Abstract

We demonstrate a continuous-wave fiber optical parametric oscillator with a tuning range of 240nm around 1550nm. We show that key to the operation of this device is the combined interaction of the Raman and Kerr nonlinearities and derive expressions for the threshold power of singly and doubly resonant oscillators that include the full frequency dependence of the complex Raman susceptibility.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Sharping, “Microstructure fiber based optical parametric oscillators,” J. Lightwave Technol. 26, 2184-2191 (2008).
    [CrossRef]
  2. J. E. Sharping, M. A. Foster, A. L. Gaeta, J. Lasri, O. Lyngnes, and K. Vogel, “Octave-spanning, high-power microstructure-fiber-based optical parametric oscillators,” Opt. Express 15, 1474-1479 (2007).
    [CrossRef] [PubMed]
  3. Y. Q. Xu, S. G. Murdoch, R. Leonhardt, and J. D. Harvey, “Widely tunable photonic crystal fiber Fabry-Perot optical parametric oscillator,” Opt. Lett. 33, 1351-1353 (2008).
    [CrossRef] [PubMed]
  4. M. E. Marhic, K. K. Y. Wong, L. G. Kazovsky, and T. E. Tsai, “Continuous-wave fiber optical parametric oscillator,” Opt. Lett. 27, 1439-1441 (2002).
    [CrossRef]
  5. T. Torounidis and P. Andrekson, “Broadband single-pumped fiber-optic parametric amplifiers,” IEEE Photonics Technol. Lett. 19, 650-652 (2007).
    [CrossRef]
  6. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004).
    [CrossRef] [PubMed]
  7. Q. Lin, T. J. Johnson, R. Perahia, C. P. Michael, and O. J. Painter, “A proposal for highly tunable optical parametric oscillation in silicon micro-resonators,” Opt. Express 14, 10596-10608 (2008).
    [CrossRef]
  8. E. Golovchenko, P. V. Mamyshev, A. N. Pilipetskii, and E. M. Dianov, “Mutual influence of the parametric effects and stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 26, 1815-1820 (1990).
    [CrossRef]
  9. A. S. Y. Hsieh, G. K. L. Wong, S. G. Murdoch, S. Coen, F. Vanholsbeeck, R. Leonhardt, and J. D. Harvey, “Combined effect of Raman and parametric gain on single-pump parametric amplifiers,” Opt. Express 15, 8104-8114 (2007).
    [CrossRef] [PubMed]
  10. R. H. Stolen, J. P. Gordon, W. J. Tomlinson, and H. A. Haus, “Raman response function of silica-core fibers,” J. Opt. Soc. Am. B 6, 1159-1166 (1989).
    [CrossRef]
  11. G. Cappellini and S. Trillo, “Third-order three-wave mixing in single mode fibers: exact solutions and spatial instability effects,” J. Opt. Soc. Am. B 8, 824-837 (1991).
    [CrossRef]
  12. S. Coen and M. Haelterman, “Continuous-wave ultrahigh-repetition-rate pulse-train generation through modulational instability in a passive fiber cavity,” Opt. Lett. 26, 39-41 (2001).
    [CrossRef]
  13. J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett. 28, 2225-2227 (2003).
    [CrossRef] [PubMed]
  14. G. K. L. Wong, A. Y. H. Chen, S. Ha, R. Kruhlak, S. G. Murdoch, R. Leonhardt, J. D. Harvey, and N. Joly, “Characterization of chromatic dispersion in photonic crystal fibers using scalar modulation instability,” Opt. Express 13, 8662-8670 (2005).
    [CrossRef] [PubMed]
  15. M. E. Marhic, K. K. Y. Wong, and L. G. Kazovsky, “Wideband tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron. 10, 1133-1141 (2004).
    [CrossRef]
  16. A. Y. H. Chen, G. K. L. Wong, S. G. Murdoch, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Widely tunable optical parametric generation in a photonic crystal fiber,” Opt. Lett. 30, 762-764 (2005).
    [CrossRef] [PubMed]
  17. T. Torounidis and P. Andrekson, “Broadband single-pumped fiber-optic parametric amplifiers,” IEEE Photonics Technol. Lett. 19, 650-652 (2007).
    [CrossRef]
  18. C. McKinstrie, H. Kogelnik, R. Jopson, S. Radic, and A. Kanaev, “Four-wave mixing in fibers with random birefringence,” Opt. Express 12, 2033-2055 (2004).
    [CrossRef] [PubMed]
  19. J. S. Y. Chen, S. G. Murdoch, R. Leonhardt, and J. D. Harvey, “Effect of dispersion fluctuations on widely tunable optical parametric amplification in photonic crystal fibers,” Opt. Express 14, 9491-9501 (2006).
    [CrossRef] [PubMed]
  20. X. Feng, A. K. Mairaj, D. W. Hewak, and T. M. Monro, “Nonsilica glasses for holey fibers,” J. Lightwave Technol. 23, 2046-2054 (2005).
    [CrossRef]

