Abstract

We investigate slow-light pulse propagation in an optical fiber via transient stimulated Brillouin scattering. Space–time evolution of a generating slow-light pulse is numerically calculated by solving three-wave coupled-mode equations between a pump beam, an acoustic wave, and a counterpropagating signal pulse. Our mathematical treatments are applicable to both narrowband and broadband pump cases. We show that the time delay of 85% pulse width can be obtained for a signal pulse of the order of subnanosecond pulse width by using a broadband pump, while the signal pulse is broadened only by 40% of the input signal pulse. The physical origin of the pulse broadening and distortion is explained in terms of the temporal decay of the induced acoustic field.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature (London) 397, 594-598 (1999).
    [CrossRef]
  2. P. Palinginis, F. Sedgwick, S. Crankshaw, M. Moewe, and C. J. Chang-Hasnain, “Room temperature slow light in a quantum-well waveguide via coherent population oscillation,” Opt. Express 13, 9909-9915 (2005).
    [CrossRef] [PubMed]
  3. A. Melloni, F. Morichetti, and M. Martinelli, “Optical slow wave structures,” Opt. Photon. News 14, 44-48 (2003).
    [CrossRef]
  4. Y. A. Vlasov, M. O. Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature (London) 438, 65-69 (2005).
    [CrossRef]
  5. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
    [CrossRef] [PubMed]
  6. D. Dahan and G. Eisenstien, “Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express 13, 6234-6248 (2005).
    [CrossRef] [PubMed]
  7. F. G. Sedgwick, C. J. Chang-Hasnain, P. C. Ku, and R. S. Tucker, “Storage-bit-rate product in slow-light optical buffers,” Electron. Lett. 41, 1347-1348 (2005).
    [CrossRef]
  8. B. Zhang, L. Zhang, L. S. Yan, I. Fazal, J. Y. Yang, and A. E. Willner, “Continuously tunable, bit-rate variable OTDM using broadband SBS slow-light delay line,” Opt. Express 15, 8317-8322 (2007).
    [CrossRef] [PubMed]
  9. H. J. Yang and S. J. Ben Yoo, “All-optical variable buffering strategies and switch fabric architectures for future all-optical data routers,” J. Lightwave Technol. 23, 3321-3330 (2005).
    [CrossRef]
  10. M. González Herráez, K. Y. Song, and L. Thévenaz, “Arbitrary-bandwidth Brillouin slow light in optical fibers,” Opt. Express 14, 1395-1400 (2006).
    [CrossRef] [PubMed]
  11. M. González Herráez, K. Y. Song, and L. Thévenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87, 081113 (2005).
    [CrossRef]
  12. M. D. Stenner, M. A. Neifeld, Z. M. Zhu, A. M. C. Dawes, and D. J. Gauthier, “Distortion management in slow-light pulse delay,” Opt. Express 13, 9995-10002 (2005).
    [CrossRef] [PubMed]
  13. T. Schneider, M. Junker, and K. U. Lauterbach, “Potential ultra wide slow-light bandwidth enhancement,” Opt. Express 14, 11082-11087 (2006).
    [CrossRef] [PubMed]
  14. Z. M. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “Broadband SBS slow light in an optical fiber,” J. Lightwave Technol. 25, 201-206 (2007).
    [CrossRef]
  15. K. Y. Song and K. Hotate, “25 GHz bandwidth Brillouin slow light in optical fibers,” Opt. Lett. 32, 217-219 (2007).
    [CrossRef] [PubMed]
  16. L. Y. Ren and Y. Tomita, “Reducing group-velocity-dispersion-dependent broadening of stimulated Brillouin scattering slow light in an optical fiber by use of a single pump laser,” J. Opt. Soc. Am. B 25, 741-746 (2008).
    [CrossRef]
  17. S. H. Wang, L. Y. Ren, Y. Liu, and Y. Tomita, “Zero-broadening SBS slow light propagation in an optical fiber using two broadband pump beams,” Opt. Express 16, 8067-8076 (2008).
    [CrossRef] [PubMed]
  18. T. Schneider, A. Wiatreck, and R. Henker, “Zero-broadening and pulse compression slow light in an optical fiber at high pulse delays,” Opt. Express 16, 15617-15622 (2008).
    [CrossRef] [PubMed]
  19. A. Wiatrek, R. Henker, S. Preußler, M. J. Ammann, A. T. Schwarzbacher, and T. Schneider, “Zero-broadening measurement in Brillouin based slow-light delays,” Opt. Express 17, 797-802 (2009).
    [CrossRef] [PubMed]
  20. V. P. Kalosha, L. Chen, and X. Y. Bao, “Slow light of subnanosecond pulses via stimulated Brillouin scattering in nonuniform fibers,” Phys. Rev. A 75, 021802 (2007).
    [CrossRef]
  21. V. P. Kalosha, L. Chen, and X. Y. Bao, “Slow and fast light via SBS in optical fibers for short pulses and broadband pump,” Opt. Express 14, 12693-12703 (2006).
    [CrossRef] [PubMed]
  22. Z. M. Zhu, D. J. Gauthier, Y. Okawachi, J. E. Sharping, A. L. Gaeta, R. W. Boyd, and A. E. Willner, “Numerical study of all-optical slow-light delays via stimulated Brillouin scattering in an optical fiber,” J. Opt. Soc. Am. B 22, 2378-2384 (2005).
    [CrossRef]
  23. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2005), Chap. 9.
  24. R. W. Boyd, Nonlinear Optics (Academic, 2003), Chap. 9.
  25. I. Velchev, D. Neshev, W. Hogervorst, and W. Ubachs, “Pulse compression to the subphonon lifetime region by half-cycle gain in transient stimulated Brillouin scattering,” IEEE J. Quantum Electron. 35, 1812-1816 (1999).
    [CrossRef]
  26. C. M. de Sterke, K. R. Jackson, and B. D. Robert, “Nonlinear coupled-mode equations on a finite interval: a numerical procedure,” J. Opt. Soc. Am. B 8, 403-412 (1991).
    [CrossRef]
  27. Y. Wang, W. Zhang, Y. D. Huang, and J. D. Peng, “SBS slow light in high nonlinearity photonic crystal fiber,” in National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper JWA13.
    [CrossRef]

