [PubMed]

F. Hansteen, A. Kimel, A. Kirilyuk, and T. Rasing, “Femtosecond photomagnetic switching of spins in ferrimagnetic garnet films,” Phys. Rev. Lett. 95, 047402 (2005).
[CrossRef] [PubMed]

C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Tsukamoto, A. Itoh, A. Kirilyuk, and Th. Rasing, “Ultrafast interaction of the angular momentum of photons with spins in the metallic amorphous alloy GdFeCo,” Phys. Rev. Lett. 98, 207401 (2007).
[CrossRef] [PubMed]

J. P. van der Ziel, P. S. Pershan, and L. D. Malmstrom, “Optically-induced magnetization resulting from the inverse Faraday effect,” Phys. Rev. Lett. 15, 190-193 (1965).
[CrossRef]

Proc. R. Soc. London (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London 253, 358-379 (1959).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

All-optical magnetic recording schematic diagram with a pupil filter. An optic-magneto (OM) film locates in the focal plane of the lens (L) illuminated by a circularly polarized beam.

Fig. 2
Fig. 2

Magnetization distributions in the focal plane (a) and along the optical axis (b) for a two-zone amplitude filter with the boundary parameter of ε = 0.5 . The unit of z is in wavelength.

Fig. 3
Fig. 3

The quality parameters G, S, R, D of magnetic spot for a two-zone amplitude filter as a function of zone-boundary parameter ε.

Fig. 4
Fig. 4

Normalized magnetic intensity distributions in the focal plane (a), (b), and (c) and along the optical axis (d), (e), and (f) for several values of zone-boundary parameter ε when φ = π . Solid and dashed curves are the cases with and without a filter, respectively. The units of ρ and z are in wavelengths.

Fig. 5
Fig. 5

The quality parameters G, S, and R of magnetic spot for a two-zone phase filter as a function of zone-boundary parameter ε for several values of phase shift φ.

Tables (1)

Tables Icon

Table 1 Performance of Two-Zone Phase Filters

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

E circ L ( ρ c , ϕ c , z c ) = [ i A ( I 0 + I 2 e i 2 ϕ c ) A ( I 0 I 2 e i 2 ϕ c ) 2 A I 1 e i ϕ c ] ,
E circ R ( ρ c , ϕ c , z c ) = [ i A ( I 0 + I 2 e i 2 ϕ c ) A ( I 0 I 2 e i 2 ϕ c ) 2 A I 1 e i ϕ c ]
I 0 = 0 α ( 1 + cos θ ) P ( θ ) cos θ sin θ J 0 ( k ρ c sin θ ) exp ( i k z c cos θ ) d θ ,
I 1 = 0 α sin 2 θ P ( θ ) cos θ J 1 ( k ρ c sin θ ) exp ( i k z c cos θ ) d θ ,
I 2 = 0 α ( 1 cos θ ) P ( θ ) cos θ sin θ J 2 ( k ρ c sin θ ) exp ( i k z c cos θ ) d θ .
M ( ρ c , ϕ c , z c ) = i γ E × E * ,
M n ± ( ρ c , ϕ c , 0 ) M ± ( ρ c , ϕ c , 0 ) γ A = [ ξ sin ϕ c η cos ϕ c ξ cos ϕ c η sin ϕ c ± τ ] ,
ξ = 4 Re ( I 1 I 0 * + I 2 I 1 * ) ,
η = 4 Im ( I 1 I 0 * + I 2 I 1 * ) ,
τ = 2 ( I 0 2 I 2 2 ) .
M n ± 2 ( I 0 2 I 2 2 ) e z .
P ( θ ) = { 1 , ϵ α θ α 0 , 0 θ < ϵ α } ,
P ( θ ) = { exp ( i φ ) , ϵ α θ α 1 , 0 θ < ϵ α } ,
Minimize G ( ϵ , φ ) ,
Subject to { S > S 0 R < R 0 } ,

Metrics