Abstract

We demonstrate a technique to lock the frequency of a laser to a transition between two excited states in Rb vapor using a two-photon process in the presence of a weak magnetic field. We use a ladder configuration from specific hyperfine sublevels of the 5S12, 5P32, and 5D52 levels. This atomic configuration can show electromagnetically induced transparency and absorption processes. The error signal comes from the difference in the transparency or absorption felt by the two orthogonal polarizations of the probe beam. A simplified model is in good quantitative agreement with the observed signals for the experimental parameters. We have used this technique to lock the frequency of the laser up to 1.5GHz off atomic resonance.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Pérez Galván, Y. Zhao, L. A. Orozco, E. Gómez, A. D. Lange, F. Baumer, and G. D. Sprouse, “Comparison of hyperfine anomalies in the 5S1/2 and 6S1/2 levels of Rb85, and Rb85,” Phys. Lett. B 655, 114-118 (2007).
    [CrossRef]
  2. F. E. Becerra, R. T. Willis, S. L. Rolston, and L. A. Orozco, “Nondegenerate four-wave mixing in rubidium vapor: the diamond configuration,” Phys. Rev. A 78, 013834 (2008).
    [CrossRef]
  3. R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, “Four-wave mixing in the diamond configuration in an atomic vapor,” Phys. Rev. A 79, 033814 (2009).
    [CrossRef]
  4. D. Sheng, A. Pérez Galván, and L. A. Orozco, “Lifetime measurements of the 5d states of rubidium,” Phys. Rev. A 78, 062506 (2008).
    [CrossRef]
  5. R. Boucher, M. Breton, N. Cyr, and M. Tetu, “Dither-free absolute frequency locking of a 1.3 μm, dfb laser on Rb87,” IEEE Photonics Technol. Lett. 4, 327-329 (1992).
    [CrossRef]
  6. M. Breton, P. Tremblay, C. Julien, N. Cyr, M. Tetu, and C. Latrasse, “Optically pumped rubidium as a frequency standard at 196 THz,” IEEE Trans. Instrum. Meas. 44, 162-165 (1995).
    [CrossRef]
  7. A. Danielli, P. Rusian, A. Arie, M. H. Chou, and M. M. Fejer, “Frequency stabilization of a frequency-doubled 1556-nm source to the 5S1/2-5D5/2 two-photon transitions of rubidium,” Opt. Lett. 12, 905-907 (2000).
    [CrossRef]
  8. S. Baluschev, N. Friedman, L. Khaykovich, D. Carasso, B. Johns, and N. Davidson, “Tunable and frequency-stabilized diode laser with a Doppler-free two-photon Zeeman lock,” Appl. Opt. 39, 4970-4974 (2000).
    [CrossRef]
  9. A. Pérez Galván, Y. Zhao, and L. A. Orozco, “Measurement of the hyperfine splitting of the 6S1/2 level in rubidium,” Phys. Rev. A 78, 012502 (2008).
    [CrossRef]
  10. A. Pérez Galván, D. Sheng, L. A. Orozco, and Y. Zhao, “Two-color modulation transfer spectroscopy,” Can. J. Phys. 87, 95 (2009).
    [CrossRef]
  11. D. V. Sheludko, S. C. Bell, R. Anderson, C. S. Hofmann, E. J. D. Vredenbregt, and R. E. Scholten, “State-selective imaging of cold atoms,” Phys. Rev. A 77, 033401 (2008).
    [CrossRef]
  12. H. S. Moon, W. K. Lee, L. Lee, and J. B. Kim, “Double resonance optical pumping spectrum and its application for frequency stabilization of a laser diode,” Appl. Phys. Lett. 85, 3965-3967(2004).
    [CrossRef]
  13. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633-673 (2005).
    [CrossRef]
  14. A. Lezama, S. Barreiro, and A. M. Akulshin, “Electromagnetically induced absorption,” Phys. Rev. A 59, 4732-4735 (1999).
    [CrossRef]
  15. H. S. Moon, L. Lee, K. Kim, and J. B. Kim, “Laser frequency stabilizations using electromagnetically induced transparency,” Appl. Phys. Lett. 84, 3001 (2004).
    [CrossRef]
  16. T. H. Yoon, C. Y. Park, and S. J. Park, “Laser-induced birefringence in a wavelength-mismatched cascade system of inhomogeneously broadened Yb atoms,” Phys. Rev. A 70, 061803 (2004).
    [CrossRef]
  17. S. C. Bell, D. M. Heywood, J. D. White, J. D. Close, and R. E. Scholten, “Laser frequency offset locking using electromagnetically induced transparency,” Appl. Phys. Lett. 90, 171120 (2007).
    [CrossRef]
  18. S. Müller, “Nonlinear optics involving Rydberg states in a rubidium vapor cell,” Diploma Thesis (2008), Universität Stuttgart, unpublished.
  19. R. P. Abel, A. K. Mohapatra, M. G. Bason, J. D. Pritchard, K. J. Weatherill, U. Raitzsch, and C. S. Adams, “Laser frequency stabilization to highly excited state transitions using electromagnetically induced transparency in a cascade system,” Appl. Phys. Lett. 94, 071107 (2009).
    [CrossRef]
  20. K. L. Corwin, Z. T. Lu, C. F. Hand, R. J. Epstein, and C. E. Wieman, “Frequency-stabilized diode laser with the Zeeman shift in an atomic vapor,” Appl. Opt. 37, 3295-3298 (1998).
    [CrossRef]
  21. N. P. Robins, B. J. J. Slagmolen, D. A. Shaddock, J. D. Close, and M. B. Gray, “Interferometric, modulation-free laser stabilization,” Opt. Lett. 27, 1905-1907 (2002).
    [CrossRef]
  22. G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, “Laser frequency stabilization by Doppler-free magnetic dichroism,” Appl. Phys. B: Lasers Opt. 75, 613-619 (2002).
    [CrossRef]
  23. M. Maric and A. Luiten, “Power-insensitive side locking for laser frequency stabilization,” Opt. Lett. 30, 1153-1155 (2005).
    [CrossRef] [PubMed]
  24. J. Gea-Banacloche, Y.-Q. Li, S.-Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51, 576-584 (1995).
    [CrossRef] [PubMed]
  25. T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16, 630-631 (1980).
    [CrossRef]