2009 (1)

2008 (3)

2007 (4)

2006 (3)

2005 (9)

M. González Herráez, K. Y. Song, and L. Thévenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87, 081113 (2005).
[CrossRef]

M. D. Stenner, M. A. Neifeld, Z. M. Zhu, A. M. C. Dawes, and D. J. Gauthier, “Distortion management in slow-light pulse delay,” Opt. Express 13, 9995-10002 (2005).
[CrossRef] [PubMed]

H. J. Yang and S. J. Ben Yoo, “All-optical variable buffering strategies and switch fabric architectures for future all-optical data routers,” J. Lightwave Technol. 23, 3321-3330 (2005).
[CrossRef]

P. Palinginis, F. Sedgwick, S. Crankshaw, M. Moewe, and C. J. Chang-Hasnain, “Room temperature slow light in a quantum-well waveguide via coherent population oscillation,” Opt. Express 13, 9909-9915 (2005).
[CrossRef] [PubMed]

Y. A. Vlasov, M. O. Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature (London) 438, 65-69 (2005).
[CrossRef]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

D. Dahan and G. Eisenstien, “Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express 13, 6234-6248 (2005).
[CrossRef] [PubMed]

F. G. Sedgwick, C. J. Chang-Hasnain, P. C. Ku, and R. S. Tucker, “Storage-bit-rate product in slow-light optical buffers,” Electron. Lett. 41, 1347-1348 (2005).
[CrossRef]

Z. M. Zhu, D. J. Gauthier, Y. Okawachi, J. E. Sharping, A. L. Gaeta, R. W. Boyd, and A. E. Willner, “Numerical study of all-optical slow-light delays via stimulated Brillouin scattering in an optical fiber,” J. Opt. Soc. Am. B 22, 2378-2384 (2005).
[CrossRef]

2003 (1)

A. Melloni, F. Morichetti, and M. Martinelli, “Optical slow wave structures,” Opt. Photon. News 14, 44-48 (2003).
[CrossRef]

1999 (2)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature (London) 397, 594-598 (1999).
[CrossRef]

I. Velchev, D. Neshev, W. Hogervorst, and W. Ubachs, “Pulse compression to the subphonon lifetime region by half-cycle gain in transient stimulated Brillouin scattering,” IEEE J. Quantum Electron. 35, 1812-1816 (1999).
[CrossRef]

1991 (1)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2005), Chap. 9.

Ammann, M. J.

Bao, X. Y.

