Abstract

Butt-end fiber coupling is a compact and efficient scheme especially suitable for a surface-emitting photonic crystal (PC) band-edge laser. The honeycomb-lattice PC offers a relatively large intact area without air-holes, and therefore, a high optical gain. The use of a Γ-point band-edge mode allows vertical laser emission, yielding a fiber-coupled output power of more than 30μW. The system is virtually alignment-free in the lateral directions; however, it exhibits oscillatory decay in the vertical direction, which can be significantly suppressed by using an angle-cleaved fiber tip.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Seassal, C. Monat, J. Mouette, E. Touraille, B. Ben Bakir, H. T. Hattori, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11, 395-407 (2005).
    [CrossRef]
  2. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819-1821 (1999).
    [CrossRef] [PubMed]
  3. K. Nozaki, S. Kita, and T. Baba, “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser,” Opt. Express 15, 7506 (2007).
    [CrossRef] [PubMed]
  4. W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96, 117401 (2006).
    [CrossRef] [PubMed]
  5. J. P. Dawling, M. Scalora, M. J. Bleomer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75, 1896-1899 (1994).
    [CrossRef]
  6. C. O. Cho, J. W. Jeong, J. H. Lee, H. S. Jeon, I. Kim, D. H. Jang, Y. S. Park, and J. C. Woo, “Photonic crystal band edge laser array with a holographically generated square-lattice pattern,” Appl. Phys. Lett. 87, 161102 (2005).
    [CrossRef]
  7. P. E. Barclay, K. Srinivasan, M. Borselli, and O. Painter, “Efficient input and output fiber coupling to a photonic crystal waveguide,” Opt. Lett. 29, 697-699 (2004).
    [CrossRef] [PubMed]
  8. Y. S. Park, S. H. Kim, C. Y. Moon, H. S. Jeon, and H. J. Kim, “Butt-end fiber coupling to a surface-emitting Γ-point photonic crystal bandedge laser,” Appl. Phys. Lett. 90, 171115 (2007).
    [CrossRef]
  9. T. Ouchi, A. Imada, T. Sato, and H. Sakata, “Direct coupling of VCSELs to plastic optical fibers using guide holes patterned in a thick photoresist,” IEEE Photon. Technol. Lett. 14, 263-265 (2002).
    [CrossRef]
  10. Y. Sidorin and D. Howe, “Some characteristics of an extremely-short-external-cavity laser diode realized by butt coupling a Fabry-Perot laser diode to a single-mode optical fiber,” Appl. Opt. 37, 3256-3263 (1998).
    [CrossRef]
  11. I.-K. Hwang, S.-K. Kim, Y.-J. Lee, Y.-H. Lee, and J.-S. Kim, “Curved-microfiber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett. 87, 131107 (2005).
    [CrossRef]
  12. J. Mouette, C. Seassal, X. Letartre, P. Rojo-Romeo, J.-L. Leclercq, P. Regreny, P. Viktorovitch, E. Jalaguier, P. Perreau, and H. Moriceau, “Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon,” Electron. Lett. 39, 526-528 (2003).
    [CrossRef]
  13. H. Y. Ryu, S. H. Kwon, Y. J. Lee, Y. H. Lee, and J. S. Kim, “Very-low threshold photonic band-edge lasers from free standing triangular photonic crystal slabs,” Appl. Phys. Lett. 80, 3476-3478 (2002).
    [CrossRef]
  14. M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75, 316-318 (1999).
    [CrossRef]
  15. D. Goldring, U. Levy, I. E. Dotan, A. Tsukernik, M. Oksman, I. Rubin, Y. David, and D. Mendlovic, “Experimental measurement of quality factor enhancement using slow light modes in one dimensional photonic crystal,” Opt. Express 16, 5585-5595 (2008).
    [CrossRef] [PubMed]
  16. S. G. Johnson and J. D. Joannopoulos, “The MIT photonic-bands package home page,” http://ab-initio.mit.edu/mpb/.
  17. M. Fujita and T. Baba, “Microgear laser,” Appl. Phys. Lett. 80, 2051-2053 (2002).
    [CrossRef]
  18. H. Altug and J. Vučković, “Photonic crystal nanocavity array laser,” Opt. Express 13, 8820-8828 (2005).
    [CrossRef]
  19. C. Wu, M. Svilans, M. Fallahi, T. Makino, J. Glinski, C. Maritan, and C. Blaauw, “Optically pumped surface-emitting DFB GaInAsP/InP lasers with circular grating,” Electron. Lett. 27, 1819-1820 (1991).
    [CrossRef]
  20. R. H. Jordan, D. G. Hall, O. King, G. Wicks, and S. Rishton, “Lasing behavior of circular grating surface-emitting semiconductor lasers,” J. Opt. Soc. Am. B 14, 449-453 (1997).
    [CrossRef]
  21. W. Bludau and R. Rossberg, “Characterization of laser-to-fiber coupling techniques by their optical feedback,” Appl. Opt. 21, 1933-1939 (1982).
    [CrossRef] [PubMed]
  22. R. Ulrich and S. C. Rashleigh, “Beam-to-fiber coupling with low standing wave ratio,” Appl. Opt. 19, 2453-2456 (1980).
    [CrossRef] [PubMed]