2008 (3)

2007 (4)

2006 (1)

2005 (3)

2004 (3)

M. E. Marhic, K. K. Y. Wong, and L. G. Kazovsky, “Wideband tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron. 10, 1133-1141 (2004).
[CrossRef]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004).
[CrossRef] [PubMed]

C. McKinstrie, H. Kogelnik, R. Jopson, S. Radic, and A. Kanaev, “Four-wave mixing in fibers with random birefringence,” Opt. Express 12, 2033-2055 (2004).
[CrossRef] [PubMed]

2003 (1)

2002 (1)

2001 (1)

1991 (1)

1990 (1)

E. Golovchenko, P. V. Mamyshev, A. N. Pilipetskii, and E. M. Dianov, “Mutual influence of the parametric effects and stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 26, 1815-1820 (1990).
[CrossRef]

1989 (1)

Andrekson, P.

T. Torounidis and P. Andrekson, “Broadband single-pumped fiber-optic parametric amplifiers,” IEEE Photonics Technol. Lett. 19, 650-652 (2007).
[CrossRef]

T. Torounidis and P. Andrekson, “Broadband single-pumped fiber-optic parametric amplifiers,” IEEE Photonics Technol. Lett. 19, 650-652 (2007).
[CrossRef]

Cappellini, G.

Chen, A. Y. H.

Chen, J. S. Y.

Coen, S.

Dianov, E. M.

E. Golovchenko, P. V. Mamyshev, A. N. Pilipetskii, and E. M. Dianov, “Mutual influence of the parametric effects and stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 26, 1815-1820 (1990).
[CrossRef]

Feng, X.

Foster, M. A.

Gaeta, A. L.

Golovchenko, E.

E. Golovchenko, P. V. Mamyshev, A. N. Pilipetskii, and E. M. Dianov, “Mutual influence of the parametric effects and stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 26, 1815-1820 (1990).
[CrossRef]

Gordon, J. P.

Ha, S.

Haelterman, M.

Harvey, J. D.

Haus, H. A.

Hewak, D. W.

Hsieh, A. S. Y.

Johnson, T. J.

Joly, N.

Jopson, R.

Kanaev, A.

Kazovsky, L. G.

M. E. Marhic, K. K. Y. Wong, and L. G. Kazovsky, “Wideband tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron. 10, 1133-1141 (2004).
[CrossRef]

M. E. Marhic, K. K. Y. Wong, L. G. Kazovsky, and T. E. Tsai, “Continuous-wave fiber optical parametric oscillator,” Opt. Lett. 27, 1439-1441 (2002).
[CrossRef]

Kippenberg, T. J.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004).
[CrossRef] [PubMed]

Knight, J. C.

Kogelnik, H.

Kruhlak, R.

Lasri, J.

Leonhardt, R.

Lin, Q.

Lyngnes, O.

Mairaj, A. K.

Mamyshev, P. V.

E. Golovchenko, P. V. Mamyshev, A. N. Pilipetskii, and E. M. Dianov, “Mutual influence of the parametric effects and stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 26, 1815-1820 (1990).
[CrossRef]

Marhic, M. E.

M. E. Marhic, K. K. Y. Wong, and L. G. Kazovsky, “Wideband tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron. 10, 1133-1141 (2004).
[CrossRef]

M. E. Marhic, K. K. Y. Wong, L. G. Kazovsky, and T. E. Tsai, “Continuous-wave fiber optical parametric oscillator,” Opt. Lett. 27, 1439-1441 (2002).
[CrossRef]

McKinstrie, C.

Michael, C. P.

Monro, T. M.

Murdoch, S. G.

Painter, O. J.

Perahia, R.

Pilipetskii, A. N.

E. Golovchenko, P. V. Mamyshev, A. N. Pilipetskii, and E. M. Dianov, “Mutual influence of the parametric effects and stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 26, 1815-1820 (1990).
[CrossRef]

Radic, S.

Russell, P. St. J.

Sharping, J. E.

Spillane, S. M.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004).
[CrossRef] [PubMed]

Stolen, R. H.

Tomlinson, W. J.

Torounidis, T.

T. Torounidis and P. Andrekson, “Broadband single-pumped fiber-optic parametric amplifiers,” IEEE Photonics Technol. Lett. 19, 650-652 (2007).
[CrossRef]

T. Torounidis and P. Andrekson, “Broadband single-pumped fiber-optic parametric amplifiers,” IEEE Photonics Technol. Lett. 19, 650-652 (2007).
[CrossRef]

Trillo, S.

Tsai, T. E.

Vahala, K. J.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004).
[CrossRef] [PubMed]

Vanholsbeeck, F.