V. P. Kalosha, L. Chen, and X. Y. Bao, “Slow light of subnanosecond pulses via stimulated Brillouin scattering in nonuniform fibers,” Phys. Rev. A 75, 021802 (2007).
[CrossRef]

V. P. Kalosha, L. Chen, and X. Y. Bao, “Slow and fast light via SBS in optical fibers for short pulses and broadband pump,” Opt. Express 14, 12693-12703 (2006).
[CrossRef] [PubMed]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature (London) 397, 594-598 (1999).
[CrossRef]

Ben Yoo, S. J.

Bigelow, M. S.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Boyd, R. W.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Z. M. Zhu, D. J. Gauthier, Y. Okawachi, J. E. Sharping, A. L. Gaeta, R. W. Boyd, and A. E. Willner, “Numerical study of all-optical slow-light delays via stimulated Brillouin scattering in an optical fiber,” J. Opt. Soc. Am. B 22, 2378-2384 (2005).
[CrossRef]

R. W. Boyd, Nonlinear Optics (Academic, 2003), Chap. 9.

Boyle, M. O.

Y. A. Vlasov, M. O. Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature (London) 438, 65-69 (2005).
[CrossRef]

Chang-Hasnain, C. J.

F. G. Sedgwick, C. J. Chang-Hasnain, P. C. Ku, and R. S. Tucker, “Storage-bit-rate product in slow-light optical buffers,” Electron. Lett. 41, 1347-1348 (2005).
[CrossRef]

P. Palinginis, F. Sedgwick, S. Crankshaw, M. Moewe, and C. J. Chang-Hasnain, “Room temperature slow light in a quantum-well waveguide via coherent population oscillation,” Opt. Express 13, 9909-9915 (2005).
[CrossRef] [PubMed]

Chen, L.

V. P. Kalosha, L. Chen, and X. Y. Bao, “Slow light of subnanosecond pulses via stimulated Brillouin scattering in nonuniform fibers,” Phys. Rev. A 75, 021802 (2007).
[CrossRef]

V. P. Kalosha, L. Chen, and X. Y. Bao, “Slow and fast light via SBS in optical fibers for short pulses and broadband pump,” Opt. Express 14, 12693-12703 (2006).
[CrossRef] [PubMed]

Crankshaw, S.

Dahan, D.

Dawes, A. M. C.

de Sterke, C. M.

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature (London) 397, 594-598 (1999).
[CrossRef]

Eisenstien, G.

Fazal, I.

Gaeta, A. L.

Z. M. Zhu, D. J. Gauthier, Y. Okawachi, J. E. Sharping, A. L. Gaeta, R. W. Boyd, and A. E. Willner, “Numerical study of all-optical slow-light delays via stimulated Brillouin scattering in an optical fiber,” J. Opt. Soc. Am. B 22, 2378-2384 (2005).
[CrossRef]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Gauthier, D. J.

González Herráez, M.

M. González Herráez, K. Y. Song, and L. Thévenaz, “Arbitrary-bandwidth Brillouin slow light in optical fibers,” Opt. Express 14, 1395-1400 (2006).
[CrossRef] [PubMed]

M. González Herráez, K. Y. Song, and L. Thévenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87, 081113 (2005).
[CrossRef]

Hamann, H. F.

Y. A. Vlasov, M. O. Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature (London) 438, 65-69 (2005).
[CrossRef]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature (London) 397, 594-598 (1999).
[CrossRef]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature (London) 397, 594-598 (1999).
[CrossRef]

Henker, R.

Hogervorst, W.

I. Velchev, D. Neshev, W. Hogervorst, and W. Ubachs, “Pulse compression to the subphonon lifetime region by half-cycle gain in transient stimulated Brillouin scattering,” IEEE J. Quantum Electron. 35, 1812-1816 (1999).
[CrossRef]

Hotate, K.

Huang, Y. D.

Y. Wang, W. Zhang, Y. D. Huang, and J. D. Peng, “SBS slow light in high nonlinearity photonic crystal fiber,” in National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper JWA13.
[CrossRef]

Jackson, K. R.

Junker, M.

Kalosha, V. P.

V. P. Kalosha, L. Chen, and X. Y. Bao, “Slow light of subnanosecond pulses via stimulated Brillouin scattering in nonuniform fibers,” Phys. Rev. A 75, 021802 (2007).
[CrossRef]

V. P. Kalosha, L. Chen, and X. Y. Bao, “Slow and fast light via SBS in optical fibers for short pulses and broadband pump,” Opt. Express 14, 12693-12703 (2006).
[CrossRef] [PubMed]

Ku, P. C.