2009 (3)

R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, “Four-wave mixing in the diamond configuration in an atomic vapor,” Phys. Rev. A 79, 033814 (2009).
[CrossRef]

A. Pérez Galván, D. Sheng, L. A. Orozco, and Y. Zhao, “Two-color modulation transfer spectroscopy,” Can. J. Phys. 87, 95 (2009).
[CrossRef]

R. P. Abel, A. K. Mohapatra, M. G. Bason, J. D. Pritchard, K. J. Weatherill, U. Raitzsch, and C. S. Adams, “Laser frequency stabilization to highly excited state transitions using electromagnetically induced transparency in a cascade system,” Appl. Phys. Lett. 94, 071107 (2009).
[CrossRef]

2008 (4)

D. V. Sheludko, S. C. Bell, R. Anderson, C. S. Hofmann, E. J. D. Vredenbregt, and R. E. Scholten, “State-selective imaging of cold atoms,” Phys. Rev. A 77, 033401 (2008).
[CrossRef]

D. Sheng, A. Pérez Galván, and L. A. Orozco, “Lifetime measurements of the 5d states of rubidium,” Phys. Rev. A 78, 062506 (2008).
[CrossRef]

F. E. Becerra, R. T. Willis, S. L. Rolston, and L. A. Orozco, “Nondegenerate four-wave mixing in rubidium vapor: the diamond configuration,” Phys. Rev. A 78, 013834 (2008).
[CrossRef]

A. Pérez Galván, Y. Zhao, and L. A. Orozco, “Measurement of the hyperfine splitting of the 6S1/2 level in rubidium,” Phys. Rev. A 78, 012502 (2008).
[CrossRef]

2007 (2)

A. Pérez Galván, Y. Zhao, L. A. Orozco, E. Gómez, A. D. Lange, F. Baumer, and G. D. Sprouse, “Comparison of hyperfine anomalies in the 5S1/2 and 6S1/2 levels of Rb85, and Rb85,” Phys. Lett. B 655, 114-118 (2007).
[CrossRef]

S. C. Bell, D. M. Heywood, J. D. White, J. D. Close, and R. E. Scholten, “Laser frequency offset locking using electromagnetically induced transparency,” Appl. Phys. Lett. 90, 171120 (2007).
[CrossRef]

2005 (2)

M. Maric and A. Luiten, “Power-insensitive side locking for laser frequency stabilization,” Opt. Lett. 30, 1153-1155 (2005).
[CrossRef] [PubMed]

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633-673 (2005).
[CrossRef]

2004 (3)

H. S. Moon, W. K. Lee, L. Lee, and J. B. Kim, “Double resonance optical pumping spectrum and its application for frequency stabilization of a laser diode,” Appl. Phys. Lett. 85, 3965-3967(2004).
[CrossRef]

H. S. Moon, L. Lee, K. Kim, and J. B. Kim, “Laser frequency stabilizations using electromagnetically induced transparency,” Appl. Phys. Lett. 84, 3001 (2004).
[CrossRef]

T. H. Yoon, C. Y. Park, and S. J. Park, “Laser-induced birefringence in a wavelength-mismatched cascade system of inhomogeneously broadened Yb atoms,” Phys. Rev. A 70, 061803 (2004).
[CrossRef]

2002 (2)

N. P. Robins, B. J. J. Slagmolen, D. A. Shaddock, J. D. Close, and M. B. Gray, “Interferometric, modulation-free laser stabilization,” Opt. Lett. 27, 1905-1907 (2002).
[CrossRef]

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, “Laser frequency stabilization by Doppler-free magnetic dichroism,” Appl. Phys. B: Lasers Opt. 75, 613-619 (2002).
[CrossRef]

2000 (2)

A. Danielli, P. Rusian, A. Arie, M. H. Chou, and M. M. Fejer, “Frequency stabilization of a frequency-doubled 1556-nm source to the 5S1/2-5D5/2 two-photon transitions of rubidium,” Opt. Lett. 12, 905-907 (2000).
[CrossRef]

S. Baluschev, N. Friedman, L. Khaykovich, D. Carasso, B. Johns, and N. Davidson, “Tunable and frequency-stabilized diode laser with a Doppler-free two-photon Zeeman lock,” Appl. Opt. 39, 4970-4974 (2000).
[CrossRef]

