Abstract

Nonlinear spectral broadening to 200nm, from an initial width of 50nm, has been demonstrated in gallium lanthanum sulphide glass waveguides from 1540nm, 200fs pulses at 30nJ/pulse. A formation mechanism is presented for these femtosecond laser written waveguides, based on optical characterization and comparisons to previous work. Two different types of waveguide are identified. One has a characteristic long narrow structure and is formed through filamentation caused by self-focusing. The other has a characteristic “teardrop” structure, which is formed by a type IIA photosensitivity mechanism and cumulative heating of glass around a central laser-exposed region.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248-2257(1995).
    [CrossRef] [PubMed]
  2. L. Shah, J. Tawney, M. Richardson, and K. Richardson, “Self-focusing during femtosecond micromachining of silicate glasses,” IEEE J. Quantum Electron. 40, 57-68 (2004).
    [CrossRef]
  3. F. Korte, S. Adams, A. Egbert, C. Fallnich, A. Ostendorf, S. Nolte, M. Will, J.-P. Ruske, B. Chichkov, and A. Tuennermann, “Sub-diffraction limited structuring of solid targets with femtosecond laser pulses,” Opt. Express 7, 41-49 (2000).
    [CrossRef] [PubMed]
  4. S. Nolte, B. N. Chichkov, H. Welling, Y. Shani, K. Lieberman, and H. Terkel, “Nanostructuring with spatially localized femtosecond laser pulses,” Opt. Lett. 24, 914-916 (1999).
    [CrossRef]
  5. P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114, 106-110 (1995).
    [CrossRef]
  6. R. Osellame, S. Taccheo, G. Cerullo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. De Silvestri, “Optical gain in Er-Yb doped waveguides fabricated by femtosecond laser pulses,” Electron. Lett. 38, 964-965 (2002).
    [CrossRef]
  7. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T.-H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett. 21, 2023-2025 (1996).
    [CrossRef] [PubMed]
  8. D. Ashkenasi, H. Varel, A. Rosenfeld, S. Henz, J. Herrmann, and E. E. B. Cambell, “Application of self-focusing of ps laser pulses for three-dimensional microstructuring of transparent materials,” Appl. Phys. Lett. 72, 1442-1444 (1998).
    [CrossRef]
  9. J. Qiu, “Femtosecond laser induced microstructures in glass and application in micro-optics,” Chem. Rec. 4, 50-58 (2004).
    [CrossRef] [PubMed]
  10. J. Qiu, K. Kojima, K. Miura, T. Mitsuyu, and K. Hirao, “Infrared femtosecond laser pulse induced permanent reduction of Eu3+ to Eu2+ in a fluorozirconate glass,” Opt. Lett. 24, 786-788 (1999).
    [CrossRef]
  11. B. P. Nelson, K. J. Blow, P. D. Constantine, N. J. Doran, J. K. Lucek, I. W. Marshall, and K. Smith, “All-optical Gbit/s switching using nonlinear optical loop mirror,” Electron. Lett. 27, 704-705 (1991).
    [CrossRef]
  12. K. Uchiyama, T. Morioka, and M. Saruwatari, “Polarization-independent wavelength conversion using nonlinear optical loop mirror,” Electron. Lett. 31, 1862-1863 (1995).
    [CrossRef]
  13. K.-I. Kitayama, Y. Kimura, K. Okamoto, and S. Seikai, “Optical sampling using an all-fiber optical Kerr shutter,” Appl. Phys. Lett. 46, 623-625 (1985).
    [CrossRef]
  14. E. Bricchi, J. D. Mills, P. G. Kazansky, B. G. Klappauf, and J. J. Baumberg, “Birefringent Fresnel zone plates in silica fabricated by femtosecond laser machining,” Opt. Lett. 27, 2200-2202 (2002).
    [CrossRef]
  15. J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett. 82, 2371-2373 (2003).
    [CrossRef]
  16. O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379-386 (2001).
    [CrossRef]
  17. J. Siegel, J. M. Fernandez-Navarro, A. Garcia-Navarro, V. Diez-Blanco, O. Sanz, J. Solis, F. Vega, and J. Armengol, “Waveguide structures in heavy metal oxide glass written with femtosecond laser pulses above the critical self-focusing threshold,” Appl. Phys. Lett. 86, 121109 (2005).
    [CrossRef]
  18. C. Quémarda, F. Smektala, V. Coudercb, A. Barthélémyb, and J. Lucasa, “Chalcogenide glasses with high non linear optical properties for telecommunications,” J. Phys. Chem. Solids 62, 1435-1440 (2001).
    [CrossRef]
  19. J. Requejo-Isidro, A. K. Mairaj, V. Pruneri, D. W. Hewak, M. C. Netti, and J. J. Baumberg, “Self refractive non-linearities in chalcogenide based glasses,” J. Non-Cryst. Solids 317, 241-246 (2003).
    [CrossRef]
  20. M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass,” Appl. Phys. Lett. 90, 131113 (2007).
    [CrossRef]
  21. J. M. Senior, Optical Fiber Communications: Principles and Practice (Prentice Hall, 1992).
  22. N. D. Psaila, R. R. Thomson, H. T. Bookey, S. Shen, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and A. K. Kar, “Supercontinuum generation in an ultrafast laser inscribed chalcogenide glass waveguide,” Opt. Express 15, 15776-15781 (2007).
    [CrossRef] [PubMed]
  23. A. M. Streltsov and N. F. Borrelli, “Study of femtosecond-laser-written waveguides in glasses,” J. Opt. Soc. Am. B 19, 2496-2504 (2002).
    [CrossRef]
  24. A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Ho, and R. Vallee, “Direct femtosecond laser writing of waveguides in As2S3 thin films,” Opt. Lett. 29, 748-750 (2004).
    [CrossRef] [PubMed]
  25. M. Hughes, H. Rutt, D. Hewak, and R. Curry, “Spectroscopy of vanadium (III) doped gallium lanthanum sulphide glass,” Appl. Phys. Lett. 90, 031108 (2007).
    [CrossRef]
  26. K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Cryst. Solids 239, 91-95 (1998).
    [CrossRef]
  27. S. R. Elliott, “A unified model for reversible photostructural effects in chalcogenide glasses,” J. Non-Cryst. Solids 81, 71-98 (1986).
    [CrossRef]
  28. P. Hari, S. Guzel, T. Su, P. C. Taylor, P. L. Kuhns, W. G. Moulton, and N. S. Sullivan, “Photodarkening effect in glassy As2S3 and As2O3,”J. Non-Cryst. Solids 326, 199-204 (2003).
    [CrossRef]
  29. G. Pfeiffer, C. J. Brabec, S. R. Jefferys, and M. A. Paesler, “Structural models of glassy As2s3--intermediate-range order and photostructural changes,” Phys. Rev. B 39, 12861-12871 (1989).
    [CrossRef]
  30. G. Pfeiffer, M. A. Paesler, and S. C. Agarwal, “Reversible photodarkening of amorphous arsenic chalcogens,” J. Non-Cryst. Solids 130, 111-143 (1991).
    [CrossRef]
  31. K. Tanaka, “Reversible photoinduced change in intermolecular distance in amorphous As2S3 network,” Appl. Phys. Lett. 26, 243-245 (1975).
    [CrossRef]
  32. V. K. Tikhomirov, A. B. Seddon, K. Asatryan, T. V. Galstian, and R. Vallee, “The role of van der Waals bonding in photosensitivity of chalcogenide glasses,” J. Non-Cryst. Solids 326, 205-208 (2003).
    [CrossRef]
  33. D. K. Y. Low, H. Xie, Z. Xiong, and G. C. Lim, “Femtosecond laser direct writing of embedded optical waveguides in aluminosilicate glass,” Appl. Phys. A 81, 1633-1638 (2005).
    [CrossRef]
  34. M. V. Bazylenko, D. Moss, and J. Canning, “Complex photosensitivity observed in germanosilica planar waveguides,” Opt. Lett. 23, 697-699 (1998).
    [CrossRef]
  35. C. Pappas and S. Pissadakis, “Periodic nanostructuring of Er/Yb-codoped IOG1 phosphate glass by using ultraviolet laser-assisted selective chemical etching,” J. Appl. Phys. 100, 114308 (2006).
    [CrossRef]
  36. S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
    [CrossRef] [PubMed]
  37. E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, and B. Luther-Davies, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
    [CrossRef]
  38. M. Sakakura and M. Terazima, “Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass,” Phys. Rev. B 71, 024113 (2005).
    [CrossRef]
  39. E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882-884 (1997).
    [CrossRef]
  40. P. E. Dyer, S. M. Maswadi, C. D. Walton, M. Ersoz, P. D. I. Fletcher, and V. N. Paunov, “157-nm laser micromachining of N-BK7 glass and replication for microcontact printing,” Appl. Phys. A 77, 391-394 (2003).
    [CrossRef]
  41. Y. D. West, T. Schweizer, D. J. Brady, and D. W. Hewak, “Gallium lanthanum sulphide fibers for infrared transmission,” Fiber Integr. Opt. 19, 229-250 (2000).
    [CrossRef]
  42. M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett. 93, 231112 (2008).
    [CrossRef]
  43. J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys. A 76, 367-372 (2003).
    [CrossRef]
  44. S. M. Eaton, H. B. Zhang, and P. R. Herman, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13, 4708-4716 (2005).
    [CrossRef] [PubMed]
  45. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  46. R. Cubeddu, R. Polloni, C. A. Sacchi, and O. Svelto, “Self-phase modulation and “rocking” of molecules in trapped filaments of light with picosecond pulses,” Phys. Rev. A 2, 1955-1963 (1970).
    [CrossRef]
  47. R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17, 1448-1453 (1978).
    [CrossRef]
  48. S. Spalter, G. Lenz, R. E. Slusher, H. Y. Hwang, J. Zimmermann, T. Ktsufuji, S. W. Cheong, and M. E. Lines, “Highly nonlinear chalcogenide glasses for ultrafast all optical switching in optical TDM communication systems,” in Optical Fiber Communication Conference 2000 (Optical Society of America, 2000), p. 137.
  49. D.-P. Wei, T. Galstian, I. Smolnikov, V. Plotnichenko, and A. Zohrabyan, “Spectral broadening of femtosecond pulses in a single-mode As-S glass fiber,” Opt. Express 13, 2439-2443 (2005).
    [CrossRef] [PubMed]
  50. K. Petkov and P. J. S. Ewen, “Photoinduced changes in the linear and non-linear optical properties of chalcogenide glasses,” J. Non-Cryst. Solids 249, 150-159 (1999).
    [CrossRef]
  51. J. K. Kim, “Investigation of high-nonlinearity glass fibers for potential applications in ultrafast nonlinear fiber devices,” Ph.D. dissertation (Virginia State University, 2005).
  52. S. Spälter, H. Y. Hwang, J. Zimmermann, G. Lenz, T. Katsufuji, S.-W. Cheong, and R. E. Slusher, “Strong self-phase modulation in planar chalcogenide glass waveguides,” Opt. Lett. 27, 363-365 (2002).
    [CrossRef]
  53. P. V. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” in 24th European Conference on Optical Communication, (IEEE, 1998), p. 475.