F. G. Sedgwick, C. J. Chang-Hasnain, P. C. Ku, and R. S. Tucker, “Storage-bit-rate product in slow-light optical buffers,” Electron. Lett. 41, 1347-1348 (2005).
[CrossRef]

Lauterbach, K. U.

Liu, Y.

Martinelli, M.

A. Melloni, F. Morichetti, and M. Martinelli, “Optical slow wave structures,” Opt. Photon. News 14, 44-48 (2003).
[CrossRef]

McNab, S. J.

Y. A. Vlasov, M. O. Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature (London) 438, 65-69 (2005).
[CrossRef]

Melloni, A.

A. Melloni, F. Morichetti, and M. Martinelli, “Optical slow wave structures,” Opt. Photon. News 14, 44-48 (2003).
[CrossRef]

Moewe, M.

Morichetti, F.

A. Melloni, F. Morichetti, and M. Martinelli, “Optical slow wave structures,” Opt. Photon. News 14, 44-48 (2003).
[CrossRef]

Neifeld, M. A.

Neshev, D.

I. Velchev, D. Neshev, W. Hogervorst, and W. Ubachs, “Pulse compression to the subphonon lifetime region by half-cycle gain in transient stimulated Brillouin scattering,” IEEE J. Quantum Electron. 35, 1812-1816 (1999).
[CrossRef]

Okawachi, Y.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Z. M. Zhu, D. J. Gauthier, Y. Okawachi, J. E. Sharping, A. L. Gaeta, R. W. Boyd, and A. E. Willner, “Numerical study of all-optical slow-light delays via stimulated Brillouin scattering in an optical fiber,” J. Opt. Soc. Am. B 22, 2378-2384 (2005).
[CrossRef]

Palinginis, P.

Peng, J. D.

Y. Wang, W. Zhang, Y. D. Huang, and J. D. Peng, “SBS slow light in high nonlinearity photonic crystal fiber,” in National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper JWA13.
[CrossRef]

Preußler, S.

Ren, L. Y.

Robert, B. D.

Schneider, T.

Schwarzbacher, A. T.

Schweinsberg, A.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Sedgwick, F.

Sedgwick, F. G.

F. G. Sedgwick, C. J. Chang-Hasnain, P. C. Ku, and R. S. Tucker, “Storage-bit-rate product in slow-light optical buffers,” Electron. Lett. 41, 1347-1348 (2005).
[CrossRef]

Sharping, J. E.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Z. M. Zhu, D. J. Gauthier, Y. Okawachi, J. E. Sharping, A. L. Gaeta, R. W. Boyd, and A. E. Willner, “Numerical study of all-optical slow-light delays via stimulated Brillouin scattering in an optical fiber,” J. Opt. Soc. Am. B 22, 2378-2384 (2005).
[CrossRef]

Song, K. Y.

Stenner, M. D.

Thévenaz, L.

M. González Herráez, K. Y. Song, and L. Thévenaz, “Arbitrary-bandwidth Brillouin slow light in optical fibers,” Opt. Express 14, 1395-1400 (2006).
[CrossRef] [PubMed]

M. González Herráez, K. Y. Song, and L. Thévenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87, 081113 (2005).
[CrossRef]

Tomita, Y.

Tucker, R. S.

F. G. Sedgwick, C. J. Chang-Hasnain, P. C. Ku, and R. S. Tucker, “Storage-bit-rate product in slow-light optical buffers,” Electron. Lett. 41, 1347-1348 (2005).
[CrossRef]

Ubachs, W.

I. Velchev, D. Neshev, W. Hogervorst, and W. Ubachs, “Pulse compression to the subphonon lifetime region by half-cycle gain in transient stimulated Brillouin scattering,” IEEE J. Quantum Electron. 35, 1812-1816 (1999).
[CrossRef]

Velchev, I.

I. Velchev, D. Neshev, W. Hogervorst, and W. Ubachs, “Pulse compression to the subphonon lifetime region by half-cycle gain in transient stimulated Brillouin scattering,” IEEE J. Quantum Electron. 35, 1812-1816 (1999).
[CrossRef]

Vlasov, Y. A.

Y. A. Vlasov, M. O. Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature (London) 438, 65-69 (2005).
[CrossRef]

Wang, S. H.

Wang, Y.

Y. Wang, W. Zhang, Y. D. Huang, and J. D. Peng, “SBS slow light in high nonlinearity photonic crystal fiber,” in National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper JWA13.
[CrossRef]

Wiatreck, A.