2008

2007

K. Nozaki, S. Kita, and T. Baba, “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser,” Opt. Express 15, 7506 (2007).
[CrossRef] [PubMed]

Y. S. Park, S. H. Kim, C. Y. Moon, H. S. Jeon, and H. J. Kim, “Butt-end fiber coupling to a surface-emitting Γ-point photonic crystal bandedge laser,” Appl. Phys. Lett. 90, 171115 (2007).
[CrossRef]

2006

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96, 117401 (2006).
[CrossRef] [PubMed]

2005

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. Ben Bakir, H. T. Hattori, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11, 395-407 (2005).
[CrossRef]

C. O. Cho, J. W. Jeong, J. H. Lee, H. S. Jeon, I. Kim, D. H. Jang, Y. S. Park, and J. C. Woo, “Photonic crystal band edge laser array with a holographically generated square-lattice pattern,” Appl. Phys. Lett. 87, 161102 (2005).
[CrossRef]

H. Altug and J. Vučković, “Photonic crystal nanocavity array laser,” Opt. Express 13, 8820-8828 (2005).
[CrossRef]

I.-K. Hwang, S.-K. Kim, Y.-J. Lee, Y.-H. Lee, and J.-S. Kim, “Curved-microfiber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett. 87, 131107 (2005).
[CrossRef]

2004

2003

J. Mouette, C. Seassal, X. Letartre, P. Rojo-Romeo, J.-L. Leclercq, P. Regreny, P. Viktorovitch, E. Jalaguier, P. Perreau, and H. Moriceau, “Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon,” Electron. Lett. 39, 526-528 (2003).
[CrossRef]

2002

H. Y. Ryu, S. H. Kwon, Y. J. Lee, Y. H. Lee, and J. S. Kim, “Very-low threshold photonic band-edge lasers from free standing triangular photonic crystal slabs,” Appl. Phys. Lett. 80, 3476-3478 (2002).
[CrossRef]

M. Fujita and T. Baba, “Microgear laser,” Appl. Phys. Lett. 80, 2051-2053 (2002).
[CrossRef]

T. Ouchi, A. Imada, T. Sato, and H. Sakata, “Direct coupling of VCSELs to plastic optical fibers using guide holes patterned in a thick photoresist,” IEEE Photon. Technol. Lett. 14, 263-265 (2002).
[CrossRef]

1999

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75, 316-318 (1999).
[CrossRef]

1998

1997

1994

J. P. Dawling, M. Scalora, M. J. Bleomer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75, 1896-1899 (1994).
[CrossRef]

1991

C. Wu, M. Svilans, M. Fallahi, T. Makino, J. Glinski, C. Maritan, and C. Blaauw, “Optically pumped surface-emitting DFB GaInAsP/InP lasers with circular grating,” Electron. Lett. 27, 1819-1820 (1991).
[CrossRef]

1982

1980

Altug, H.

H. Altug and J. Vučković, “Photonic crystal nanocavity array laser,” Opt. Express 13, 8820-8828 (2005).
[CrossRef]

Baba, T.

Barclay, P. E.

Ben Bakir, B.

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. Ben Bakir, H. T. Hattori, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11, 395-407 (2005).
[CrossRef]

Blaauw, C.

C. Wu, M. Svilans, M. Fallahi, T. Makino, J. Glinski, C. Maritan, and C. Blaauw, “Optically pumped surface-emitting DFB GaInAsP/InP lasers with circular grating,” Electron. Lett. 27, 1819-1820 (1991).
[CrossRef]

Bleomer, M. J.