2008 (1)

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett. 93, 231112 (2008).
[CrossRef]

2007 (3)

M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass,” Appl. Phys. Lett. 90, 131113 (2007).
[CrossRef]

N. D. Psaila, R. R. Thomson, H. T. Bookey, S. Shen, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and A. K. Kar, “Supercontinuum generation in an ultrafast laser inscribed chalcogenide glass waveguide,” Opt. Express 15, 15776-15781 (2007).
[CrossRef] [PubMed]

M. Hughes, H. Rutt, D. Hewak, and R. Curry, “Spectroscopy of vanadium (III) doped gallium lanthanum sulphide glass,” Appl. Phys. Lett. 90, 031108 (2007).
[CrossRef]

2006 (3)

C. Pappas and S. Pissadakis, “Periodic nanostructuring of Er/Yb-codoped IOG1 phosphate glass by using ultraviolet laser-assisted selective chemical etching,” J. Appl. Phys. 100, 114308 (2006).
[CrossRef]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[CrossRef] [PubMed]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, and B. Luther-Davies, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[CrossRef]

2005 (5)

M. Sakakura and M. Terazima, “Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass,” Phys. Rev. B 71, 024113 (2005).
[CrossRef]

J. Siegel, J. M. Fernandez-Navarro, A. Garcia-Navarro, V. Diez-Blanco, O. Sanz, J. Solis, F. Vega, and J. Armengol, “Waveguide structures in heavy metal oxide glass written with femtosecond laser pulses above the critical self-focusing threshold,” Appl. Phys. Lett. 86, 121109 (2005).
[CrossRef]

S. M. Eaton, H. B. Zhang, and P. R. Herman, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13, 4708-4716 (2005).
[CrossRef] [PubMed]

D. K. Y. Low, H. Xie, Z. Xiong, and G. C. Lim, “Femtosecond laser direct writing of embedded optical waveguides in aluminosilicate glass,” Appl. Phys. A 81, 1633-1638 (2005).
[CrossRef]

D.-P. Wei, T. Galstian, I. Smolnikov, V. Plotnichenko, and A. Zohrabyan, “Spectral broadening of femtosecond pulses in a single-mode As-S glass fiber,” Opt. Express 13, 2439-2443 (2005).
[CrossRef] [PubMed]

2004 (3)

J. Qiu, “Femtosecond laser induced microstructures in glass and application in micro-optics,” Chem. Rec. 4, 50-58 (2004).
[CrossRef] [PubMed]

L. Shah, J. Tawney, M. Richardson, and K. Richardson, “Self-focusing during femtosecond micromachining of silicate glasses,” IEEE J. Quantum Electron. 40, 57-68 (2004).
[CrossRef]

A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Ho, and R. Vallee, “Direct femtosecond laser writing of waveguides in As2S3 thin films,” Opt. Lett. 29, 748-750 (2004).
[CrossRef] [PubMed]

2003 (6)

V. K. Tikhomirov, A. B. Seddon, K. Asatryan, T. V. Galstian, and R. Vallee, “The role of van der Waals bonding in photosensitivity of chalcogenide glasses,” J. Non-Cryst. Solids 326, 205-208 (2003).
[CrossRef]

P. Hari, S. Guzel, T. Su, P. C. Taylor, P. L. Kuhns, W. G. Moulton, and N. S. Sullivan, “Photodarkening effect in glassy As2S3 and As2O3,”J. Non-Cryst. Solids 326, 199-204 (2003).
[CrossRef]

J. Requejo-Isidro, A. K. Mairaj, V. Pruneri, D. W. Hewak, M. C. Netti, and J. J. Baumberg, “Self refractive non-linearities in chalcogenide based glasses,” J. Non-Cryst. Solids 317, 241-246 (2003).
[CrossRef]

J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett. 82, 2371-2373 (2003).
[CrossRef]

P. E. Dyer, S. M. Maswadi, C. D. Walton, M. Ersoz, P. D. I. Fletcher, and V. N. Paunov, “157-nm laser micromachining of N-BK7 glass and replication for microcontact printing,” Appl. Phys. A 77, 391-394 (2003).
[CrossRef]

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys. A 76, 367-372 (2003).
[CrossRef]

2002 (4)

2001 (2)

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379-386 (2001).
[CrossRef]

C. Quémarda, F. Smektala, V. Coudercb, A. Barthélémyb, and J. Lucasa, “Chalcogenide glasses with high non linear optical properties for telecommunications,” J. Phys. Chem. Solids 62, 1435-1440 (2001).
[CrossRef]

2000 (2)

1999 (3)

1998 (3)

D. Ashkenasi, H. Varel, A. Rosenfeld, S. Henz, J. Herrmann, and E. E. B. Cambell, “Application of self-focusing of ps laser pulses for three-dimensional microstructuring of transparent materials,” Appl. Phys. Lett. 72, 1442-1444 (1998).
[CrossRef]

K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Cryst. Solids 239, 91-95 (1998).
[CrossRef]

M. V. Bazylenko, D. Moss, and J. Canning, “Complex photosensitivity observed in germanosilica planar waveguides,” Opt. Lett. 23, 697-699 (1998).
[CrossRef]

1997 (1)

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882-884 (1997).
[CrossRef]

1996 (1)

1995 (3)

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248-2257(1995).
[CrossRef] [PubMed]

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114, 106-110 (1995).
[CrossRef]

K. Uchiyama, T. Morioka, and M. Saruwatari, “Polarization-independent wavelength conversion using nonlinear optical loop mirror,” Electron. Lett. 31, 1862-1863 (1995).
[CrossRef]

1991 (2)

B. P. Nelson, K. J. Blow, P. D. Constantine, N. J. Doran, J. K. Lucek, I. W. Marshall, and K. Smith, “All-optical Gbit/s switching using nonlinear optical loop mirror,” Electron. Lett. 27, 704-705 (1991).
[CrossRef]

G. Pfeiffer, M. A. Paesler, and S. C. Agarwal, “Reversible photodarkening of amorphous arsenic chalcogens,” J. Non-Cryst. Solids 130, 111-143 (1991).
[CrossRef]

1989 (1)

G. Pfeiffer, C. J. Brabec, S. R. Jefferys, and M. A. Paesler, “Structural models of glassy As2s3--intermediate-range order and photostructural changes,” Phys. Rev. B 39, 12861-12871 (1989).
[CrossRef]

1986 (1)

S. R. Elliott, “A unified model for reversible photostructural effects in chalcogenide glasses,” J. Non-Cryst. Solids 81, 71-98 (1986).
[CrossRef]

1985 (1)

K.-I. Kitayama, Y. Kimura, K. Okamoto, and S. Seikai, “Optical sampling using an all-fiber optical Kerr shutter,” Appl. Phys. Lett. 46, 623-625 (1985).
[CrossRef]

1978 (1)

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17, 1448-1453 (1978).
[CrossRef]

1975 (1)

K. Tanaka, “Reversible photoinduced change in intermolecular distance in amorphous As2S3 network,” Appl. Phys. Lett. 26, 243-245 (1975).
[CrossRef]

1970 (1)

R. Cubeddu, R. Polloni, C. A. Sacchi, and O. Svelto, “Self-phase modulation and “rocking” of molecules in trapped filaments of light with picosecond pulses,” Phys. Rev. A 2, 1955-1963 (1970).
[CrossRef]

Adams, S.