Wiatrek, A.

Willner, A. E.

Yan, L. S.

Yang, H. J.

Yang, J. Y.

Zhang, B.

Zhang, L.

Zhang, W.

Y. Wang, W. Zhang, Y. D. Huang, and J. D. Peng, “SBS slow light in high nonlinearity photonic crystal fiber,” in National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper JWA13.
[CrossRef]

Zhu, Z. M.

Appl. Phys. Lett. (1)

M. González Herráez, K. Y. Song, and L. Thévenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87, 081113 (2005).
[CrossRef]

Electron. Lett. (1)

F. G. Sedgwick, C. J. Chang-Hasnain, P. C. Ku, and R. S. Tucker, “Storage-bit-rate product in slow-light optical buffers,” Electron. Lett. 41, 1347-1348 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

I. Velchev, D. Neshev, W. Hogervorst, and W. Ubachs, “Pulse compression to the subphonon lifetime region by half-cycle gain in transient stimulated Brillouin scattering,” IEEE J. Quantum Electron. 35, 1812-1816 (1999).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (3)

Nature (London) (2)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature (London) 397, 594-598 (1999).
[CrossRef]

Y. A. Vlasov, M. O. Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature (London) 438, 65-69 (2005).
[CrossRef]

Opt. Express (10)

P. Palinginis, F. Sedgwick, S. Crankshaw, M. Moewe, and C. J. Chang-Hasnain, “Room temperature slow light in a quantum-well waveguide via coherent population oscillation,” Opt. Express 13, 9909-9915 (2005).
[CrossRef] [PubMed]

M. González Herráez, K. Y. Song, and L. Thévenaz, “Arbitrary-bandwidth Brillouin slow light in optical fibers,” Opt. Express 14, 1395-1400 (2006).
[CrossRef] [PubMed]

B. Zhang, L. Zhang, L. S. Yan, I. Fazal, J. Y. Yang, and A. E. Willner, “Continuously tunable, bit-rate variable OTDM using broadband SBS slow-light delay line,” Opt. Express 15, 8317-8322 (2007).
[CrossRef] [PubMed]

S. H. Wang, L. Y. Ren, Y. Liu, and Y. Tomita, “Zero-broadening SBS slow light propagation in an optical fiber using two broadband pump beams,” Opt. Express 16, 8067-8076 (2008).
[CrossRef] [PubMed]

T. Schneider, A. Wiatreck, and R. Henker, “Zero-broadening and pulse compression slow light in an optical fiber at high pulse delays,” Opt. Express 16, 15617-15622 (2008).
[CrossRef] [PubMed]

A. Wiatrek, R. Henker, S. Preußler, M. J. Ammann, A. T. Schwarzbacher, and T. Schneider, “Zero-broadening measurement in Brillouin based slow-light delays,” Opt. Express 17, 797-802 (2009).
[CrossRef] [PubMed]

M. D. Stenner, M. A. Neifeld, Z. M. Zhu, A. M. C. Dawes, and D. J. Gauthier, “Distortion management in slow-light pulse delay,” Opt. Express 13, 9995-10002 (2005).
[CrossRef] [PubMed]

T. Schneider, M. Junker, and K. U. Lauterbach, “Potential ultra wide slow-light bandwidth enhancement,” Opt. Express 14, 11082-11087 (2006).
[CrossRef] [PubMed]

D. Dahan and G. Eisenstien, “Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express 13, 6234-6248 (2005).
[CrossRef] [PubMed]

V. P. Kalosha, L. Chen, and X. Y. Bao, “Slow and fast light via SBS in optical fibers for short pulses and broadband pump,” Opt. Express 14, 12693-12703 (2006).
[CrossRef] [PubMed]

Opt. Lett. (1)

Opt. Photon. News (1)

A. Melloni, F. Morichetti, and M. Martinelli, “Optical slow wave structures,” Opt. Photon. News 14, 44-48 (2003).
[CrossRef]

Phys. Rev. A (1)

V. P. Kalosha, L. Chen, and X. Y. Bao, “Slow light of subnanosecond pulses via stimulated Brillouin scattering in nonuniform fibers,” Phys. Rev. A 75, 021802 (2007).
[CrossRef]

Phys. Rev. Lett. (1)

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. M. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef] [PubMed]

Other (3)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2005), Chap. 9.