1999 (1)

A. Lezama, S. Barreiro, and A. M. Akulshin, “Electromagnetically induced absorption,” Phys. Rev. A 59, 4732-4735 (1999).
[CrossRef]

1998 (1)

1995 (2)

M. Breton, P. Tremblay, C. Julien, N. Cyr, M. Tetu, and C. Latrasse, “Optically pumped rubidium as a frequency standard at 196 THz,” IEEE Trans. Instrum. Meas. 44, 162-165 (1995).
[CrossRef]

J. Gea-Banacloche, Y.-Q. Li, S.-Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51, 576-584 (1995).
[CrossRef] [PubMed]

1992 (1)

R. Boucher, M. Breton, N. Cyr, and M. Tetu, “Dither-free absolute frequency locking of a 1.3 μm, dfb laser on Rb87,” IEEE Photonics Technol. Lett. 4, 327-329 (1992).
[CrossRef]

1980 (1)

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16, 630-631 (1980).
[CrossRef]

Abel, R. P.

R. P. Abel, A. K. Mohapatra, M. G. Bason, J. D. Pritchard, K. J. Weatherill, U. Raitzsch, and C. S. Adams, “Laser frequency stabilization to highly excited state transitions using electromagnetically induced transparency in a cascade system,” Appl. Phys. Lett. 94, 071107 (2009).
[CrossRef]

Adams, C. S.

R. P. Abel, A. K. Mohapatra, M. G. Bason, J. D. Pritchard, K. J. Weatherill, U. Raitzsch, and C. S. Adams, “Laser frequency stabilization to highly excited state transitions using electromagnetically induced transparency in a cascade system,” Appl. Phys. Lett. 94, 071107 (2009).
[CrossRef]

Akulshin, A. M.

A. Lezama, S. Barreiro, and A. M. Akulshin, “Electromagnetically induced absorption,” Phys. Rev. A 59, 4732-4735 (1999).
[CrossRef]

Anderson, R.

D. V. Sheludko, S. C. Bell, R. Anderson, C. S. Hofmann, E. J. D. Vredenbregt, and R. E. Scholten, “State-selective imaging of cold atoms,” Phys. Rev. A 77, 033401 (2008).
[CrossRef]

Arie, A.

A. Danielli, P. Rusian, A. Arie, M. H. Chou, and M. M. Fejer, “Frequency stabilization of a frequency-doubled 1556-nm source to the 5S1/2-5D5/2 two-photon transitions of rubidium,” Opt. Lett. 12, 905-907 (2000).
[CrossRef]

Baluschev, S.

Barreiro, S.

A. Lezama, S. Barreiro, and A. M. Akulshin, “Electromagnetically induced absorption,” Phys. Rev. A 59, 4732-4735 (1999).
[CrossRef]

Bason, M. G.

R. P. Abel, A. K. Mohapatra, M. G. Bason, J. D. Pritchard, K. J. Weatherill, U. Raitzsch, and C. S. Adams, “Laser frequency stabilization to highly excited state transitions using electromagnetically induced transparency in a cascade system,” Appl. Phys. Lett. 94, 071107 (2009).
[CrossRef]

Baumer, F.

A. Pérez Galván, Y. Zhao, L. A. Orozco, E. Gómez, A. D. Lange, F. Baumer, and G. D. Sprouse, “Comparison of hyperfine anomalies in the 5S1/2 and 6S1/2 levels of Rb85, and Rb85,” Phys. Lett. B 655, 114-118 (2007).
[CrossRef]

Becerra, F. E.

R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, “Four-wave mixing in the diamond configuration in an atomic vapor,” Phys. Rev. A 79, 033814 (2009).
[CrossRef]

F. E. Becerra, R. T. Willis, S. L. Rolston, and L. A. Orozco, “Nondegenerate four-wave mixing in rubidium vapor: the diamond configuration,” Phys. Rev. A 78, 013834 (2008).
[CrossRef]

Bell, S. C.

D. V. Sheludko, S. C. Bell, R. Anderson, C. S. Hofmann, E. J. D. Vredenbregt, and R. E. Scholten, “State-selective imaging of cold atoms,” Phys. Rev. A 77, 033401 (2008).
[CrossRef]

S. C. Bell, D. M. Heywood, J. D. White, J. D. Close, and R. E. Scholten, “Laser frequency offset locking using electromagnetically induced transparency,” Appl. Phys. Lett. 90, 171120 (2007).
[CrossRef]

Boucher, R.

R. Boucher, M. Breton, N. Cyr, and M. Tetu, “Dither-free absolute frequency locking of a 1.3 μm, dfb laser on Rb87,” IEEE Photonics Technol. Lett. 4, 327-329 (1992).
[CrossRef]

Breton, M.

M. Breton, P. Tremblay, C. Julien, N. Cyr, M. Tetu, and C. Latrasse, “Optically pumped rubidium as a frequency standard at 196 THz,” IEEE Trans. Instrum. Meas. 44, 162-165 (1995).
[CrossRef]

R. Boucher, M. Breton, N. Cyr, and M. Tetu, “Dither-free absolute frequency locking of a 1.3 μm, dfb laser on Rb87,” IEEE Photonics Technol. Lett. 4, 327-329 (1992).
[CrossRef]

Carasso, D.