Agarwal, S. C.

G. Pfeiffer, M. A. Paesler, and S. C. Agarwal, “Reversible photodarkening of amorphous arsenic chalcogens,” J. Non-Cryst. Solids 130, 111-143 (1991).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

Armengol, J.

J. Siegel, J. M. Fernandez-Navarro, A. Garcia-Navarro, V. Diez-Blanco, O. Sanz, J. Solis, F. Vega, and J. Armengol, “Waveguide structures in heavy metal oxide glass written with femtosecond laser pulses above the critical self-focusing threshold,” Appl. Phys. Lett. 86, 121109 (2005).
[CrossRef]

Asatryan, K.

V. K. Tikhomirov, A. B. Seddon, K. Asatryan, T. V. Galstian, and R. Vallee, “The role of van der Waals bonding in photosensitivity of chalcogenide glasses,” J. Non-Cryst. Solids 326, 205-208 (2003).
[CrossRef]

Ashkenasi, D.

D. Ashkenasi, H. Varel, A. Rosenfeld, S. Henz, J. Herrmann, and E. E. B. Cambell, “Application of self-focusing of ps laser pulses for three-dimensional microstructuring of transparent materials,” Appl. Phys. Lett. 72, 1442-1444 (1998).
[CrossRef]

Barthélémyb, A.

C. Quémarda, F. Smektala, V. Coudercb, A. Barthélémyb, and J. Lucasa, “Chalcogenide glasses with high non linear optical properties for telecommunications,” J. Phys. Chem. Solids 62, 1435-1440 (2001).
[CrossRef]

Baumberg, J. J.

J. Requejo-Isidro, A. K. Mairaj, V. Pruneri, D. W. Hewak, M. C. Netti, and J. J. Baumberg, “Self refractive non-linearities in chalcogenide based glasses,” J. Non-Cryst. Solids 317, 241-246 (2003).
[CrossRef]

E. Bricchi, J. D. Mills, P. G. Kazansky, B. G. Klappauf, and J. J. Baumberg, “Birefringent Fresnel zone plates in silica fabricated by femtosecond laser machining,” Opt. Lett. 27, 2200-2202 (2002).
[CrossRef]

Bazylenko, M. V.

Blow, K. J.

B. P. Nelson, K. J. Blow, P. D. Constantine, N. J. Doran, J. K. Lucek, I. W. Marshall, and K. Smith, “All-optical Gbit/s switching using nonlinear optical loop mirror,” Electron. Lett. 27, 704-705 (1991).
[CrossRef]

Bookey, H. T.

Borrelli, N. F.

Brabec, C. J.

G. Pfeiffer, C. J. Brabec, S. R. Jefferys, and M. A. Paesler, “Structural models of glassy As2s3--intermediate-range order and photostructural changes,” Phys. Rev. B 39, 12861-12871 (1989).
[CrossRef]

Brady, D. J.

Y. D. West, T. Schweizer, D. J. Brady, and D. W. Hewak, “Gallium lanthanum sulphide fibers for infrared transmission,” Fiber Integr. Opt. 19, 229-250 (2000).
[CrossRef]

Bricchi, E.

Bruneel, J. L.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379-386 (2001).
[CrossRef]

Callan, J. P.

Cambell, E. E. B.

D. Ashkenasi, H. Varel, A. Rosenfeld, S. Henz, J. Herrmann, and E. E. B. Cambell, “Application of self-focusing of ps laser pulses for three-dimensional microstructuring of transparent materials,” Appl. Phys. Lett. 72, 1442-1444 (1998).
[CrossRef]

Canning, J.

Cardinal, T.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379-386 (2001).
[CrossRef]

Cerullo, G.

N. D. Psaila, R. R. Thomson, H. T. Bookey, S. Shen, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and A. K. Kar, “Supercontinuum generation in an ultrafast laser inscribed chalcogenide glass waveguide,” Opt. Express 15, 15776-15781 (2007).
[CrossRef] [PubMed]

R. Osellame, S. Taccheo, G. Cerullo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. De Silvestri, “Optical gain in Er-Yb doped waveguides fabricated by femtosecond laser pulses,” Electron. Lett. 38, 964-965 (2002).
[CrossRef]

Chan, J. W.

J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett. 82, 2371-2373 (2003).
[CrossRef]

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys. A 76, 367-372 (2003).
[CrossRef]

Cheong, S. W.

S. Spalter, G. Lenz, R. E. Slusher, H. Y. Hwang, J. Zimmermann, T. Ktsufuji, S. W. Cheong, and M. E. Lines, “Highly nonlinear chalcogenide glasses for ultrafast all optical switching in optical TDM communication systems,” in Optical Fiber Communication Conference 2000 (Optical Society of America, 2000), p. 137.

Cheong, S.-W.

Chichkov, B.

Chichkov, B. N.

Chiodo, N.

Constantine, P. D.

B. P. Nelson, K. J. Blow, P. D. Constantine, N. J. Doran, J. K. Lucek, I. W. Marshall, and K. Smith, “All-optical Gbit/s switching using nonlinear optical loop mirror,” Electron. Lett. 27, 704-705 (1991).
[CrossRef]

Coudercb, V.

C. Quémarda, F. Smektala, V. Coudercb, A. Barthélémyb, and J. Lucasa, “Chalcogenide glasses with high non linear optical properties for telecommunications,” J. Phys. Chem. Solids 62, 1435-1440 (2001).
[CrossRef]

Couzi, M.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379-386 (2001).
[CrossRef]

Cubeddu, R.

R. Cubeddu, R. Polloni, C. A. Sacchi, and O. Svelto, “Self-phase modulation and “rocking” of molecules in trapped filaments of light with picosecond pulses,” Phys. Rev. A 2, 1955-1963 (1970).
[CrossRef]

Curry, R.

M. Hughes, H. Rutt, D. Hewak, and R. Curry, “Spectroscopy of vanadium (III) doped gallium lanthanum sulphide glass,” Appl. Phys. Lett. 90, 031108 (2007).
[CrossRef]

De Silvestri, S.

R. Osellame, S. Taccheo, G. Cerullo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. De Silvestri, “Optical gain in Er-Yb doped waveguides fabricated by femtosecond laser pulses,” Electron. Lett. 38, 964-965 (2002).
[CrossRef]

Diez-Blanco, V.

J. Siegel, J. M. Fernandez-Navarro, A. Garcia-Navarro, V. Diez-Blanco, O. Sanz, J. Solis, F. Vega, and J. Armengol, “Waveguide structures in heavy metal oxide glass written with femtosecond laser pulses above the critical self-focusing threshold,” Appl. Phys. Lett. 86, 121109 (2005).
[CrossRef]

Doran, N. J.

B. P. Nelson, K. J. Blow, P. D. Constantine, N. J. Doran, J. K. Lucek, I. W. Marshall, and K. Smith, “All-optical Gbit/s switching using nonlinear optical loop mirror,” Electron. Lett. 27, 704-705 (1991).
[CrossRef]

Du, D.

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114, 106-110 (1995).
[CrossRef]

Dutta, S. K.

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114, 106-110 (1995).
[CrossRef]

Dyer, P. E.

P. E. Dyer, S. M. Maswadi, C. D. Walton, M. Ersoz, P. D. I. Fletcher, and V. N. Paunov, “157-nm laser micromachining of N-BK7 glass and replication for microcontact printing,” Appl. Phys. A 77, 391-394 (2003).
[CrossRef]

Eaton, S. M.

Efimov, O. M.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379-386 (2001).
[CrossRef]

Egbert, A.

Elliott, S. R.

S. R. Elliott, “A unified model for reversible photostructural effects in chalcogenide glasses,” J. Non-Cryst. Solids 81, 71-98 (1986).
[CrossRef]

Ersoz, M.