J. P. Dawling, M. Scalora, M. J. Bleomer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75, 1896-1899 (1994).
[CrossRef]

Bludau, W.

Borselli, M.

Bowden, C. M.

J. P. Dawling, M. Scalora, M. J. Bleomer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75, 1896-1899 (1994).
[CrossRef]

Chang, H. S.

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96, 117401 (2006).
[CrossRef] [PubMed]

Chang, W. H.

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96, 117401 (2006).
[CrossRef] [PubMed]

Chen, W. Y.

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96, 117401 (2006).
[CrossRef] [PubMed]

Cho, C. O.

C. O. Cho, J. W. Jeong, J. H. Lee, H. S. Jeon, I. Kim, D. H. Jang, Y. S. Park, and J. C. Woo, “Photonic crystal band edge laser array with a holographically generated square-lattice pattern,” Appl. Phys. Lett. 87, 161102 (2005).
[CrossRef]

Chutinan, A.

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75, 316-318 (1999).
[CrossRef]

Chyi, J. I.

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96, 117401 (2006).
[CrossRef] [PubMed]

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

David, Y.

Dawling, J. P.

J. P. Dawling, M. Scalora, M. J. Bleomer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75, 1896-1899 (1994).
[CrossRef]

Dotan, I. E.

Fallahi, M.

C. Wu, M. Svilans, M. Fallahi, T. Makino, J. Glinski, C. Maritan, and C. Blaauw, “Optically pumped surface-emitting DFB GaInAsP/InP lasers with circular grating,” Electron. Lett. 27, 1819-1820 (1991).
[CrossRef]

Fujita, M.

M. Fujita and T. Baba, “Microgear laser,” Appl. Phys. Lett. 80, 2051-2053 (2002).
[CrossRef]

Glinski, J.

C. Wu, M. Svilans, M. Fallahi, T. Makino, J. Glinski, C. Maritan, and C. Blaauw, “Optically pumped surface-emitting DFB GaInAsP/InP lasers with circular grating,” Electron. Lett. 27, 1819-1820 (1991).
[CrossRef]

Goldring, D.

Hall, D. G.

Hattori, H. T.

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. Ben Bakir, H. T. Hattori, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11, 395-407 (2005).
[CrossRef]

Howe, D.

Hsieh, T. P.

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96, 117401 (2006).
[CrossRef] [PubMed]

Hsu, T. M

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96, 117401 (2006).
[CrossRef] [PubMed]

Hwang, I.-K.

I.-K. Hwang, S.-K. Kim, Y.-J. Lee, Y.-H. Lee, and J.-S. Kim, “Curved-microfiber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett. 87, 131107 (2005).
[CrossRef]

Imada, A.

T. Ouchi, A. Imada, T. Sato, and H. Sakata, “Direct coupling of VCSELs to plastic optical fibers using guide holes patterned in a thick photoresist,” IEEE Photon. Technol. Lett. 14, 263-265 (2002).
[CrossRef]

Imada, M.

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75, 316-318 (1999).
[CrossRef]

Jalaguier, E.

J. Mouette, C. Seassal, X. Letartre, P. Rojo-Romeo, J.-L. Leclercq, P. Regreny, P. Viktorovitch, E. Jalaguier, P. Perreau, and H. Moriceau, “Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon,” Electron. Lett. 39, 526-528 (2003).
[CrossRef]

Jang, D. H.

C. O. Cho, J. W. Jeong, J. H. Lee, H. S. Jeon, I. Kim, D. H. Jang, Y. S. Park, and J. C. Woo, “Photonic crystal band edge laser array with a holographically generated square-lattice pattern,” Appl. Phys. Lett. 87, 161102 (2005).
[CrossRef]

Jeon, H. S.

Y. S. Park, S. H. Kim, C. Y. Moon, H. S. Jeon, and H. J. Kim, “Butt-end fiber coupling to a surface-emitting Γ-point photonic crystal bandedge laser,” Appl. Phys. Lett. 90, 171115 (2007).
[CrossRef]

C. O. Cho, J. W. Jeong, J. H. Lee, H. S. Jeon, I. Kim, D. H. Jang, Y. S. Park, and J. C. Woo, “Photonic crystal band edge laser array with a holographically generated square-lattice pattern,” Appl. Phys. Lett. 87, 161102 (2005).
[CrossRef]

Jeong, J. W.

