Abstract

The efficiency of χ(3)-based cross-polarized wave generation in cubic crystals is investigated for different crystal orientations. It is shown that holographic-cut orientation is the optimal one. A 30% increase of the efficiency can be achieved with this orientation compared with the commonly used z-cut orientation. Another advantage of the holographic-cut crystal orientation is the weaker dependence of the optimal angle of input polarization on the input intensity.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. P. Svirko and N. I. Zheludev, Polarization of Light in Nonlinear Optics (Wiley, 1998).
  2. A. Jullien, O. Albert, F. Burgy, G. Hamoniaux, J.-P. Rousseau, J.-P. Chambaret, F. Augé-Rochereau, G. Chériaux, J. Etchepare, N. Minkovski, and S. M. Saltiel, “10−10 temporal contrast for femtosecond ultraintense lasers by cross-polarized wave generation,” Opt. Lett. 30, 920-922 (2005).
    [CrossRef] [PubMed]
  3. A. Jullien, S. Kourtev, O. Albert, G. Chériaux, J. Etchepare, N. Minkovski, and S. M. Saltiel, “Highly efficient temporal cleaner for femtosecond pulses based on cross-polarized wave generation in a dual crystal scheme,” Appl. Phys. B 84, 409-414 (2006).
    [CrossRef]
  4. V. Chvykov, P. Rousseau, S. Reed, G. Kalinchenko, and V. Yanovsky, “Generation of 1011 contrast 50 TW laser pulses,” Opt. Lett. 31, 1456-1458 (2006).
    [CrossRef] [PubMed]
  5. S. Kourtev, N. Minkovski, S. M. Saltiel, A. Jullien, O. Albert, and J. Etchepare, “Nonlinear mirror based on cross-polarized wave generation,” Opt. Lett. 31, 3143-3145 (2006).
    [CrossRef] [PubMed]
  6. S. Kourtev, N. Minkovski, L. Canova, O. Albert, A. Jullien, J. Etchepare, and S. M. Saltiel, “Nonlinear filtering and beam shaping with χ(3) nonlinear polarization interferometer,” Opt. Commun. 281, 3375-3380 (2008).
    [CrossRef]
  7. D. C. Hutchings and B. S. Werrett, “Theory of the anisotropy of ultrafast nonlinear refraction in zinc-blende semiconductors,” Phys. Rev. B 52, 8150-8159 (1995).
    [CrossRef]
  8. D. C. Hutchings, J. S. Aitchison, and J. M. Arnold, “Nonlinear refractive coupling and vector solitons in anisotropic cubic media,” J. Opt. Soc. Am. B 14, 869-879 (1997).
    [CrossRef]
  9. M. Dabbicco, A. M. Fox, G. von Plessen, and J. F. Ryan, “Role of χ(3) anisotropy in the generation of squeezed light in semiconductors,” Phys. Rev. B 53, 4479-4487 (1996).
    [CrossRef]
  10. M. D. Dvorak, W. A. Schroeder, D. R. Andersen, A. L. Smirl, and B. S. Werrett, “Measurement of the anisotropy of two-photon absorption coefficients in zinc-blende semiconductors,” IEEE J. Quantum Electron. 30, 256-268 (1994).
    [CrossRef]
  11. G. Petrocelli, E. Pichini, F. Scudieri, and S. Martellucci, “Anisotropic effects in the third-harmonic-generation process in cubic crystals,” J. Opt. Soc. Am. B 10, 918-923 (1993).
    [CrossRef]
  12. N. Minkovski, G. I. Petrov, S. M. Saltiel, O. Albert, and J. Etchepare, “Nonlinear polarization rotation and orthogonal polarization generation experienced in a single-beam configuration,” J. Opt. Soc. Am. B 21, 1659-1664 (2004).
    [CrossRef]
  13. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).
  14. A. Jullien, O. Albert, G. Chériaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Nonlinear polarization rotation of elliptical light in cubic crystals, with application to cross-polarized wave generation,” J. Opt. Soc. Am. B 22, 2635-2641 (2005).
    [CrossRef]
  15. N. Minkovski, G. I. Petrov, S. M. Saltiel, O. Albert, and J. Etchepare, “Polarization rotation induced by cascaded third-order processes,” Opt. Lett. 27, 2025-2027 (2002).
    [CrossRef]
  16. A. Jullien, O. Albert, G. Chériaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Two crystal arrangement to fight efficiency saturation in cross-polarized wave generation,” Opt. Express 14, 2760-2769 (2006).
    [CrossRef] [PubMed]
  17. V. M. Gordienko, P. M. Mikheev, and V. S. Syrtsov, “Nonlinear rotation of the polarization of the intense femtosecond laser radiation in BaF2,” Bull. Russ. Acad. Sci.: Phys. 71, 122-125 (2007).
    [CrossRef]
  18. L. Canova, S. Kourtev, N. Minkovski, A. Jullien, R. Lopez-Martens, O. Albert, and S. M. Saltiel, “Efficient generation of cross-polarized femtosecond pulses in cubic crystals with holographic cut orientation,” Appl. Phys. Lett. 92, 231102 (2008).
    [CrossRef]