Chou, M. H.

A. Danielli, P. Rusian, A. Arie, M. H. Chou, and M. M. Fejer, “Frequency stabilization of a frequency-doubled 1556-nm source to the 5S1/2-5D5/2 two-photon transitions of rubidium,” Opt. Lett. 12, 905-907 (2000).
[CrossRef]

Close, J. D.

S. C. Bell, D. M. Heywood, J. D. White, J. D. Close, and R. E. Scholten, “Laser frequency offset locking using electromagnetically induced transparency,” Appl. Phys. Lett. 90, 171120 (2007).
[CrossRef]

N. P. Robins, B. J. J. Slagmolen, D. A. Shaddock, J. D. Close, and M. B. Gray, “Interferometric, modulation-free laser stabilization,” Opt. Lett. 27, 1905-1907 (2002).
[CrossRef]

Corwin, K. L.

Cyr, N.

M. Breton, P. Tremblay, C. Julien, N. Cyr, M. Tetu, and C. Latrasse, “Optically pumped rubidium as a frequency standard at 196 THz,” IEEE Trans. Instrum. Meas. 44, 162-165 (1995).
[CrossRef]

R. Boucher, M. Breton, N. Cyr, and M. Tetu, “Dither-free absolute frequency locking of a 1.3 μm, dfb laser on Rb87,” IEEE Photonics Technol. Lett. 4, 327-329 (1992).
[CrossRef]

Danielli, A.

A. Danielli, P. Rusian, A. Arie, M. H. Chou, and M. M. Fejer, “Frequency stabilization of a frequency-doubled 1556-nm source to the 5S1/2-5D5/2 two-photon transitions of rubidium,” Opt. Lett. 12, 905-907 (2000).
[CrossRef]

Davidson, N.

Epstein, R. J.

Fejer, M. M.

A. Danielli, P. Rusian, A. Arie, M. H. Chou, and M. M. Fejer, “Frequency stabilization of a frequency-doubled 1556-nm source to the 5S1/2-5D5/2 two-photon transitions of rubidium,” Opt. Lett. 12, 905-907 (2000).
[CrossRef]

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633-673 (2005).
[CrossRef]

Friedman, N.

Gawlik, W.

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, “Laser frequency stabilization by Doppler-free magnetic dichroism,” Appl. Phys. B: Lasers Opt. 75, 613-619 (2002).
[CrossRef]

Gea-Banacloche, J.

J. Gea-Banacloche, Y.-Q. Li, S.-Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51, 576-584 (1995).
[CrossRef] [PubMed]

Gómez, E.

A. Pérez Galván, Y. Zhao, L. A. Orozco, E. Gómez, A. D. Lange, F. Baumer, and G. D. Sprouse, “Comparison of hyperfine anomalies in the 5S1/2 and 6S1/2 levels of Rb85, and Rb85,” Phys. Lett. B 655, 114-118 (2007).
[CrossRef]

Gray, M. B.

Hand, C. F.

Heywood, D. M.

S. C. Bell, D. M. Heywood, J. D. White, J. D. Close, and R. E. Scholten, “Laser frequency offset locking using electromagnetically induced transparency,” Appl. Phys. Lett. 90, 171120 (2007).
[CrossRef]

Hofmann, C. S.

D. V. Sheludko, S. C. Bell, R. Anderson, C. S. Hofmann, E. J. D. Vredenbregt, and R. E. Scholten, “State-selective imaging of cold atoms,” Phys. Rev. A 77, 033401 (2008).
[CrossRef]

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633-673 (2005).
[CrossRef]

Jin, S.-Z.

J. Gea-Banacloche, Y.-Q. Li, S.-Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51, 576-584 (1995).
[CrossRef] [PubMed]

Johns, B.

Julien, C.

M. Breton, P. Tremblay, C. Julien, N. Cyr, M. Tetu, and C. Latrasse, “Optically pumped rubidium as a frequency standard at 196 THz,” IEEE Trans. Instrum. Meas. 44, 162-165 (1995).
[CrossRef]

Khaykovich, L.

Kikuchi, K.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16, 630-631 (1980).
[CrossRef]

Kim, J. B.

H. S. Moon, W. K. Lee, L. Lee, and J. B. Kim, “Double resonance optical pumping spectrum and its application for frequency stabilization of a laser diode,” Appl. Phys. Lett. 85, 3965-3967(2004).
[CrossRef]

H. S. Moon, L. Lee, K. Kim, and J. B. Kim, “Laser frequency stabilizations using electromagnetically induced transparency,” Appl. Phys. Lett. 84, 3001 (2004).
[CrossRef]

Kim, K.

H. S. Moon, L. Lee, K. Kim, and J. B. Kim, “Laser frequency stabilizations using electromagnetically induced transparency,” Appl. Phys. Lett. 84, 3001 (2004).
[CrossRef]

Lange, A. D.

A. Pérez Galván, Y. Zhao, L. A. Orozco, E. Gómez, A. D. Lange, F. Baumer, and G. D. Sprouse, “Comparison of hyperfine anomalies in the 5S1/2 and 6S1/2 levels of Rb85, and Rb85,” Phys. Lett. B 655, 114-118 (2007).
[CrossRef]

Latrasse, C.