P. E. Dyer, S. M. Maswadi, C. D. Walton, M. Ersoz, P. D. I. Fletcher, and V. N. Paunov, “157-nm laser micromachining of N-BK7 glass and replication for microcontact printing,” Appl. Phys. A 77, 391-394 (2003).
[CrossRef]

Ewen, P. J. S.

K. Petkov and P. J. S. Ewen, “Photoinduced changes in the linear and non-linear optical properties of chalcogenide glasses,” J. Non-Cryst. Solids 249, 150-159 (1999).
[CrossRef]

Fallnich, C.

Feit, M. D.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248-2257(1995).
[CrossRef] [PubMed]

Fernandez-Navarro, J. M.

J. Siegel, J. M. Fernandez-Navarro, A. Garcia-Navarro, V. Diez-Blanco, O. Sanz, J. Solis, F. Vega, and J. Armengol, “Waveguide structures in heavy metal oxide glass written with femtosecond laser pulses above the critical self-focusing threshold,” Appl. Phys. Lett. 86, 121109 (2005).
[CrossRef]

Finlay, R. J.

Fletcher, P. D. I.

P. E. Dyer, S. M. Maswadi, C. D. Walton, M. Ersoz, P. D. I. Fletcher, and V. N. Paunov, “157-nm laser micromachining of N-BK7 glass and replication for microcontact printing,” Appl. Phys. A 77, 391-394 (2003).
[CrossRef]

Galstian, T.

Galstian, T. V.

V. K. Tikhomirov, A. B. Seddon, K. Asatryan, T. V. Galstian, and R. Vallee, “The role of van der Waals bonding in photosensitivity of chalcogenide glasses,” J. Non-Cryst. Solids 326, 205-208 (2003).
[CrossRef]

Gamaly, E. G.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, and B. Luther-Davies, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[CrossRef]

Gamaly, G.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[CrossRef] [PubMed]

Garcia-Navarro, A.

J. Siegel, J. M. Fernandez-Navarro, A. Garcia-Navarro, V. Diez-Blanco, O. Sanz, J. Solis, F. Vega, and J. Armengol, “Waveguide structures in heavy metal oxide glass written with femtosecond laser pulses above the critical self-focusing threshold,” Appl. Phys. Lett. 86, 121109 (2005).
[CrossRef]

Glebov, L. B.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379-386 (2001).
[CrossRef]

Glezer, E. N.

Guzel, S.

P. Hari, S. Guzel, T. Su, P. C. Taylor, P. L. Kuhns, W. G. Moulton, and N. S. Sullivan, “Photodarkening effect in glassy As2S3 and As2O3,”J. Non-Cryst. Solids 326, 199-204 (2003).
[CrossRef]

Hallo, L.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[CrossRef] [PubMed]

Hari, P.

P. Hari, S. Guzel, T. Su, P. C. Taylor, P. L. Kuhns, W. G. Moulton, and N. S. Sullivan, “Photodarkening effect in glassy As2S3 and As2O3,”J. Non-Cryst. Solids 326, 199-204 (2003).
[CrossRef]

Hayden, J. S.

J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett. 82, 2371-2373 (2003).
[CrossRef]

Henz, S.

D. Ashkenasi, H. Varel, A. Rosenfeld, S. Henz, J. Herrmann, and E. E. B. Cambell, “Application of self-focusing of ps laser pulses for three-dimensional microstructuring of transparent materials,” Appl. Phys. Lett. 72, 1442-1444 (1998).
[CrossRef]

Her, T.-H.

Herman, P. R.

Herrmann, J.

D. Ashkenasi, H. Varel, A. Rosenfeld, S. Henz, J. Herrmann, and E. E. B. Cambell, “Application of self-focusing of ps laser pulses for three-dimensional microstructuring of transparent materials,” Appl. Phys. Lett. 72, 1442-1444 (1998).
[CrossRef]

Hewak, D.

M. Hughes, H. Rutt, D. Hewak, and R. Curry, “Spectroscopy of vanadium (III) doped gallium lanthanum sulphide glass,” Appl. Phys. Lett. 90, 031108 (2007).
[CrossRef]

M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass,” Appl. Phys. Lett. 90, 131113 (2007).
[CrossRef]

Hewak, D. W.

J. Requejo-Isidro, A. K. Mairaj, V. Pruneri, D. W. Hewak, M. C. Netti, and J. J. Baumberg, “Self refractive non-linearities in chalcogenide based glasses,” J. Non-Cryst. Solids 317, 241-246 (2003).
[CrossRef]

Y. D. West, T. Schweizer, D. J. Brady, and D. W. Hewak, “Gallium lanthanum sulphide fibers for infrared transmission,” Fiber Integr. Opt. 19, 229-250 (2000).
[CrossRef]

Hirao, K.

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett. 93, 231112 (2008).
[CrossRef]

J. Qiu, K. Kojima, K. Miura, T. Mitsuyu, and K. Hirao, “Infrared femtosecond laser pulse induced permanent reduction of Eu3+ to Eu2+ in a fluorozirconate glass,” Opt. Lett. 24, 786-788 (1999).
[CrossRef]

K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Cryst. Solids 239, 91-95 (1998).
[CrossRef]

Ho, N.

Huang, L.

Hughes, M.

M. Hughes, H. Rutt, D. Hewak, and R. Curry, “Spectroscopy of vanadium (III) doped gallium lanthanum sulphide glass,” Appl. Phys. Lett. 90, 031108 (2007).
[CrossRef]

M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass,” Appl. Phys. Lett. 90, 131113 (2007).
[CrossRef]

Huser, T. R.

J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett. 82, 2371-2373 (2003).
[CrossRef]

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys. A 76, 367-372 (2003).
[CrossRef]

Hwang, H. Y.

S. Spälter, H. Y. Hwang, J. Zimmermann, G. Lenz, T. Katsufuji, S.-W. Cheong, and R. E. Slusher, “Strong self-phase modulation in planar chalcogenide glass waveguides,” Opt. Lett. 27, 363-365 (2002).
[CrossRef]

S. Spalter, G. Lenz, R. E. Slusher, H. Y. Hwang, J. Zimmermann, T. Ktsufuji, S. W. Cheong, and M. E. Lines, “Highly nonlinear chalcogenide glasses for ultrafast all optical switching in optical TDM communication systems,” in Optical Fiber Communication Conference 2000 (Optical Society of America, 2000), p. 137.

Jefferys, S. R.

G. Pfeiffer, C. J. Brabec, S. R. Jefferys, and M. A. Paesler, “Structural models of glassy As2s3--intermediate-range order and photostructural changes,” Phys. Rev. B 39, 12861-12871 (1989).
[CrossRef]

Jha, A.

Juodkazis, S.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, and B. Luther-Davies, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[CrossRef]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[CrossRef] [PubMed]

Kar, A. K.

Katsufuji, T.

Kazansky, P. G.

Kim, J. K.

J. K. Kim, “Investigation of high-nonlinearity glass fibers for potential applications in ultrafast nonlinear fiber devices,” Ph.D. dissertation (Virginia State University, 2005).

Kimura, Y.

K.-I. Kitayama, Y. Kimura, K. Okamoto, and S. Seikai, “Optical sampling using an all-fiber optical Kerr shutter,” Appl. Phys. Lett. 46, 623-625 (1985).
[CrossRef]

Kitayama, K.-I.

K.-I. Kitayama, Y. Kimura, K. Okamoto, and S. Seikai, “Optical sampling using an all-fiber optical Kerr shutter,” Appl. Phys. Lett. 46, 623-625 (1985).
[CrossRef]

Klappauf, B. G.

Kojima, K.

Korte, F.

Krol, D. M.

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys. A 76, 367-372 (2003).
[CrossRef]

J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett. 82, 2371-2373 (2003).
[CrossRef]

Ktsufuji, T.

S. Spalter, G. Lenz, R. E. Slusher, H. Y. Hwang, J. Zimmermann, T. Ktsufuji, S. W. Cheong, and M. E. Lines, “Highly nonlinear chalcogenide glasses for ultrafast all optical switching in optical TDM communication systems,” in Optical Fiber Communication Conference 2000 (Optical Society of America, 2000), p. 137.

Kuhns, P. L.

P. Hari, S. Guzel, T. Su, P. C. Taylor, P. L. Kuhns, W. G. Moulton, and N. S. Sullivan, “Photodarkening effect in glassy As2S3 and As2O3,”J. Non-Cryst. Solids 326, 199-204 (2003).
[CrossRef]

Laporta, P.

R. Osellame, S. Taccheo, G. Cerullo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. De Silvestri, “Optical gain in Er-Yb doped waveguides fabricated by femtosecond laser pulses,” Electron. Lett. 38, 964-965 (2002).
[CrossRef]

Lenz, G.