2008 (2)

S. Kourtev, N. Minkovski, L. Canova, O. Albert, A. Jullien, J. Etchepare, and S. M. Saltiel, “Nonlinear filtering and beam shaping with χ(3) nonlinear polarization interferometer,” Opt. Commun. 281, 3375-3380 (2008).
[CrossRef]

L. Canova, S. Kourtev, N. Minkovski, A. Jullien, R. Lopez-Martens, O. Albert, and S. M. Saltiel, “Efficient generation of cross-polarized femtosecond pulses in cubic crystals with holographic cut orientation,” Appl. Phys. Lett. 92, 231102 (2008).
[CrossRef]

2007 (1)

V. M. Gordienko, P. M. Mikheev, and V. S. Syrtsov, “Nonlinear rotation of the polarization of the intense femtosecond laser radiation in BaF2,” Bull. Russ. Acad. Sci.: Phys. 71, 122-125 (2007).
[CrossRef]

2006 (4)

2005 (2)

2004 (1)

2002 (1)

1997 (1)

1996 (1)

M. Dabbicco, A. M. Fox, G. von Plessen, and J. F. Ryan, “Role of χ(3) anisotropy in the generation of squeezed light in semiconductors,” Phys. Rev. B 53, 4479-4487 (1996).
[CrossRef]

1995 (1)

D. C. Hutchings and B. S. Werrett, “Theory of the anisotropy of ultrafast nonlinear refraction in zinc-blende semiconductors,” Phys. Rev. B 52, 8150-8159 (1995).
[CrossRef]

1994 (1)

M. D. Dvorak, W. A. Schroeder, D. R. Andersen, A. L. Smirl, and B. S. Werrett, “Measurement of the anisotropy of two-photon absorption coefficients in zinc-blende semiconductors,” IEEE J. Quantum Electron. 30, 256-268 (1994).
[CrossRef]

1993 (1)

Aitchison, J. S.

Albert, O.

S. Kourtev, N. Minkovski, L. Canova, O. Albert, A. Jullien, J. Etchepare, and S. M. Saltiel, “Nonlinear filtering and beam shaping with χ(3) nonlinear polarization interferometer,” Opt. Commun. 281, 3375-3380 (2008).
[CrossRef]

L. Canova, S. Kourtev, N. Minkovski, A. Jullien, R. Lopez-Martens, O. Albert, and S. M. Saltiel, “Efficient generation of cross-polarized femtosecond pulses in cubic crystals with holographic cut orientation,” Appl. Phys. Lett. 92, 231102 (2008).
[CrossRef]

A. Jullien, S. Kourtev, O. Albert, G. Chériaux, J. Etchepare, N. Minkovski, and S. M. Saltiel, “Highly efficient temporal cleaner for femtosecond pulses based on cross-polarized wave generation in a dual crystal scheme,” Appl. Phys. B 84, 409-414 (2006).
[CrossRef]

S. Kourtev, N. Minkovski, S. M. Saltiel, A. Jullien, O. Albert, and J. Etchepare, “Nonlinear mirror based on cross-polarized wave generation,” Opt. Lett. 31, 3143-3145 (2006).
[CrossRef] [PubMed]

A. Jullien, O. Albert, G. Chériaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Two crystal arrangement to fight efficiency saturation in cross-polarized wave generation,” Opt. Express 14, 2760-2769 (2006).
[CrossRef] [PubMed]