M. Breton, P. Tremblay, C. Julien, N. Cyr, M. Tetu, and C. Latrasse, “Optically pumped rubidium as a frequency standard at 196 THz,” IEEE Trans. Instrum. Meas. 44, 162-165 (1995).
[CrossRef]

Lee, L.

H. S. Moon, W. K. Lee, L. Lee, and J. B. Kim, “Double resonance optical pumping spectrum and its application for frequency stabilization of a laser diode,” Appl. Phys. Lett. 85, 3965-3967(2004).
[CrossRef]

H. S. Moon, L. Lee, K. Kim, and J. B. Kim, “Laser frequency stabilizations using electromagnetically induced transparency,” Appl. Phys. Lett. 84, 3001 (2004).
[CrossRef]

Lee, W. K.

H. S. Moon, W. K. Lee, L. Lee, and J. B. Kim, “Double resonance optical pumping spectrum and its application for frequency stabilization of a laser diode,” Appl. Phys. Lett. 85, 3965-3967(2004).
[CrossRef]

Lezama, A.

A. Lezama, S. Barreiro, and A. M. Akulshin, “Electromagnetically induced absorption,” Phys. Rev. A 59, 4732-4735 (1999).
[CrossRef]

Li, Y.-Q.

J. Gea-Banacloche, Y.-Q. Li, S.-Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51, 576-584 (1995).
[CrossRef] [PubMed]

Lu, Z. T.

Luiten, A.

Marangos, J. P.

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633-673 (2005).
[CrossRef]

Maric, M.

Mohapatra, A. K.

R. P. Abel, A. K. Mohapatra, M. G. Bason, J. D. Pritchard, K. J. Weatherill, U. Raitzsch, and C. S. Adams, “Laser frequency stabilization to highly excited state transitions using electromagnetically induced transparency in a cascade system,” Appl. Phys. Lett. 94, 071107 (2009).
[CrossRef]

Moon, H. S.

H. S. Moon, W. K. Lee, L. Lee, and J. B. Kim, “Double resonance optical pumping spectrum and its application for frequency stabilization of a laser diode,” Appl. Phys. Lett. 85, 3965-3967(2004).
[CrossRef]

H. S. Moon, L. Lee, K. Kim, and J. B. Kim, “Laser frequency stabilizations using electromagnetically induced transparency,” Appl. Phys. Lett. 84, 3001 (2004).
[CrossRef]

Müller, S.

S. Müller, “Nonlinear optics involving Rydberg states in a rubidium vapor cell,” Diploma Thesis (2008), Universität Stuttgart, unpublished.

Nakayama, A.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16, 630-631 (1980).
[CrossRef]

Okoshi, T.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16, 630-631 (1980).
[CrossRef]

Orozco, L. A.

A. Pérez Galván, D. Sheng, L. A. Orozco, and Y. Zhao, “Two-color modulation transfer spectroscopy,” Can. J. Phys. 87, 95 (2009).
[CrossRef]

R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, “Four-wave mixing in the diamond configuration in an atomic vapor,” Phys. Rev. A 79, 033814 (2009).
[CrossRef]

A. Pérez Galván, Y. Zhao, and L. A. Orozco, “Measurement of the hyperfine splitting of the 6S1/2 level in rubidium,” Phys. Rev. A 78, 012502 (2008).
[CrossRef]

F. E. Becerra, R. T. Willis, S. L. Rolston, and L. A. Orozco, “Nondegenerate four-wave mixing in rubidium vapor: the diamond configuration,” Phys. Rev. A 78, 013834 (2008).
[CrossRef]

D. Sheng, A. Pérez Galván, and L. A. Orozco, “Lifetime measurements of the 5d states of rubidium,” Phys. Rev. A 78, 062506 (2008).
[CrossRef]

A. Pérez Galván, Y. Zhao, L. A. Orozco, E. Gómez, A. D. Lange, F. Baumer, and G. D. Sprouse, “Comparison of hyperfine anomalies in the 5S1/2 and 6S1/2 levels of Rb85, and Rb85,” Phys. Lett. B 655, 114-118 (2007).
[CrossRef]

Park, C. Y.

T. H. Yoon, C. Y. Park, and S. J. Park, “Laser-induced birefringence in a wavelength-mismatched cascade system of inhomogeneously broadened Yb atoms,” Phys. Rev. A 70, 061803 (2004).
[CrossRef]

Park, S. J.

T. H. Yoon, C. Y. Park, and S. J. Park, “Laser-induced birefringence in a wavelength-mismatched cascade system of inhomogeneously broadened Yb atoms,” Phys. Rev. A 70, 061803 (2004).
[CrossRef]

Pérez Galván, A.

A. Pérez Galván, D. Sheng, L. A. Orozco, and Y. Zhao, “Two-color modulation transfer spectroscopy,” Can. J. Phys. 87, 95 (2009).
[CrossRef]

D. Sheng, A. Pérez Galván, and L. A. Orozco, “Lifetime measurements of the 5d states of rubidium,” Phys. Rev. A 78, 062506 (2008).
[CrossRef]

A. Pérez Galván, Y. Zhao, and L. A. Orozco, “Measurement of the hyperfine splitting of the 6S1/2 level in rubidium,” Phys. Rev. A 78, 012502 (2008).
[CrossRef]

A. Pérez Galván, Y. Zhao, L. A. Orozco, E. Gómez, A. D. Lange, F. Baumer, and G. D. Sprouse, “Comparison of hyperfine anomalies in the 5S1/2 and 6S1/2 levels of Rb85, and Rb85,” Phys. Lett. B 655, 114-118 (2007).
[CrossRef]

Pritchard, J. D.