S. Spälter, H. Y. Hwang, J. Zimmermann, G. Lenz, T. Katsufuji, S.-W. Cheong, and R. E. Slusher, “Strong self-phase modulation in planar chalcogenide glass waveguides,” Opt. Lett. 27, 363-365 (2002).
[CrossRef]

S. Spalter, G. Lenz, R. E. Slusher, H. Y. Hwang, J. Zimmermann, T. Ktsufuji, S. W. Cheong, and M. E. Lines, “Highly nonlinear chalcogenide glasses for ultrafast all optical switching in optical TDM communication systems,” in Optical Fiber Communication Conference 2000 (Optical Society of America, 2000), p. 137.

Lieberman, K.

Lim, G. C.

D. K. Y. Low, H. Xie, Z. Xiong, and G. C. Lim, “Femtosecond laser direct writing of embedded optical waveguides in aluminosilicate glass,” Appl. Phys. A 81, 1633-1638 (2005).
[CrossRef]

Lin, C.

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17, 1448-1453 (1978).
[CrossRef]

Lines, M. E.

S. Spalter, G. Lenz, R. E. Slusher, H. Y. Hwang, J. Zimmermann, T. Ktsufuji, S. W. Cheong, and M. E. Lines, “Highly nonlinear chalcogenide glasses for ultrafast all optical switching in optical TDM communication systems,” in Optical Fiber Communication Conference 2000 (Optical Society of America, 2000), p. 137.

Lopez, C.

Low, D. K. Y.

D. K. Y. Low, H. Xie, Z. Xiong, and G. C. Lim, “Femtosecond laser direct writing of embedded optical waveguides in aluminosilicate glass,” Appl. Phys. A 81, 1633-1638 (2005).
[CrossRef]

Lucasa, J.

C. Quémarda, F. Smektala, V. Coudercb, A. Barthélémyb, and J. Lucasa, “Chalcogenide glasses with high non linear optical properties for telecommunications,” J. Phys. Chem. Solids 62, 1435-1440 (2001).
[CrossRef]

Lucek, J. K.

B. P. Nelson, K. J. Blow, P. D. Constantine, N. J. Doran, J. K. Lucek, I. W. Marshall, and K. Smith, “All-optical Gbit/s switching using nonlinear optical loop mirror,” Electron. Lett. 27, 704-705 (1991).
[CrossRef]

Luther-Davies, B.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[CrossRef] [PubMed]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, and B. Luther-Davies, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[CrossRef]

Mairaj, A. K.

J. Requejo-Isidro, A. K. Mairaj, V. Pruneri, D. W. Hewak, M. C. Netti, and J. J. Baumberg, “Self refractive non-linearities in chalcogenide based glasses,” J. Non-Cryst. Solids 317, 241-246 (2003).
[CrossRef]

Mamyshev, P. V.

P. V. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” in 24th European Conference on Optical Communication, (IEEE, 1998), p. 475.

Marangoni, M.

R. Osellame, S. Taccheo, G. Cerullo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. De Silvestri, “Optical gain in Er-Yb doped waveguides fabricated by femtosecond laser pulses,” Electron. Lett. 38, 964-965 (2002).
[CrossRef]

Marshall, I. W.

B. P. Nelson, K. J. Blow, P. D. Constantine, N. J. Doran, J. K. Lucek, I. W. Marshall, and K. Smith, “All-optical Gbit/s switching using nonlinear optical loop mirror,” Electron. Lett. 27, 704-705 (1991).
[CrossRef]

Maswadi, S. M.

P. E. Dyer, S. M. Maswadi, C. D. Walton, M. Ersoz, P. D. I. Fletcher, and V. N. Paunov, “157-nm laser micromachining of N-BK7 glass and replication for microcontact printing,” Appl. Phys. A 77, 391-394 (2003).
[CrossRef]

Mazur, E.

Mills, J. D.

Milosavljevic, M.

Misawa, H.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[CrossRef] [PubMed]

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, and B. Luther-Davies, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[CrossRef]

Mitsuyu, T.

Miura, K.

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett. 93, 231112 (2008).
[CrossRef]

J. Qiu, K. Kojima, K. Miura, T. Mitsuyu, and K. Hirao, “Infrared femtosecond laser pulse induced permanent reduction of Eu3+ to Eu2+ in a fluorozirconate glass,” Opt. Lett. 24, 786-788 (1999).
[CrossRef]

K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Cryst. Solids 239, 91-95 (1998).
[CrossRef]

Morioka, T.

K. Uchiyama, T. Morioka, and M. Saruwatari, “Polarization-independent wavelength conversion using nonlinear optical loop mirror,” Electron. Lett. 31, 1862-1863 (1995).
[CrossRef]

Moss, D.

Moulton, W. G.

P. Hari, S. Guzel, T. Su, P. C. Taylor, P. L. Kuhns, W. G. Moulton, and N. S. Sullivan, “Photodarkening effect in glassy As2S3 and As2O3,”J. Non-Cryst. Solids 326, 199-204 (2003).
[CrossRef]

Mourou, G.

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114, 106-110 (1995).
[CrossRef]

Nelson, B. P.

B. P. Nelson, K. J. Blow, P. D. Constantine, N. J. Doran, J. K. Lucek, I. W. Marshall, and K. Smith, “All-optical Gbit/s switching using nonlinear optical loop mirror,” Electron. Lett. 27, 704-705 (1991).
[CrossRef]

Netti, M. C.

J. Requejo-Isidro, A. K. Mairaj, V. Pruneri, D. W. Hewak, M. C. Netti, and J. J. Baumberg, “Self refractive non-linearities in chalcogenide based glasses,” J. Non-Cryst. Solids 317, 241-246 (2003).
[CrossRef]

Nicolai, P.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[CrossRef] [PubMed]

Nishimura, K.

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, and B. Luther-Davies, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[CrossRef]

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[CrossRef] [PubMed]

Nolte, S.

Okamoto, K.

K.-I. Kitayama, Y. Kimura, K. Okamoto, and S. Seikai, “Optical sampling using an all-fiber optical Kerr shutter,” Appl. Phys. Lett. 46, 623-625 (1985).
[CrossRef]

Osellame, R.

N. D. Psaila, R. R. Thomson, H. T. Bookey, S. Shen, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and A. K. Kar, “Supercontinuum generation in an ultrafast laser inscribed chalcogenide glass waveguide,” Opt. Express 15, 15776-15781 (2007).
[CrossRef] [PubMed]

R. Osellame, S. Taccheo, G. Cerullo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. De Silvestri, “Optical gain in Er-Yb doped waveguides fabricated by femtosecond laser pulses,” Electron. Lett. 38, 964-965 (2002).
[CrossRef]

Ostendorf, A.

Paesler, M. A.

G. Pfeiffer, M. A. Paesler, and S. C. Agarwal, “Reversible photodarkening of amorphous arsenic chalcogens,” J. Non-Cryst. Solids 130, 111-143 (1991).
[CrossRef]

G. Pfeiffer, C. J. Brabec, S. R. Jefferys, and M. A. Paesler, “Structural models of glassy As2s3--intermediate-range order and photostructural changes,” Phys. Rev. B 39, 12861-12871 (1989).
[CrossRef]

Pappas, C.

C. Pappas and S. Pissadakis, “Periodic nanostructuring of Er/Yb-codoped IOG1 phosphate glass by using ultraviolet laser-assisted selective chemical etching,” J. Appl. Phys. 100, 114308 (2006).
[CrossRef]

Park, S. H.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379-386 (2001).
[CrossRef]

Paunov, V. N.

P. E. Dyer, S. M. Maswadi, C. D. Walton, M. Ersoz, P. D. I. Fletcher, and V. N. Paunov, “157-nm laser micromachining of N-BK7 glass and replication for microcontact printing,” Appl. Phys. A 77, 391-394 (2003).
[CrossRef]

Perry, M. D.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248-2257(1995).
[CrossRef] [PubMed]

Petkov, K.

K. Petkov and P. J. S. Ewen, “Photoinduced changes in the linear and non-linear optical properties of chalcogenide glasses,” J. Non-Cryst. Solids 249, 150-159 (1999).
[CrossRef]

Pfeiffer, G.

G. Pfeiffer, M. A. Paesler, and S. C. Agarwal, “Reversible photodarkening of amorphous arsenic chalcogens,” J. Non-Cryst. Solids 130, 111-143 (1991).
[CrossRef]

G. Pfeiffer, C. J. Brabec, S. R. Jefferys, and M. A. Paesler, “Structural models of glassy As2s3--intermediate-range order and photostructural changes,” Phys. Rev. B 39, 12861-12871 (1989).
[CrossRef]

Pissadakis, S.

C. Pappas and S. Pissadakis, “Periodic nanostructuring of Er/Yb-codoped IOG1 phosphate glass by using ultraviolet laser-assisted selective chemical etching,” J. Appl. Phys. 100, 114308 (2006).
[CrossRef]

Plotnichenko, V.