A. Jullien, O. Albert, F. Burgy, G. Hamoniaux, J.-P. Rousseau, J.-P. Chambaret, F. Augé-Rochereau, G. Chériaux, J. Etchepare, N. Minkovski, and S. M. Saltiel, “10−10 temporal contrast for femtosecond ultraintense lasers by cross-polarized wave generation,” Opt. Lett. 30, 920-922 (2005).
[CrossRef] [PubMed]

A. Jullien, O. Albert, G. Chériaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Nonlinear polarization rotation of elliptical light in cubic crystals, with application to cross-polarized wave generation,” J. Opt. Soc. Am. B 22, 2635-2641 (2005).
[CrossRef]

N. Minkovski, G. I. Petrov, S. M. Saltiel, O. Albert, and J. Etchepare, “Nonlinear polarization rotation and orthogonal polarization generation experienced in a single-beam configuration,” J. Opt. Soc. Am. B 21, 1659-1664 (2004).
[CrossRef]

N. Minkovski, G. I. Petrov, S. M. Saltiel, O. Albert, and J. Etchepare, “Polarization rotation induced by cascaded third-order processes,” Opt. Lett. 27, 2025-2027 (2002).
[CrossRef]

Andersen, D. R.

M. D. Dvorak, W. A. Schroeder, D. R. Andersen, A. L. Smirl, and B. S. Werrett, “Measurement of the anisotropy of two-photon absorption coefficients in zinc-blende semiconductors,” IEEE J. Quantum Electron. 30, 256-268 (1994).
[CrossRef]

Arnold, J. M.

Augé-Rochereau, F.

Burgy, F.

Canova, L.

S. Kourtev, N. Minkovski, L. Canova, O. Albert, A. Jullien, J. Etchepare, and S. M. Saltiel, “Nonlinear filtering and beam shaping with χ(3) nonlinear polarization interferometer,” Opt. Commun. 281, 3375-3380 (2008).
[CrossRef]

L. Canova, S. Kourtev, N. Minkovski, A. Jullien, R. Lopez-Martens, O. Albert, and S. M. Saltiel, “Efficient generation of cross-polarized femtosecond pulses in cubic crystals with holographic cut orientation,” Appl. Phys. Lett. 92, 231102 (2008).
[CrossRef]

Chambaret, J. -P.

Chériaux, G.

Chvykov, V.

Dabbicco, M.

M. Dabbicco, A. M. Fox, G. von Plessen, and J. F. Ryan, “Role of χ(3) anisotropy in the generation of squeezed light in semiconductors,” Phys. Rev. B 53, 4479-4487 (1996).
[CrossRef]

Dvorak, M. D.

M. D. Dvorak, W. A. Schroeder, D. R. Andersen, A. L. Smirl, and B. S. Werrett, “Measurement of the anisotropy of two-photon absorption coefficients in zinc-blende semiconductors,” IEEE J. Quantum Electron. 30, 256-268 (1994).
[CrossRef]

Etchepare, J.

S. Kourtev, N. Minkovski, L. Canova, O. Albert, A. Jullien, J. Etchepare, and S. M. Saltiel, “Nonlinear filtering and beam shaping with χ(3) nonlinear polarization interferometer,” Opt. Commun. 281, 3375-3380 (2008).
[CrossRef]

A. Jullien, O. Albert, G. Chériaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Two crystal arrangement to fight efficiency saturation in cross-polarized wave generation,” Opt. Express 14, 2760-2769 (2006).
[CrossRef] [PubMed]

S. Kourtev, N. Minkovski, S. M. Saltiel, A. Jullien, O. Albert, and J. Etchepare, “Nonlinear mirror based on cross-polarized wave generation,” Opt. Lett. 31, 3143-3145 (2006).
[CrossRef] [PubMed]

A. Jullien, S. Kourtev, O. Albert, G. Chériaux, J. Etchepare, N. Minkovski, and S. M. Saltiel, “Highly efficient temporal cleaner for femtosecond pulses based on cross-polarized wave generation in a dual crystal scheme,” Appl. Phys. B 84, 409-414 (2006).
[CrossRef]

A. Jullien, O. Albert, G. Chériaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Nonlinear polarization rotation of elliptical light in cubic crystals, with application to cross-polarized wave generation,” J. Opt. Soc. Am. B 22, 2635-2641 (2005).
[CrossRef]