R. P. Abel, A. K. Mohapatra, M. G. Bason, J. D. Pritchard, K. J. Weatherill, U. Raitzsch, and C. S. Adams, “Laser frequency stabilization to highly excited state transitions using electromagnetically induced transparency in a cascade system,” Appl. Phys. Lett. 94, 071107 (2009).
[CrossRef]

Raitzsch, U.

R. P. Abel, A. K. Mohapatra, M. G. Bason, J. D. Pritchard, K. J. Weatherill, U. Raitzsch, and C. S. Adams, “Laser frequency stabilization to highly excited state transitions using electromagnetically induced transparency in a cascade system,” Appl. Phys. Lett. 94, 071107 (2009).
[CrossRef]

Robins, N. P.

Rolston, S. L.

R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, “Four-wave mixing in the diamond configuration in an atomic vapor,” Phys. Rev. A 79, 033814 (2009).
[CrossRef]

F. E. Becerra, R. T. Willis, S. L. Rolston, and L. A. Orozco, “Nondegenerate four-wave mixing in rubidium vapor: the diamond configuration,” Phys. Rev. A 78, 013834 (2008).
[CrossRef]

Rusian, P.

A. Danielli, P. Rusian, A. Arie, M. H. Chou, and M. M. Fejer, “Frequency stabilization of a frequency-doubled 1556-nm source to the 5S1/2-5D5/2 two-photon transitions of rubidium,” Opt. Lett. 12, 905-907 (2000).
[CrossRef]

Scholten, R. E.

D. V. Sheludko, S. C. Bell, R. Anderson, C. S. Hofmann, E. J. D. Vredenbregt, and R. E. Scholten, “State-selective imaging of cold atoms,” Phys. Rev. A 77, 033401 (2008).
[CrossRef]

S. C. Bell, D. M. Heywood, J. D. White, J. D. Close, and R. E. Scholten, “Laser frequency offset locking using electromagnetically induced transparency,” Appl. Phys. Lett. 90, 171120 (2007).
[CrossRef]

Shaddock, D. A.

Sheludko, D. V.

D. V. Sheludko, S. C. Bell, R. Anderson, C. S. Hofmann, E. J. D. Vredenbregt, and R. E. Scholten, “State-selective imaging of cold atoms,” Phys. Rev. A 77, 033401 (2008).
[CrossRef]

Sheng, D.

A. Pérez Galván, D. Sheng, L. A. Orozco, and Y. Zhao, “Two-color modulation transfer spectroscopy,” Can. J. Phys. 87, 95 (2009).
[CrossRef]

D. Sheng, A. Pérez Galván, and L. A. Orozco, “Lifetime measurements of the 5d states of rubidium,” Phys. Rev. A 78, 062506 (2008).
[CrossRef]

Slagmolen, B. J. J.

Sprouse, G. D.

A. Pérez Galván, Y. Zhao, L. A. Orozco, E. Gómez, A. D. Lange, F. Baumer, and G. D. Sprouse, “Comparison of hyperfine anomalies in the 5S1/2 and 6S1/2 levels of Rb85, and Rb85,” Phys. Lett. B 655, 114-118 (2007).
[CrossRef]

Tetu, M.

M. Breton, P. Tremblay, C. Julien, N. Cyr, M. Tetu, and C. Latrasse, “Optically pumped rubidium as a frequency standard at 196 THz,” IEEE Trans. Instrum. Meas. 44, 162-165 (1995).
[CrossRef]

R. Boucher, M. Breton, N. Cyr, and M. Tetu, “Dither-free absolute frequency locking of a 1.3 μm, dfb laser on Rb87,” IEEE Photonics Technol. Lett. 4, 327-329 (1992).
[CrossRef]

Tremblay, P.

M. Breton, P. Tremblay, C. Julien, N. Cyr, M. Tetu, and C. Latrasse, “Optically pumped rubidium as a frequency standard at 196 THz,” IEEE Trans. Instrum. Meas. 44, 162-165 (1995).
[CrossRef]

Vredenbregt, E. J. D.

D. V. Sheludko, S. C. Bell, R. Anderson, C. S. Hofmann, E. J. D. Vredenbregt, and R. E. Scholten, “State-selective imaging of cold atoms,” Phys. Rev. A 77, 033401 (2008).
[CrossRef]

Wasik, G.

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, “Laser frequency stabilization by Doppler-free magnetic dichroism,” Appl. Phys. B: Lasers Opt. 75, 613-619 (2002).
[CrossRef]

Weatherill, K. J.

R. P. Abel, A. K. Mohapatra, M. G. Bason, J. D. Pritchard, K. J. Weatherill, U. Raitzsch, and C. S. Adams, “Laser frequency stabilization to highly excited state transitions using electromagnetically induced transparency in a cascade system,” Appl. Phys. Lett. 94, 071107 (2009).
[CrossRef]

White, J. D.