Polli, D.

R. Osellame, S. Taccheo, G. Cerullo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. De Silvestri, “Optical gain in Er-Yb doped waveguides fabricated by femtosecond laser pulses,” Electron. Lett. 38, 964-965 (2002).
[CrossRef]

Polloni, R.

R. Cubeddu, R. Polloni, C. A. Sacchi, and O. Svelto, “Self-phase modulation and “rocking” of molecules in trapped filaments of light with picosecond pulses,” Phys. Rev. A 2, 1955-1963 (1970).
[CrossRef]

Pronko, P. P.

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114, 106-110 (1995).
[CrossRef]

Pruneri, V.

J. Requejo-Isidro, A. K. Mairaj, V. Pruneri, D. W. Hewak, M. C. Netti, and J. J. Baumberg, “Self refractive non-linearities in chalcogenide based glasses,” J. Non-Cryst. Solids 317, 241-246 (2003).
[CrossRef]

Psaila, N. D.

Qiu, J.

Quémarda, C.

C. Quémarda, F. Smektala, V. Coudercb, A. Barthélémyb, and J. Lucasa, “Chalcogenide glasses with high non linear optical properties for telecommunications,” J. Phys. Chem. Solids 62, 1435-1440 (2001).
[CrossRef]

Ramponi, R.

R. Osellame, S. Taccheo, G. Cerullo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. De Silvestri, “Optical gain in Er-Yb doped waveguides fabricated by femtosecond laser pulses,” Electron. Lett. 38, 964-965 (2002).
[CrossRef]

Requejo-Isidro, J.

J. Requejo-Isidro, A. K. Mairaj, V. Pruneri, D. W. Hewak, M. C. Netti, and J. J. Baumberg, “Self refractive non-linearities in chalcogenide based glasses,” J. Non-Cryst. Solids 317, 241-246 (2003).
[CrossRef]

Richardson, K.

L. Shah, J. Tawney, M. Richardson, and K. Richardson, “Self-focusing during femtosecond micromachining of silicate glasses,” IEEE J. Quantum Electron. 40, 57-68 (2004).
[CrossRef]

A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Ho, and R. Vallee, “Direct femtosecond laser writing of waveguides in As2S3 thin films,” Opt. Lett. 29, 748-750 (2004).
[CrossRef] [PubMed]

Richardson, K. A.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379-386 (2001).
[CrossRef]

Richardson, M.

L. Shah, J. Tawney, M. Richardson, and K. Richardson, “Self-focusing during femtosecond micromachining of silicate glasses,” IEEE J. Quantum Electron. 40, 57-68 (2004).
[CrossRef]

A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Ho, and R. Vallee, “Direct femtosecond laser writing of waveguides in As2S3 thin films,” Opt. Lett. 29, 748-750 (2004).
[CrossRef] [PubMed]

Risbud, S. H.

J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett. 82, 2371-2373 (2003).
[CrossRef]

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys. A 76, 367-372 (2003).
[CrossRef]

Rivero, C.

Rosenfeld, A.

D. Ashkenasi, H. Varel, A. Rosenfeld, S. Henz, J. Herrmann, and E. E. B. Cambell, “Application of self-focusing of ps laser pulses for three-dimensional microstructuring of transparent materials,” Appl. Phys. Lett. 72, 1442-1444 (1998).
[CrossRef]

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248-2257(1995).
[CrossRef] [PubMed]

Rudd, J. V.

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114, 106-110 (1995).
[CrossRef]

Ruske, J.-P.

Rutt, H.

M. Hughes, H. Rutt, D. Hewak, and R. Curry, “Spectroscopy of vanadium (III) doped gallium lanthanum sulphide glass,” Appl. Phys. Lett. 90, 031108 (2007).
[CrossRef]

Sacchi, C. A.

R. Cubeddu, R. Polloni, C. A. Sacchi, and O. Svelto, “Self-phase modulation and “rocking” of molecules in trapped filaments of light with picosecond pulses,” Phys. Rev. A 2, 1955-1963 (1970).
[CrossRef]

Sakakura, M.

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett. 93, 231112 (2008).
[CrossRef]

M. Sakakura and M. Terazima, “Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass,” Phys. Rev. B 71, 024113 (2005).
[CrossRef]

Sanz, O.

J. Siegel, J. M. Fernandez-Navarro, A. Garcia-Navarro, V. Diez-Blanco, O. Sanz, J. Solis, F. Vega, and J. Armengol, “Waveguide structures in heavy metal oxide glass written with femtosecond laser pulses above the critical self-focusing threshold,” Appl. Phys. Lett. 86, 121109 (2005).
[CrossRef]

Saruwatari, M.

K. Uchiyama, T. Morioka, and M. Saruwatari, “Polarization-independent wavelength conversion using nonlinear optical loop mirror,” Electron. Lett. 31, 1862-1863 (1995).
[CrossRef]

Schulte, A.

Schweizer, T.

Y. D. West, T. Schweizer, D. J. Brady, and D. W. Hewak, “Gallium lanthanum sulphide fibers for infrared transmission,” Fiber Integr. Opt. 19, 229-250 (2000).
[CrossRef]

Seddon, A. B.

V. K. Tikhomirov, A. B. Seddon, K. Asatryan, T. V. Galstian, and R. Vallee, “The role of van der Waals bonding in photosensitivity of chalcogenide glasses,” J. Non-Cryst. Solids 326, 205-208 (2003).
[CrossRef]

Seikai, S.

K.-I. Kitayama, Y. Kimura, K. Okamoto, and S. Seikai, “Optical sampling using an all-fiber optical Kerr shutter,” Appl. Phys. Lett. 46, 623-625 (1985).
[CrossRef]

Senior, J. M.

J. M. Senior, Optical Fiber Communications: Principles and Practice (Prentice Hall, 1992).

Shah, L.

L. Shah, J. Tawney, M. Richardson, and K. Richardson, “Self-focusing during femtosecond micromachining of silicate glasses,” IEEE J. Quantum Electron. 40, 57-68 (2004).
[CrossRef]

Shani, Y.

Shen, S.

Shimizu, M.

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett. 93, 231112 (2008).
[CrossRef]

Shimotsuma, Y.

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett. 93, 231112 (2008).
[CrossRef]

Shore, B. W.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248-2257(1995).
[CrossRef] [PubMed]

Siegel, J.

J. Siegel, J. M. Fernandez-Navarro, A. Garcia-Navarro, V. Diez-Blanco, O. Sanz, J. Solis, F. Vega, and J. Armengol, “Waveguide structures in heavy metal oxide glass written with femtosecond laser pulses above the critical self-focusing threshold,” Appl. Phys. Lett. 86, 121109 (2005).
[CrossRef]

Slusher, R. E.

S. Spälter, H. Y. Hwang, J. Zimmermann, G. Lenz, T. Katsufuji, S.-W. Cheong, and R. E. Slusher, “Strong self-phase modulation in planar chalcogenide glass waveguides,” Opt. Lett. 27, 363-365 (2002).
[CrossRef]

S. Spalter, G. Lenz, R. E. Slusher, H. Y. Hwang, J. Zimmermann, T. Ktsufuji, S. W. Cheong, and M. E. Lines, “Highly nonlinear chalcogenide glasses for ultrafast all optical switching in optical TDM communication systems,” in Optical Fiber Communication Conference 2000 (Optical Society of America, 2000), p. 137.

Smektala, F.

C. Quémarda, F. Smektala, V. Coudercb, A. Barthélémyb, and J. Lucasa, “Chalcogenide glasses with high non linear optical properties for telecommunications,” J. Phys. Chem. Solids 62, 1435-1440 (2001).
[CrossRef]

Smith, K.

B. P. Nelson, K. J. Blow, P. D. Constantine, N. J. Doran, J. K. Lucek, I. W. Marshall, and K. Smith, “All-optical Gbit/s switching using nonlinear optical loop mirror,” Electron. Lett. 27, 704-705 (1991).
[CrossRef]

Smolnikov, I.

Solis, J.

J. Siegel, J. M. Fernandez-Navarro, A. Garcia-Navarro, V. Diez-Blanco, O. Sanz, J. Solis, F. Vega, and J. Armengol, “Waveguide structures in heavy metal oxide glass written with femtosecond laser pulses above the critical self-focusing threshold,” Appl. Phys. Lett. 86, 121109 (2005).
[CrossRef]

Spalter, S.

S. Spalter, G. Lenz, R. E. Slusher, H. Y. Hwang, J. Zimmermann, T. Ktsufuji, S. W. Cheong, and M. E. Lines, “Highly nonlinear chalcogenide glasses for ultrafast all optical switching in optical TDM communication systems,” in Optical Fiber Communication Conference 2000 (Optical Society of America, 2000), p. 137.