A. Jullien, O. Albert, F. Burgy, G. Hamoniaux, J.-P. Rousseau, J.-P. Chambaret, F. Augé-Rochereau, G. Chériaux, J. Etchepare, N. Minkovski, and S. M. Saltiel, “10−10 temporal contrast for femtosecond ultraintense lasers by cross-polarized wave generation,” Opt. Lett. 30, 920-922 (2005).
[CrossRef] [PubMed]

N. Minkovski, G. I. Petrov, S. M. Saltiel, O. Albert, and J. Etchepare, “Nonlinear polarization rotation and orthogonal polarization generation experienced in a single-beam configuration,” J. Opt. Soc. Am. B 21, 1659-1664 (2004).
[CrossRef]

N. Minkovski, G. I. Petrov, S. M. Saltiel, O. Albert, and J. Etchepare, “Polarization rotation induced by cascaded third-order processes,” Opt. Lett. 27, 2025-2027 (2002).
[CrossRef]

Fox, A. M.

M. Dabbicco, A. M. Fox, G. von Plessen, and J. F. Ryan, “Role of χ(3) anisotropy in the generation of squeezed light in semiconductors,” Phys. Rev. B 53, 4479-4487 (1996).
[CrossRef]

Gordienko, V. M.

V. M. Gordienko, P. M. Mikheev, and V. S. Syrtsov, “Nonlinear rotation of the polarization of the intense femtosecond laser radiation in BaF2,” Bull. Russ. Acad. Sci.: Phys. 71, 122-125 (2007).
[CrossRef]

Hamoniaux, G.

Hutchings, D. C.

D. C. Hutchings, J. S. Aitchison, and J. M. Arnold, “Nonlinear refractive coupling and vector solitons in anisotropic cubic media,” J. Opt. Soc. Am. B 14, 869-879 (1997).
[CrossRef]

D. C. Hutchings and B. S. Werrett, “Theory of the anisotropy of ultrafast nonlinear refraction in zinc-blende semiconductors,” Phys. Rev. B 52, 8150-8159 (1995).
[CrossRef]

Jullien, A.

L. Canova, S. Kourtev, N. Minkovski, A. Jullien, R. Lopez-Martens, O. Albert, and S. M. Saltiel, “Efficient generation of cross-polarized femtosecond pulses in cubic crystals with holographic cut orientation,” Appl. Phys. Lett. 92, 231102 (2008).
[CrossRef]

S. Kourtev, N. Minkovski, L. Canova, O. Albert, A. Jullien, J. Etchepare, and S. M. Saltiel, “Nonlinear filtering and beam shaping with χ(3) nonlinear polarization interferometer,” Opt. Commun. 281, 3375-3380 (2008).
[CrossRef]

A. Jullien, O. Albert, G. Chériaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Two crystal arrangement to fight efficiency saturation in cross-polarized wave generation,” Opt. Express 14, 2760-2769 (2006).
[CrossRef] [PubMed]

S. Kourtev, N. Minkovski, S. M. Saltiel, A. Jullien, O. Albert, and J. Etchepare, “Nonlinear mirror based on cross-polarized wave generation,” Opt. Lett. 31, 3143-3145 (2006).
[CrossRef] [PubMed]

A. Jullien, S. Kourtev, O. Albert, G. Chériaux, J. Etchepare, N. Minkovski, and S. M. Saltiel, “Highly efficient temporal cleaner for femtosecond pulses based on cross-polarized wave generation in a dual crystal scheme,” Appl. Phys. B 84, 409-414 (2006).
[CrossRef]

A. Jullien, O. Albert, G. Chériaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Nonlinear polarization rotation of elliptical light in cubic crystals, with application to cross-polarized wave generation,” J. Opt. Soc. Am. B 22, 2635-2641 (2005).
[CrossRef]

A. Jullien, O. Albert, F. Burgy, G. Hamoniaux, J.-P. Rousseau, J.-P. Chambaret, F. Augé-Rochereau, G. Chériaux, J. Etchepare, N. Minkovski, and S. M. Saltiel, “10−10 temporal contrast for femtosecond ultraintense lasers by cross-polarized wave generation,” Opt. Lett. 30, 920-922 (2005).
[CrossRef] [PubMed]

Kalinchenko, G.

Kourtev, S.