R. W. Boyd, Nonlinear Optics (Academic, 2003), Chap. 9.

Y. Wang, W. Zhang, Y. D. Huang, and J. D. Peng, “SBS slow light in high nonlinearity photonic crystal fiber,” in National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper JWA13.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Integration domain of the coupled-wave equations in the coordinates ζ and τ. The boundaries of this domain are given by thick solid lines, where the front and back ends of the fiber correspond to the boundaries for signal pulse and pump beam, respectively. The dotted lines indicate points of equal time. Here we assume that the pulse is launched at the moment 0 < t < T 1 .

Fig. 2
Fig. 2

Slow light of the signal pulse with a time duration of 10 ns and at 0.1 μ W . (a) Variations of T rd and B with G A . Normalized intensities of delayed pulses in the retarded time frame for G A (b) from 1 to 14 where delay increases with G A , and (c) from 15 to 21 where delay decreases with G A . (d) Evolution of the acoustic field in the retarded time coordinate with G A .

Fig. 3
Fig. 3

Slow light of the signal pulse with a time duration of 10 ns and at 0.1 μ W for the gain parameter G A of 10. Space–time evolution of (a) peak power of the signal pulse, (b) power of the pump beam, and (c) the acoustic field. The acoustic field intensity is normalized to the local peak intensity, which varies along the fiber via SBS.

Fig. 4
Fig. 4

Slow light of the signal pulse with a time duration of 10 ns and at 0.1 μ W for the gain parameter G A of 20. Space–time evolution of (a) peak power of the signal pulse, (b) power of the pump beam, and (c) the acoustic field. The acoustic field intensity is normalized to the local peak intensity, which varies along the fiber via SBS.

Fig. 5
Fig. 5

Slow light of the signal pulse with a duration of 1 ns and at 0.1 mW under the narrowband pump case. The power of pump beam is 20 mW. (a) Space–time evolution of the peak power of the signal pulse, (b) normalized intensity of the signal pulse at various z’s, and (c) space–time evolution of the acoustic field. The pulse intensity shown in (a) is normalized to the local peak intensity, which varies along the fiber via SBS.

Fig. 6
Fig. 6

Slow light of the signal pulse with a duration of 50 ps and at 1 mW under the broadband pump case. The bandwidth and the peak power of the Gaussian broadband beam are 25 GHz and 10 W, respectively. (a) Space–time evolution of the peak power of signal pulse, (b) normalized intensity of the signal pulse at various z’s, and (c) space–time evolution of the acoustic field. The pulse intensity shown in (a) is normalized to the local peak intensity, which varies along the fiber via SBS.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

( n f g c t z ) E p = E s Q α 2 E p ,
( n f g c t + z ] E s = E p Q α 2 E s ,
[ 2 t 2 + 2 ( γ i Ω ) t + ( Ω B 2 Ω 2 2 i γ Ω ) ] Q = i g B γ Ω B η E p E s ,
Q ( z , t ) = 1 2 π Q ̃ ( z , ω ) e i ω t d ω .
Q ̃ ( z , ω ) = i g ̃ ( ω ) ( E p E s ) ω ,
g ̃ ( ω ) = g B Ω B η γ ( ω ω 1 i γ ) ( ω ω 2 i γ ) ,
ω 1 , 2 = Ω Ω B 2 γ 2 ,
g ̃ ( ω ) = g B η 2 γ ω ω 1 i γ .
Q ( z , t ) = i 2 π g ( t ) ( E p E s ) ,
g ( t ) = 2 π g B γ Ω B η e i Ω t e γ t sin ( t Ω B 2 γ 2 ) Ω B 2 γ 2 ,
g ( t ) = i 2 π g B γ η e γ t [ e i ( Ω + Ω B ) t e i ( Ω Ω B ) t ] / 2.
g ( t ) i 2 π g B γ η e γ t e i δ t / 2 ,
Q ( z , t ) = i 2 π t g ( t t 1 ) E p ( z , t 1 ) E s ( z , t 1 ) d t 1 .
E p τ = ( E s Q α 2 E p ) c n f g ,
E s ζ = ( E p Q α 2 E s ) c n f g ,
I p ( ω p ) exp [ ( ω p ω p 0 Δ ω p ) 2 ] ,
g ( t ) = 2 π g B γ Ω B η e i Ω t e γ t sin ( t Ω B 2 γ 2 ) Ω B 2 γ 2 e ( Δ ω p t ) 2 .

Metrics