C. O. Cho, J. W. Jeong, J. H. Lee, H. S. Jeon, I. Kim, D. H. Jang, Y. S. Park, and J. C. Woo, “Photonic crystal band edge laser array with a holographically generated square-lattice pattern,” Appl. Phys. Lett. 87, 161102 (2005).
[CrossRef]

Joannopoulos, J. D.

S. G. Johnson and J. D. Joannopoulos, “The MIT photonic-bands package home page,” http://ab-initio.mit.edu/mpb/.

Johnson, S. G.

S. G. Johnson and J. D. Joannopoulos, “The MIT photonic-bands package home page,” http://ab-initio.mit.edu/mpb/.

Jordan, R. H.

Kim, H. J.

Y. S. Park, S. H. Kim, C. Y. Moon, H. S. Jeon, and H. J. Kim, “Butt-end fiber coupling to a surface-emitting Γ-point photonic crystal bandedge laser,” Appl. Phys. Lett. 90, 171115 (2007).
[CrossRef]

Kim, I.

C. O. Cho, J. W. Jeong, J. H. Lee, H. S. Jeon, I. Kim, D. H. Jang, Y. S. Park, and J. C. Woo, “Photonic crystal band edge laser array with a holographically generated square-lattice pattern,” Appl. Phys. Lett. 87, 161102 (2005).
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Kim, J. S.

H. Y. Ryu, S. H. Kwon, Y. J. Lee, Y. H. Lee, and J. S. Kim, “Very-low threshold photonic band-edge lasers from free standing triangular photonic crystal slabs,” Appl. Phys. Lett. 80, 3476-3478 (2002).
[CrossRef]

Kim, J.-S.

I.-K. Hwang, S.-K. Kim, Y.-J. Lee, Y.-H. Lee, and J.-S. Kim, “Curved-microfiber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett. 87, 131107 (2005).
[CrossRef]

Kim, S. H.

Y. S. Park, S. H. Kim, C. Y. Moon, H. S. Jeon, and H. J. Kim, “Butt-end fiber coupling to a surface-emitting Γ-point photonic crystal bandedge laser,” Appl. Phys. Lett. 90, 171115 (2007).
[CrossRef]

Kim, S.-K.

I.-K. Hwang, S.-K. Kim, Y.-J. Lee, Y.-H. Lee, and J.-S. Kim, “Curved-microfiber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett. 87, 131107 (2005).
[CrossRef]

King, O.

Kita, S.

Kwon, S. H.

H. Y. Ryu, S. H. Kwon, Y. J. Lee, Y. H. Lee, and J. S. Kim, “Very-low threshold photonic band-edge lasers from free standing triangular photonic crystal slabs,” Appl. Phys. Lett. 80, 3476-3478 (2002).
[CrossRef]

Leclercq, J. L.

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. Ben Bakir, H. T. Hattori, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11, 395-407 (2005).
[CrossRef]

Leclercq, J.-L.

J. Mouette, C. Seassal, X. Letartre, P. Rojo-Romeo, J.-L. Leclercq, P. Regreny, P. Viktorovitch, E. Jalaguier, P. Perreau, and H. Moriceau, “Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon,” Electron. Lett. 39, 526-528 (2003).
[CrossRef]

Lee, J. H.

C. O. Cho, J. W. Jeong, J. H. Lee, H. S. Jeon, I. Kim, D. H. Jang, Y. S. Park, and J. C. Woo, “Photonic crystal band edge laser array with a holographically generated square-lattice pattern,” Appl. Phys. Lett. 87, 161102 (2005).
[CrossRef]

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Lee, Y. H.

H. Y. Ryu, S. H. Kwon, Y. J. Lee, Y. H. Lee, and J. S. Kim, “Very-low threshold photonic band-edge lasers from free standing triangular photonic crystal slabs,” Appl. Phys. Lett. 80, 3476-3478 (2002).
[CrossRef]

Lee, Y. J.

H. Y. Ryu, S. H. Kwon, Y. J. Lee, Y. H. Lee, and J. S. Kim, “Very-low threshold photonic band-edge lasers from free standing triangular photonic crystal slabs,” Appl. Phys. Lett. 80, 3476-3478 (2002).
[CrossRef]

Lee, Y.-H.

I.-K. Hwang, S.-K. Kim, Y.-J. Lee, Y.-H. Lee, and J.-S. Kim, “Curved-microfiber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett. 87, 131107 (2005).
[CrossRef]

Lee, Y.-J.