Vogel, K.

Wadsworth, W. J.

Wong, G. K. L.

Wong, K. K. Y.

M. E. Marhic, K. K. Y. Wong, and L. G. Kazovsky, “Wideband tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron. 10, 1133-1141 (2004).
[CrossRef]

M. E. Marhic, K. K. Y. Wong, L. G. Kazovsky, and T. E. Tsai, “Continuous-wave fiber optical parametric oscillator,” Opt. Lett. 27, 1439-1441 (2002).
[CrossRef]

Xu, Y. Q.

IEEE J. Quantum Electron. (1)

E. Golovchenko, P. V. Mamyshev, A. N. Pilipetskii, and E. M. Dianov, “Mutual influence of the parametric effects and stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron. 26, 1815-1820 (1990).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. E. Marhic, K. K. Y. Wong, and L. G. Kazovsky, “Wideband tuning of the gain spectra of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron. 10, 1133-1141 (2004).
[CrossRef]

IEEE Photonics Technol. Lett. (2)

T. Torounidis and P. Andrekson, “Broadband single-pumped fiber-optic parametric amplifiers,” IEEE Photonics Technol. Lett. 19, 650-652 (2007).
[CrossRef]

T. Torounidis and P. Andrekson, “Broadband single-pumped fiber-optic parametric amplifiers,” IEEE Photonics Technol. Lett. 19, 650-652 (2007).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (2)

Opt. Express (6)

Opt. Lett. (5)

Phys. Rev. Lett. (1)

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Normalized threshold power γ P T L of a singly resonant oscillator (feedback fraction α = 0.5 ) as a function of sideband detuning—resonant anti-Stokes sideband (solid line), resonant Stokes sideband (dashed line). These two curves are calculated using the experimentally measured complex Raman susceptibility of [10] and f = 0.18 . The dotted line is the normalized threshold power in a pure Kerr medium ( f = 0 ) .

Fig. 2
Fig. 2

Normalized threshold power, γ P T L , of a doubly resonant oscillator (feedback fraction α = 0.5 ) as a function of sideband detuning. This curve is calculated using the experimentally measured complex Raman susceptibility of [10] and f = 0.18 .

Fig. 3
Fig. 3

Schematic diagram of the singly resonant ring oscillator used in the experiments that follow. Filter ‘A’ is a broadband thin-film WDM filter (cut wavelength 1565 nm ). Filter ‘B’ is a tunable free-space grating filter with a filter bandwidth of 0.5 nm centered on the resonant Stokes sideband wavelength.

Fig. 4
Fig. 4

Spectra of the output of the oscillator with the broadband filter (filter ‘A’) in the ring at eight pump wavelengths: 1553.0, 1552.6, 1552.2, 1551.5, 1551.0, 1550.5, 1549.7, and 1549.0 nm . The frequency detuning of the sidebands increases as the pump wavelength decreases.

Fig. 5
Fig. 5

Sideband detuning as a function of pump wavelength. The solid curve is the prediction of Eq. (8); the circles are the experimental measured shifts from Fig. 4.

Fig. 6
Fig. 6

Spectra of the output of the oscillator with the narrowband filter (filter ‘B’) in the ring at seven pump wavelengths: 1552.7, 1552.3, 1551.5, 1550.8, 1550.2, 1549.6, and 1549.0 nm . The frequency detuning of the sidebands increases as the pump wavelength decreases.

Fig. 7
Fig. 7

Measured internal conversion efficiency and sideband linewidth as a function of sideband wavelength. The open circles correspond to broadband filter (filter ‘A’) oscillator; the closed circles correspond to the narrowband filter (filter ‘B’) oscillator.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

G ( Ω ) = cosh ( γ R P L ) ± i ( K q ) R sinh ( γ R P L ) 2 ,
α cosh ( γ P T L K opt ( 2 q K opt ) ) ± i ( K opt q ) K opt ( 2 q K opt ) sinh ( γ P T L K opt ( 2 q K opt ) ) 2 = 1 ,
γ P T L Re ( K opt ( 2 q K opt ) ) 1 ( log ( 2 ) log ( α ) ) .
B a , J * = α 2 R { [ ( R i q + i K ) B a , J 1 * i q B s , J 1 ] exp ( γ R P L ) + [ ( R + i q i K ) B a , J 1 * + i q B s , J 1 ] exp ( γ R P L ) } ,
B s , J = α 2 R { [ i q B a , J 1 * + ( R + i q i K ) B s , J 1 ] exp ( γ R P L ) + [ i q B a , J 1 * + ( R i q + i K ) B s , J 1 ] exp ( γ R P L ) } .
γ P T , single L = acosh ( α 1 ) ,
γ P T , double L = log ( α 1 ) .
β 2 Ω 2 + β 4 Ω 4 12 + 2 γ P = 0 ,

Metrics