S. C. Bell, D. M. Heywood, J. D. White, J. D. Close, and R. E. Scholten, “Laser frequency offset locking using electromagnetically induced transparency,” Appl. Phys. Lett. 90, 171120 (2007).
[CrossRef]

Wieman, C. E.

Willis, R. T.

R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, “Four-wave mixing in the diamond configuration in an atomic vapor,” Phys. Rev. A 79, 033814 (2009).
[CrossRef]

F. E. Becerra, R. T. Willis, S. L. Rolston, and L. A. Orozco, “Nondegenerate four-wave mixing in rubidium vapor: the diamond configuration,” Phys. Rev. A 78, 013834 (2008).
[CrossRef]

Xiao, M.

J. Gea-Banacloche, Y.-Q. Li, S.-Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51, 576-584 (1995).
[CrossRef] [PubMed]

Yoon, T. H.

T. H. Yoon, C. Y. Park, and S. J. Park, “Laser-induced birefringence in a wavelength-mismatched cascade system of inhomogeneously broadened Yb atoms,” Phys. Rev. A 70, 061803 (2004).
[CrossRef]

Zachorowski, J.

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, “Laser frequency stabilization by Doppler-free magnetic dichroism,” Appl. Phys. B: Lasers Opt. 75, 613-619 (2002).
[CrossRef]

Zawadzki, W.

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, “Laser frequency stabilization by Doppler-free magnetic dichroism,” Appl. Phys. B: Lasers Opt. 75, 613-619 (2002).
[CrossRef]

Zhao, Y.

A. Pérez Galván, D. Sheng, L. A. Orozco, and Y. Zhao, “Two-color modulation transfer spectroscopy,” Can. J. Phys. 87, 95 (2009).
[CrossRef]

A. Pérez Galván, Y. Zhao, and L. A. Orozco, “Measurement of the hyperfine splitting of the 6S1/2 level in rubidium,” Phys. Rev. A 78, 012502 (2008).
[CrossRef]

A. Pérez Galván, Y. Zhao, L. A. Orozco, E. Gómez, A. D. Lange, F. Baumer, and G. D. Sprouse, “Comparison of hyperfine anomalies in the 5S1/2 and 6S1/2 levels of Rb85, and Rb85,” Phys. Lett. B 655, 114-118 (2007).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B: Lasers Opt. (1)

G. Wasik, W. Gawlik, J. Zachorowski, and W. Zawadzki, “Laser frequency stabilization by Doppler-free magnetic dichroism,” Appl. Phys. B: Lasers Opt. 75, 613-619 (2002).
[CrossRef]

Appl. Phys. Lett. (4)

R. P. Abel, A. K. Mohapatra, M. G. Bason, J. D. Pritchard, K. J. Weatherill, U. Raitzsch, and C. S. Adams, “Laser frequency stabilization to highly excited state transitions using electromagnetically induced transparency in a cascade system,” Appl. Phys. Lett. 94, 071107 (2009).
[CrossRef]

H. S. Moon, W. K. Lee, L. Lee, and J. B. Kim, “Double resonance optical pumping spectrum and its application for frequency stabilization of a laser diode,” Appl. Phys. Lett. 85, 3965-3967(2004).
[CrossRef]

H. S. Moon, L. Lee, K. Kim, and J. B. Kim, “Laser frequency stabilizations using electromagnetically induced transparency,” Appl. Phys. Lett. 84, 3001 (2004).
[CrossRef]

S. C. Bell, D. M. Heywood, J. D. White, J. D. Close, and R. E. Scholten, “Laser frequency offset locking using electromagnetically induced transparency,” Appl. Phys. Lett. 90, 171120 (2007).
[CrossRef]

Can. J. Phys. (1)

A. Pérez Galván, D. Sheng, L. A. Orozco, and Y. Zhao, “Two-color modulation transfer spectroscopy,” Can. J. Phys. 87, 95 (2009).
[CrossRef]

Electron. Lett. (1)

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett. 16, 630-631 (1980).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

R. Boucher, M. Breton, N. Cyr, and M. Tetu, “Dither-free absolute frequency locking of a 1.3 μm, dfb laser on Rb87,” IEEE Photonics Technol. Lett. 4, 327-329 (1992).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

M. Breton, P. Tremblay, C. Julien, N. Cyr, M. Tetu, and C. Latrasse, “Optically pumped rubidium as a frequency standard at 196 THz,” IEEE Trans. Instrum. Meas. 44, 162-165 (1995).
[CrossRef]

Opt. Lett. (3)

Phys. Lett. B (1)

A. Pérez Galván, Y. Zhao, L. A. Orozco, E. Gómez, A. D. Lange, F. Baumer, and G. D. Sprouse, “Comparison of hyperfine anomalies in the 5S1/2 and 6S1/2 levels of Rb85, and Rb85,” Phys. Lett. B 655, 114-118 (2007).
[CrossRef]

Phys. Rev. A (8)

F. E. Becerra, R. T. Willis, S. L. Rolston, and L. A. Orozco, “Nondegenerate four-wave mixing in rubidium vapor: the diamond configuration,” Phys. Rev. A 78, 013834 (2008).
[CrossRef]

R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, “Four-wave mixing in the diamond configuration in an atomic vapor,” Phys. Rev. A 79, 033814 (2009).
[CrossRef]

D. Sheng, A. Pérez Galván, and L. A. Orozco, “Lifetime measurements of the 5d states of rubidium,” Phys. Rev. A 78, 062506 (2008).
[CrossRef]