I.-K. Hwang, S.-K. Kim, Y.-J. Lee, Y.-H. Lee, and J.-S. Kim, “Curved-microfiber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett. 87, 131107 (2005).
[CrossRef]

Letartre, X.

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. Ben Bakir, H. T. Hattori, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11, 395-407 (2005).
[CrossRef]

J. Mouette, C. Seassal, X. Letartre, P. Rojo-Romeo, J.-L. Leclercq, P. Regreny, P. Viktorovitch, E. Jalaguier, P. Perreau, and H. Moriceau, “Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon,” Electron. Lett. 39, 526-528 (2003).
[CrossRef]

Levy, U.

Makino, T.

C. Wu, M. Svilans, M. Fallahi, T. Makino, J. Glinski, C. Maritan, and C. Blaauw, “Optically pumped surface-emitting DFB GaInAsP/InP lasers with circular grating,” Electron. Lett. 27, 1819-1820 (1991).
[CrossRef]

Maritan, C.

C. Wu, M. Svilans, M. Fallahi, T. Makino, J. Glinski, C. Maritan, and C. Blaauw, “Optically pumped surface-emitting DFB GaInAsP/InP lasers with circular grating,” Electron. Lett. 27, 1819-1820 (1991).
[CrossRef]

Mendlovic, D.

Monat, C.

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. Ben Bakir, H. T. Hattori, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11, 395-407 (2005).
[CrossRef]

Moon, C. Y.

Y. S. Park, S. H. Kim, C. Y. Moon, H. S. Jeon, and H. J. Kim, “Butt-end fiber coupling to a surface-emitting Γ-point photonic crystal bandedge laser,” Appl. Phys. Lett. 90, 171115 (2007).
[CrossRef]

Moriceau, H.

J. Mouette, C. Seassal, X. Letartre, P. Rojo-Romeo, J.-L. Leclercq, P. Regreny, P. Viktorovitch, E. Jalaguier, P. Perreau, and H. Moriceau, “Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon,” Electron. Lett. 39, 526-528 (2003).
[CrossRef]

Mouette, J.

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. Ben Bakir, H. T. Hattori, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11, 395-407 (2005).
[CrossRef]

J. Mouette, C. Seassal, X. Letartre, P. Rojo-Romeo, J.-L. Leclercq, P. Regreny, P. Viktorovitch, E. Jalaguier, P. Perreau, and H. Moriceau, “Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon,” Electron. Lett. 39, 526-528 (2003).
[CrossRef]

Murata, M.

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75, 316-318 (1999).
[CrossRef]

Noda, S.

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75, 316-318 (1999).
[CrossRef]

Nozaki, K.

O'Brien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Oksman, M.

Ouchi, T.

T. Ouchi, A. Imada, T. Sato, and H. Sakata, “Direct coupling of VCSELs to plastic optical fibers using guide holes patterned in a thick photoresist,” IEEE Photon. Technol. Lett. 14, 263-265 (2002).
[CrossRef]

Painter, O.

P. E. Barclay, K. Srinivasan, M. Borselli, and O. Painter, “Efficient input and output fiber coupling to a photonic crystal waveguide,” Opt. Lett. 29, 697-699 (2004).
[CrossRef] [PubMed]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Park, Y. S.

Y. S. Park, S. H. Kim, C. Y. Moon, H. S. Jeon, and H. J. Kim, “Butt-end fiber coupling to a surface-emitting Γ-point photonic crystal bandedge laser,” Appl. Phys. Lett. 90, 171115 (2007).
[CrossRef]

C. O. Cho, J. W. Jeong, J. H. Lee, H. S. Jeon, I. Kim, D. H. Jang, Y. S. Park, and J. C. Woo, “Photonic crystal band edge laser array with a holographically generated square-lattice pattern,” Appl. Phys. Lett. 87, 161102 (2005).
[CrossRef]

Perreau, P.

J. Mouette, C. Seassal, X. Letartre, P. Rojo-Romeo, J.-L. Leclercq, P. Regreny, P. Viktorovitch, E. Jalaguier, P. Perreau, and H. Moriceau, “Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon,” Electron. Lett. 39, 526-528 (2003).
[CrossRef]

Rashleigh, S. C.

Regreny, P.