Spälter, S.

Squier, J.

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114, 106-110 (1995).
[CrossRef]

Stolen, R. H.

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17, 1448-1453 (1978).
[CrossRef]

Streltsov, A. M.

Stuart, B. C.

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248-2257(1995).
[CrossRef] [PubMed]

Su, T.

P. Hari, S. Guzel, T. Su, P. C. Taylor, P. L. Kuhns, W. G. Moulton, and N. S. Sullivan, “Photodarkening effect in glassy As2S3 and As2O3,”J. Non-Cryst. Solids 326, 199-204 (2003).
[CrossRef]

Sullivan, N. S.

P. Hari, S. Guzel, T. Su, P. C. Taylor, P. L. Kuhns, W. G. Moulton, and N. S. Sullivan, “Photodarkening effect in glassy As2S3 and As2O3,”J. Non-Cryst. Solids 326, 199-204 (2003).
[CrossRef]

Svelto, O.

R. Cubeddu, R. Polloni, C. A. Sacchi, and O. Svelto, “Self-phase modulation and “rocking” of molecules in trapped filaments of light with picosecond pulses,” Phys. Rev. A 2, 1955-1963 (1970).
[CrossRef]

Taccheo, S.

R. Osellame, S. Taccheo, G. Cerullo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. De Silvestri, “Optical gain in Er-Yb doped waveguides fabricated by femtosecond laser pulses,” Electron. Lett. 38, 964-965 (2002).
[CrossRef]

Tanaka, K.

K. Tanaka, “Reversible photoinduced change in intermolecular distance in amorphous As2S3 network,” Appl. Phys. Lett. 26, 243-245 (1975).
[CrossRef]

Tanaka, S.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[CrossRef] [PubMed]

Tawney, J.

L. Shah, J. Tawney, M. Richardson, and K. Richardson, “Self-focusing during femtosecond micromachining of silicate glasses,” IEEE J. Quantum Electron. 40, 57-68 (2004).
[CrossRef]

Taylor, P. C.

P. Hari, S. Guzel, T. Su, P. C. Taylor, P. L. Kuhns, W. G. Moulton, and N. S. Sullivan, “Photodarkening effect in glassy As2S3 and As2O3,”J. Non-Cryst. Solids 326, 199-204 (2003).
[CrossRef]

Terazima, M.

M. Sakakura and M. Terazima, “Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass,” Phys. Rev. B 71, 024113 (2005).
[CrossRef]

Terkel, H.

Thomson, R. R.

Tikhomirov, V. K.

V. K. Tikhomirov, A. B. Seddon, K. Asatryan, T. V. Galstian, and R. Vallee, “The role of van der Waals bonding in photosensitivity of chalcogenide glasses,” J. Non-Cryst. Solids 326, 205-208 (2003).
[CrossRef]

Tikhonchuk, V. T.

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[CrossRef] [PubMed]

Tuennermann, A.

Uchiyama, K.

K. Uchiyama, T. Morioka, and M. Saruwatari, “Polarization-independent wavelength conversion using nonlinear optical loop mirror,” Electron. Lett. 31, 1862-1863 (1995).
[CrossRef]

Vallee, R.

A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Ho, and R. Vallee, “Direct femtosecond laser writing of waveguides in As2S3 thin films,” Opt. Lett. 29, 748-750 (2004).
[CrossRef] [PubMed]

V. K. Tikhomirov, A. B. Seddon, K. Asatryan, T. V. Galstian, and R. Vallee, “The role of van der Waals bonding in photosensitivity of chalcogenide glasses,” J. Non-Cryst. Solids 326, 205-208 (2003).
[CrossRef]

Van Stryland, E.

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379-386 (2001).
[CrossRef]

Varel, H.

D. Ashkenasi, H. Varel, A. Rosenfeld, S. Henz, J. Herrmann, and E. E. B. Cambell, “Application of self-focusing of ps laser pulses for three-dimensional microstructuring of transparent materials,” Appl. Phys. Lett. 72, 1442-1444 (1998).
[CrossRef]

Vega, F.

J. Siegel, J. M. Fernandez-Navarro, A. Garcia-Navarro, V. Diez-Blanco, O. Sanz, J. Solis, F. Vega, and J. Armengol, “Waveguide structures in heavy metal oxide glass written with femtosecond laser pulses above the critical self-focusing threshold,” Appl. Phys. Lett. 86, 121109 (2005).
[CrossRef]

Walton, C. D.

P. E. Dyer, S. M. Maswadi, C. D. Walton, M. Ersoz, P. D. I. Fletcher, and V. N. Paunov, “157-nm laser micromachining of N-BK7 glass and replication for microcontact printing,” Appl. Phys. A 77, 391-394 (2003).
[CrossRef]

Wei, D.-P.

Welling, H.

West, Y. D.

Y. D. West, T. Schweizer, D. J. Brady, and D. W. Hewak, “Gallium lanthanum sulphide fibers for infrared transmission,” Fiber Integr. Opt. 19, 229-250 (2000).
[CrossRef]

Will, M.

Xie, H.

D. K. Y. Low, H. Xie, Z. Xiong, and G. C. Lim, “Femtosecond laser direct writing of embedded optical waveguides in aluminosilicate glass,” Appl. Phys. A 81, 1633-1638 (2005).
[CrossRef]

Xiong, Z.

D. K. Y. Low, H. Xie, Z. Xiong, and G. C. Lim, “Femtosecond laser direct writing of embedded optical waveguides in aluminosilicate glass,” Appl. Phys. A 81, 1633-1638 (2005).
[CrossRef]

Yang, W.

M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass,” Appl. Phys. Lett. 90, 131113 (2007).
[CrossRef]

Zhang, H. B.

Zimmermann, J.

S. Spälter, H. Y. Hwang, J. Zimmermann, G. Lenz, T. Katsufuji, S.-W. Cheong, and R. E. Slusher, “Strong self-phase modulation in planar chalcogenide glass waveguides,” Opt. Lett. 27, 363-365 (2002).
[CrossRef]

S. Spalter, G. Lenz, R. E. Slusher, H. Y. Hwang, J. Zimmermann, T. Ktsufuji, S. W. Cheong, and M. E. Lines, “Highly nonlinear chalcogenide glasses for ultrafast all optical switching in optical TDM communication systems,” in Optical Fiber Communication Conference 2000 (Optical Society of America, 2000), p. 137.

Zohrabyan, A.

Zoubir, A.

Appl. Phys. A (3)

D. K. Y. Low, H. Xie, Z. Xiong, and G. C. Lim, “Femtosecond laser direct writing of embedded optical waveguides in aluminosilicate glass,” Appl. Phys. A 81, 1633-1638 (2005).
[CrossRef]

P. E. Dyer, S. M. Maswadi, C. D. Walton, M. Ersoz, P. D. I. Fletcher, and V. N. Paunov, “157-nm laser micromachining of N-BK7 glass and replication for microcontact printing,” Appl. Phys. A 77, 391-394 (2003).
[CrossRef]

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys. A 76, 367-372 (2003).
[CrossRef]

Appl. Phys. Lett. (9)

E. N. Glezer and E. Mazur, “Ultrafast-laser driven micro-explosions in transparent materials,” Appl. Phys. Lett. 71, 882-884 (1997).
[CrossRef]

M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, and K. Hirao, “Temperature distribution and modification mechanism inside glass with heat accumulation during 250 kHz irradiation of femtosecond laser pulses,” Appl. Phys. Lett. 93, 231112 (2008).
[CrossRef]

K. Tanaka, “Reversible photoinduced change in intermolecular distance in amorphous As2S3 network,” Appl. Phys. Lett. 26, 243-245 (1975).
[CrossRef]

M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass,” Appl. Phys. Lett. 90, 131113 (2007).
[CrossRef]

M. Hughes, H. Rutt, D. Hewak, and R. Curry, “Spectroscopy of vanadium (III) doped gallium lanthanum sulphide glass,” Appl. Phys. Lett. 90, 031108 (2007).
[CrossRef]

D. Ashkenasi, H. Varel, A. Rosenfeld, S. Henz, J. Herrmann, and E. E. B. Cambell, “Application of self-focusing of ps laser pulses for three-dimensional microstructuring of transparent materials,” Appl. Phys. Lett. 72, 1442-1444 (1998).
[CrossRef]

K.-I. Kitayama, Y. Kimura, K. Okamoto, and S. Seikai, “Optical sampling using an all-fiber optical Kerr shutter,” Appl. Phys. Lett. 46, 623-625 (1985).
[CrossRef]

J. W. Chan, T. R. Huser, S. H. Risbud, J. S. Hayden, and D. M. Krol, “Waveguide fabrication in phosphate glasses using femtosecond laser pulses,” Appl. Phys. Lett. 82, 2371-2373 (2003).
[CrossRef]