A. Pérez Galván, Y. Zhao, and L. A. Orozco, “Measurement of the hyperfine splitting of the 6S1/2 level in rubidium,” Phys. Rev. A 78, 012502 (2008).
[CrossRef]

D. V. Sheludko, S. C. Bell, R. Anderson, C. S. Hofmann, E. J. D. Vredenbregt, and R. E. Scholten, “State-selective imaging of cold atoms,” Phys. Rev. A 77, 033401 (2008).
[CrossRef]

T. H. Yoon, C. Y. Park, and S. J. Park, “Laser-induced birefringence in a wavelength-mismatched cascade system of inhomogeneously broadened Yb atoms,” Phys. Rev. A 70, 061803 (2004).
[CrossRef]

A. Lezama, S. Barreiro, and A. M. Akulshin, “Electromagnetically induced absorption,” Phys. Rev. A 59, 4732-4735 (1999).
[CrossRef]

J. Gea-Banacloche, Y.-Q. Li, S.-Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51, 576-584 (1995).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633-673 (2005).
[CrossRef]

Other (1)

S. Müller, “Nonlinear optics involving Rydberg states in a rubidium vapor cell,” Diploma Thesis (2008), Universität Stuttgart, unpublished.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the atomic levels used and the experimental layout. (a) Three-level atomic model and energy levels in Rb. (b) Zeeman magnetic sublevels of the 5 S 1 2 , F = 3 , 5 P 3 2 , F = 4 , and 5 D 5 2 , F = 5 hyperfine levels in Rb 85 in the presence of a small magnetic field B (the splitting of the Zeeman sublevels is not to scale).

Fig. 2
Fig. 2

Experimental setup for the two-photon lock; two-photon DAVLL (top) and DAVLL (bottom): (P)BS, (polarizing) beam splitters; PM, permanent magnets; D, detectors; (Q)HWP, (quarter-) half-wave plates; WM, wavemeter; PID, feedback controllers; S1, S2, subtraction signals.

Fig. 3
Fig. 3

Probe absorption with and without coupling field of Ω c = 80 MHz from Eq. (2). (a) In the absence of coupling field, the probe shows a Doppler absorption profile. (b) With the coupling field on resonance, the probe experiences EIT. (c) With the coupling field off resonance, the probe experiences an increase in absorption due to two-photon absorption (TPIA) (the parameters used for these plots are similar to our experimental parameters).

Fig. 4
Fig. 4

Theoretical prediction of the S1 signal form Eq. (5) as a function of probe detuning for different coupling detunings. Theoretical T-P DAVLL signal × 5 in black: front plane, from EIT in dark gray (red); back plane, from TPIA in light gray (blue).

Fig. 5
Fig. 5

Experimental two-photon (T-P DAVLL) signal as a function of probe ( 780 nm ) frequency detuning for different coupling ( 776 nm ) detunings. (a) Experimental T-P DAVLL signal for 780 nm laser scanning on the transition 5 S 1 2 , F = 3 5 P 3 2 , F = 4 in Rb 85 . (b) Black line, T-P DAVLL signal for different levels in Rb for coupling laser on resonance; gray (red) line, absorption signal in detector D1.

Fig. 6
Fig. 6

Expected T-P DAVLL signal for frequency stabilization as a function of coupling laser detuning for probe laser locked on resonance for two different models: thick line, full model from Eq. (5); dashed line, J = 0 1 0 with Zeeman sublevels m F = 0 , m F = ± 1 and m F = 0 (both signals normalized for comparison).

Fig. 7
Fig. 7

Single shot of experimental (thin line) and modeled (thick line) T-P DAVLL signal for frequency stabilization as a function of 776 nm laser detuning for 780 nm laser locked on resonance (front plane) and 1.5 GHz off resonance (back plane).

Fig. 8
Fig. 8

Lock stability. (a) In-loop lock noise reduction of the coupling laser for Δ 776 = 0 and Δ 776 = 1.5 GHz . (b) Absolute frequency of the coupling laser over 2   hours measured with a wave meter. Dark (blue in color) lines, laser locked; light gray (orange in color) line, laser unlocked.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ρ 21 i g 21 γ 21 i Δ 1 + Ω c 2 4 γ 31 i ( Δ 1 + Δ 2 ) E p ,
χ = ( 4 i g 21 2 ε 0 ) N ( v ) γ 21 i Δ 1 i ω p c v + Ω c 2 4 γ 31 i Δ 2 γ i Δ ω L v c d v ,
Δ 1 ( m F , m F ) = Δ 1 0 + ( m F g F m F g F ) μ B B ,
Δ 2 ( m F , m F ) = Δ 2 0 + ( m F g F m F g F ) μ B B ,
g 21 ( m F , m F ) = g 21 0 ( F , F ) A 1 ( F , F ) × ( 1 ) m F ( F 1 F m F q 1 m F ) ,
g 32 ( m F , m F ) = g 32 0 ( F , F ) A 2 ( F , F ) × ( 1 ) m F ( F 1 F m F q 2 m F ) ,
S 1 = Im ( χ σ + χ σ ) ,
χ σ + ( ) = m F , F , F σ + ( ) χ ( m F , m F , m F ) ,

Metrics