J. Mouette, C. Seassal, X. Letartre, P. Rojo-Romeo, J.-L. Leclercq, P. Regreny, P. Viktorovitch, E. Jalaguier, P. Perreau, and H. Moriceau, “Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon,” Electron. Lett. 39, 526-528 (2003).
[CrossRef]

Rishton, S.

Rojo-Romeo, P.

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. Ben Bakir, H. T. Hattori, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11, 395-407 (2005).
[CrossRef]

J. Mouette, C. Seassal, X. Letartre, P. Rojo-Romeo, J.-L. Leclercq, P. Regreny, P. Viktorovitch, E. Jalaguier, P. Perreau, and H. Moriceau, “Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon,” Electron. Lett. 39, 526-528 (2003).
[CrossRef]

Rossberg, R.

Rubin, I.

Ryu, H. Y.

H. Y. Ryu, S. H. Kwon, Y. J. Lee, Y. H. Lee, and J. S. Kim, “Very-low threshold photonic band-edge lasers from free standing triangular photonic crystal slabs,” Appl. Phys. Lett. 80, 3476-3478 (2002).
[CrossRef]

Sakata, H.

T. Ouchi, A. Imada, T. Sato, and H. Sakata, “Direct coupling of VCSELs to plastic optical fibers using guide holes patterned in a thick photoresist,” IEEE Photon. Technol. Lett. 14, 263-265 (2002).
[CrossRef]

Sasaki, G.

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75, 316-318 (1999).
[CrossRef]

Sato, T.

T. Ouchi, A. Imada, T. Sato, and H. Sakata, “Direct coupling of VCSELs to plastic optical fibers using guide holes patterned in a thick photoresist,” IEEE Photon. Technol. Lett. 14, 263-265 (2002).
[CrossRef]

Scalora, M.

J. P. Dawling, M. Scalora, M. J. Bleomer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75, 1896-1899 (1994).
[CrossRef]

Scherer, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Seassal, C.

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. Ben Bakir, H. T. Hattori, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11, 395-407 (2005).
[CrossRef]

J. Mouette, C. Seassal, X. Letartre, P. Rojo-Romeo, J.-L. Leclercq, P. Regreny, P. Viktorovitch, E. Jalaguier, P. Perreau, and H. Moriceau, “Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon,” Electron. Lett. 39, 526-528 (2003).
[CrossRef]

Sidorin, Y.

Srinivasan, K.

Svilans, M.

C. Wu, M. Svilans, M. Fallahi, T. Makino, J. Glinski, C. Maritan, and C. Blaauw, “Optically pumped surface-emitting DFB GaInAsP/InP lasers with circular grating,” Electron. Lett. 27, 1819-1820 (1991).
[CrossRef]

Tokuda, T.

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75, 316-318 (1999).
[CrossRef]

Touraille, E.

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. Ben Bakir, H. T. Hattori, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11, 395-407 (2005).
[CrossRef]

Tsukernik, A.

Ulrich, R.

Viktorovitch, P.

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. Ben Bakir, H. T. Hattori, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11, 395-407 (2005).
[CrossRef]

J. Mouette, C. Seassal, X. Letartre, P. Rojo-Romeo, J.-L. Leclercq, P. Regreny, P. Viktorovitch, E. Jalaguier, P. Perreau, and H. Moriceau, “Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon,” Electron. Lett. 39, 526-528 (2003).
[CrossRef]

Vuckovic, J.

H. Altug and J. Vučković, “Photonic crystal nanocavity array laser,” Opt. Express 13, 8820-8828 (2005).
[CrossRef]

Wicks, G.

Woo, J. C.

C. O. Cho, J. W. Jeong, J. H. Lee, H. S. Jeon, I. Kim, D. H. Jang, Y. S. Park, and J. C. Woo, “Photonic crystal band edge laser array with a holographically generated square-lattice pattern,” Appl. Phys. Lett. 87, 161102 (2005).
[CrossRef]

Wu, C.