J. Siegel, J. M. Fernandez-Navarro, A. Garcia-Navarro, V. Diez-Blanco, O. Sanz, J. Solis, F. Vega, and J. Armengol, “Waveguide structures in heavy metal oxide glass written with femtosecond laser pulses above the critical self-focusing threshold,” Appl. Phys. Lett. 86, 121109 (2005).
[CrossRef]

Chem. Rec. (1)

J. Qiu, “Femtosecond laser induced microstructures in glass and application in micro-optics,” Chem. Rec. 4, 50-58 (2004).
[CrossRef] [PubMed]

Electron. Lett. (3)

R. Osellame, S. Taccheo, G. Cerullo, M. Marangoni, D. Polli, R. Ramponi, P. Laporta, and S. De Silvestri, “Optical gain in Er-Yb doped waveguides fabricated by femtosecond laser pulses,” Electron. Lett. 38, 964-965 (2002).
[CrossRef]

B. P. Nelson, K. J. Blow, P. D. Constantine, N. J. Doran, J. K. Lucek, I. W. Marshall, and K. Smith, “All-optical Gbit/s switching using nonlinear optical loop mirror,” Electron. Lett. 27, 704-705 (1991).
[CrossRef]

K. Uchiyama, T. Morioka, and M. Saruwatari, “Polarization-independent wavelength conversion using nonlinear optical loop mirror,” Electron. Lett. 31, 1862-1863 (1995).
[CrossRef]

Fiber Integr. Opt. (1)

Y. D. West, T. Schweizer, D. J. Brady, and D. W. Hewak, “Gallium lanthanum sulphide fibers for infrared transmission,” Fiber Integr. Opt. 19, 229-250 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

L. Shah, J. Tawney, M. Richardson, and K. Richardson, “Self-focusing during femtosecond micromachining of silicate glasses,” IEEE J. Quantum Electron. 40, 57-68 (2004).
[CrossRef]

J. Appl. Phys. (1)

C. Pappas and S. Pissadakis, “Periodic nanostructuring of Er/Yb-codoped IOG1 phosphate glass by using ultraviolet laser-assisted selective chemical etching,” J. Appl. Phys. 100, 114308 (2006).
[CrossRef]

J. Non-Cryst. Solids (7)

V. K. Tikhomirov, A. B. Seddon, K. Asatryan, T. V. Galstian, and R. Vallee, “The role of van der Waals bonding in photosensitivity of chalcogenide glasses,” J. Non-Cryst. Solids 326, 205-208 (2003).
[CrossRef]

K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Cryst. Solids 239, 91-95 (1998).
[CrossRef]

S. R. Elliott, “A unified model for reversible photostructural effects in chalcogenide glasses,” J. Non-Cryst. Solids 81, 71-98 (1986).
[CrossRef]

P. Hari, S. Guzel, T. Su, P. C. Taylor, P. L. Kuhns, W. G. Moulton, and N. S. Sullivan, “Photodarkening effect in glassy As2S3 and As2O3,”J. Non-Cryst. Solids 326, 199-204 (2003).
[CrossRef]

J. Requejo-Isidro, A. K. Mairaj, V. Pruneri, D. W. Hewak, M. C. Netti, and J. J. Baumberg, “Self refractive non-linearities in chalcogenide based glasses,” J. Non-Cryst. Solids 317, 241-246 (2003).
[CrossRef]

G. Pfeiffer, M. A. Paesler, and S. C. Agarwal, “Reversible photodarkening of amorphous arsenic chalcogens,” J. Non-Cryst. Solids 130, 111-143 (1991).
[CrossRef]

K. Petkov and P. J. S. Ewen, “Photoinduced changes in the linear and non-linear optical properties of chalcogenide glasses,” J. Non-Cryst. Solids 249, 150-159 (1999).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. Solids (1)

C. Quémarda, F. Smektala, V. Coudercb, A. Barthélémyb, and J. Lucasa, “Chalcogenide glasses with high non linear optical properties for telecommunications,” J. Phys. Chem. Solids 62, 1435-1440 (2001).
[CrossRef]

Opt. Commun. (1)

P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114, 106-110 (1995).
[CrossRef]

Opt. Express (4)

Opt. Lett. (7)

Opt. Mater. (1)

O. M. Efimov, L. B. Glebov, K. A. Richardson, E. Van Stryland, T. Cardinal, S. H. Park, M. Couzi, and J. L. Bruneel, “Waveguide writing in chalcogenide glasses by a train of femtosecond laser pulses,” Opt. Mater. 17, 379-386 (2001).
[CrossRef]

Phys. Rev. A (2)

R. Cubeddu, R. Polloni, C. A. Sacchi, and O. Svelto, “Self-phase modulation and “rocking” of molecules in trapped filaments of light with picosecond pulses,” Phys. Rev. A 2, 1955-1963 (1970).
[CrossRef]

R. H. Stolen and C. Lin, “Self-phase-modulation in silica optical fibers,” Phys. Rev. A 17, 1448-1453 (1978).
[CrossRef]

Phys. Rev. B (3)

E. G. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, and B. Luther-Davies, “Laser-matter interaction in the bulk of a transparent solid: Confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).
[CrossRef]

M. Sakakura and M. Terazima, “Initial temporal and spatial changes of the refractive index induced by focused femtosecond pulsed laser irradiation inside a glass,” Phys. Rev. B 71, 024113 (2005).
[CrossRef]

G. Pfeiffer, C. J. Brabec, S. R. Jefferys, and M. A. Paesler, “Structural models of glassy As2s3--intermediate-range order and photostructural changes,” Phys. Rev. B 39, 12861-12871 (1989).
[CrossRef]

Phys. Rev. Lett. (2)

S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, “Laser-induced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).
[CrossRef] [PubMed]

B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248-2257(1995).
[CrossRef] [PubMed]

Other (5)

J. M. Senior, Optical Fiber Communications: Principles and Practice (Prentice Hall, 1992).

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

S. Spalter, G. Lenz, R. E. Slusher, H. Y. Hwang, J. Zimmermann, T. Ktsufuji, S. W. Cheong, and M. E. Lines, “Highly nonlinear chalcogenide glasses for ultrafast all optical switching in optical TDM communication systems,” in Optical Fiber Communication Conference 2000 (Optical Society of America, 2000), p. 137.

P. V. Mamyshev, “All-optical data regeneration based on self-phase modulation effect,” in 24th European Conference on Optical Communication, (IEEE, 1998), p. 475.

J. K. Kim, “Investigation of high-nonlinearity glass fibers for potential applications in ultrafast nonlinear fiber devices,” Ph.D. dissertation (Virginia State University, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Waveguide end face transmission optical micrographs (left panel) and near-field guided mode at 633 nm (right panel). All waveguides were written at a translation speed of 200 μ m s . Waveguides (a) to (e) were written at a focus depth of 400 μ m (set 1), waveguides (f) to (i) were written at a focus depth of 100 μ m (set 2). The pulse energies ( μ J /pulse) used to write each respective waveguide were 1.75 (a), 1.26 (b), 0.84 (c), 0.42 (d), 0.21 (e), 0.40 (f), 0.36 (g), 0.32 (h), and 0.28 (i). (j) shows the guided mode at 1550 nm of the waveguide in (a). The scale bars shows 20 μ m .

Fig. 2
Fig. 2

Refractive index change profile as a function of writing pulse energy for set 2 waveguides written into GLS glass at a depth of 100 μ m at translation speeds of 50, 100, and 200 μ m s .

Fig. 3
Fig. 3

Refractive index change profile as a function of writing pulse energy for set 1 waveguides written into GLS glass at a depth of 400 μ m at a translation speed of 200 μ m s .

Fig. 4
Fig. 4

Transmission spectra of GLS sample and set 1 waveguides written at various pulse energies at a depth of 400 μ m and a translation speed of 200 μ m s .

Fig. 5
Fig. 5

Micro-Raman spectra of set 1 waveguides written at pulse energies of 1.75 and 1.26 μ J and two regions of unexposed glass. The top image shows the position at which each Raman spectrum was taken.

Fig. 6
Fig. 6

Spectra of 1540 nm 200 fs laser beam coupled into a 12 mm GLS waveguide that was written with a pulse energy of 1.75 μ J , as a function of input beam pulse energy. The insets show the FWHM as a function of pulse energy.

Fig. 7
Fig. 7

Spectra of 1540 nm 200 fs laser beam coupled into a 12 mm GLS waveguide that was written with a pulse energy of 1.26 μ J , as a function of input beam pulse energy. The insets show the FWHM as a function of pulse energy.

Tables (1)

Tables Icon

Table 1 Parameters for GLS and GLS Waveguides a

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ϕ max ( M 1 2 ) π ,
Δ ω SPM = Δ ω 0 2 π n 2 P 0 L λ A eff ,

Metrics