C. Wu, M. Svilans, M. Fallahi, T. Makino, J. Glinski, C. Maritan, and C. Blaauw, “Optically pumped surface-emitting DFB GaInAsP/InP lasers with circular grating,” Electron. Lett. 27, 1819-1820 (1991).
[CrossRef]

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

I.-K. Hwang, S.-K. Kim, Y.-J. Lee, Y.-H. Lee, and J.-S. Kim, “Curved-microfiber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett. 87, 131107 (2005).
[CrossRef]

M. Fujita and T. Baba, “Microgear laser,” Appl. Phys. Lett. 80, 2051-2053 (2002).
[CrossRef]

H. Y. Ryu, S. H. Kwon, Y. J. Lee, Y. H. Lee, and J. S. Kim, “Very-low threshold photonic band-edge lasers from free standing triangular photonic crystal slabs,” Appl. Phys. Lett. 80, 3476-3478 (2002).
[CrossRef]

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75, 316-318 (1999).
[CrossRef]

C. O. Cho, J. W. Jeong, J. H. Lee, H. S. Jeon, I. Kim, D. H. Jang, Y. S. Park, and J. C. Woo, “Photonic crystal band edge laser array with a holographically generated square-lattice pattern,” Appl. Phys. Lett. 87, 161102 (2005).
[CrossRef]

Y. S. Park, S. H. Kim, C. Y. Moon, H. S. Jeon, and H. J. Kim, “Butt-end fiber coupling to a surface-emitting Γ-point photonic crystal bandedge laser,” Appl. Phys. Lett. 90, 171115 (2007).
[CrossRef]

Electron. Lett.

J. Mouette, C. Seassal, X. Letartre, P. Rojo-Romeo, J.-L. Leclercq, P. Regreny, P. Viktorovitch, E. Jalaguier, P. Perreau, and H. Moriceau, “Very low threshold vertical emitting laser operation in InP graphite photonic crystal slab on silicon,” Electron. Lett. 39, 526-528 (2003).
[CrossRef]

C. Wu, M. Svilans, M. Fallahi, T. Makino, J. Glinski, C. Maritan, and C. Blaauw, “Optically pumped surface-emitting DFB GaInAsP/InP lasers with circular grating,” Electron. Lett. 27, 1819-1820 (1991).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

C. Seassal, C. Monat, J. Mouette, E. Touraille, B. Ben Bakir, H. T. Hattori, J. L. Leclercq, X. Letartre, P. Rojo-Romeo, and P. Viktorovitch, “InP bonded membrane photonics components and circuits: toward 2.5 dimensional micro-nano-photonics,” IEEE J. Sel. Top. Quantum Electron. 11, 395-407 (2005).
[CrossRef]

IEEE Photon. Technol. Lett.

T. Ouchi, A. Imada, T. Sato, and H. Sakata, “Direct coupling of VCSELs to plastic optical fibers using guide holes patterned in a thick photoresist,” IEEE Photon. Technol. Lett. 14, 263-265 (2002).
[CrossRef]

J. Appl. Phys.

J. P. Dawling, M. Scalora, M. J. Bleomer, and C. M. Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75, 1896-1899 (1994).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

W. H. Chang, W. Y. Chen, H. S. Chang, T. P. Hsieh, J. I. Chyi, and T. M Hsu, “Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities,” Phys. Rev. Lett. 96, 117401 (2006).
[CrossRef] [PubMed]

Science

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819-1821 (1999).
[CrossRef] [PubMed]

Other

S. G. Johnson and J. D. Joannopoulos, “The MIT photonic-bands package home page,” http://ab-initio.mit.edu/mpb/.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the butt-end fiber coupling to a honeycomb-lattice photonic crystal band-edge laser.

Fig. 2
Fig. 2

(a) Tilted scanning-electron-microscope image of a fabricated honeycomb-lattice air-bridge BEL. (b) Band structure of the air-bridge honeycomb-lattice PC. Inset in the figure shows the magnetic field profile for the Γ 4 mode.

Fig. 3
Fig. 3

(a) Input ( 980 nm ) versus output ( 1550 nm ) power of the Γ-point band-edge laser. Inset is the laser spectrum obtained from the corresponding laser. (b) Comparison of the input–output relationships for both the butt-end fiber coupling and micro-PL setups. Unlike (a), the input power in (b) is the actual 980 - nm laser power fed into the input fiber of each system.

Fig. 4
Fig. 4

(a) Two-dimensional map of PCL power coupled to the butt-end fiber. For the measurement, the fiber tip is laterally scanned relative to the PCL. (b) Fiber-coupled output power versus the vertical distance (between the fiber tip and the PCL surface) for two different butt-end fiber tips cut at different angles. The curves are horizontally shifted to facilitate comparison.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

δ η exe = Δ N out Δ N in = Δ P out h ν BEL Δ P in h ν pump = Δ P out λ BEL Δ P in λ pump ,

Metrics