L. Canova, S. Kourtev, N. Minkovski, A. Jullien, R. Lopez-Martens, O. Albert, and S. M. Saltiel, “Efficient generation of cross-polarized femtosecond pulses in cubic crystals with holographic cut orientation,” Appl. Phys. Lett. 92, 231102 (2008).
[CrossRef]

S. Kourtev, N. Minkovski, L. Canova, O. Albert, A. Jullien, J. Etchepare, and S. M. Saltiel, “Nonlinear filtering and beam shaping with χ(3) nonlinear polarization interferometer,” Opt. Commun. 281, 3375-3380 (2008).
[CrossRef]

S. Kourtev, N. Minkovski, S. M. Saltiel, A. Jullien, O. Albert, and J. Etchepare, “Nonlinear mirror based on cross-polarized wave generation,” Opt. Lett. 31, 3143-3145 (2006).
[CrossRef] [PubMed]

A. Jullien, O. Albert, G. Chériaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Two crystal arrangement to fight efficiency saturation in cross-polarized wave generation,” Opt. Express 14, 2760-2769 (2006).
[CrossRef] [PubMed]

A. Jullien, S. Kourtev, O. Albert, G. Chériaux, J. Etchepare, N. Minkovski, and S. M. Saltiel, “Highly efficient temporal cleaner for femtosecond pulses based on cross-polarized wave generation in a dual crystal scheme,” Appl. Phys. B 84, 409-414 (2006).
[CrossRef]

A. Jullien, O. Albert, G. Chériaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Nonlinear polarization rotation of elliptical light in cubic crystals, with application to cross-polarized wave generation,” J. Opt. Soc. Am. B 22, 2635-2641 (2005).
[CrossRef]

Lopez-Martens, R.

L. Canova, S. Kourtev, N. Minkovski, A. Jullien, R. Lopez-Martens, O. Albert, and S. M. Saltiel, “Efficient generation of cross-polarized femtosecond pulses in cubic crystals with holographic cut orientation,” Appl. Phys. Lett. 92, 231102 (2008).
[CrossRef]

Martellucci, S.

Mikheev, P. M.

V. M. Gordienko, P. M. Mikheev, and V. S. Syrtsov, “Nonlinear rotation of the polarization of the intense femtosecond laser radiation in BaF2,” Bull. Russ. Acad. Sci.: Phys. 71, 122-125 (2007).
[CrossRef]

Minkovski, N.

L. Canova, S. Kourtev, N. Minkovski, A. Jullien, R. Lopez-Martens, O. Albert, and S. M. Saltiel, “Efficient generation of cross-polarized femtosecond pulses in cubic crystals with holographic cut orientation,” Appl. Phys. Lett. 92, 231102 (2008).
[CrossRef]

S. Kourtev, N. Minkovski, L. Canova, O. Albert, A. Jullien, J. Etchepare, and S. M. Saltiel, “Nonlinear filtering and beam shaping with χ(3) nonlinear polarization interferometer,” Opt. Commun. 281, 3375-3380 (2008).
[CrossRef]

A. Jullien, O. Albert, G. Chériaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Two crystal arrangement to fight efficiency saturation in cross-polarized wave generation,” Opt. Express 14, 2760-2769 (2006).
[CrossRef] [PubMed]

S. Kourtev, N. Minkovski, S. M. Saltiel, A. Jullien, O. Albert, and J. Etchepare, “Nonlinear mirror based on cross-polarized wave generation,” Opt. Lett. 31, 3143-3145 (2006).
[CrossRef] [PubMed]

A. Jullien, S. Kourtev, O. Albert, G. Chériaux, J. Etchepare, N. Minkovski, and S. M. Saltiel, “Highly efficient temporal cleaner for femtosecond pulses based on cross-polarized wave generation in a dual crystal scheme,” Appl. Phys. B 84, 409-414 (2006).
[CrossRef]

A. Jullien, O. Albert, G. Chériaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Nonlinear polarization rotation of elliptical light in cubic crystals, with application to cross-polarized wave generation,” J. Opt. Soc. Am. B 22, 2635-2641 (2005).
[CrossRef]

A. Jullien, O. Albert, F. Burgy, G. Hamoniaux, J.-P. Rousseau, J.-P. Chambaret, F. Augé-Rochereau, G. Chériaux, J. Etchepare, N. Minkovski, and S. M. Saltiel, “10−10 temporal contrast for femtosecond ultraintense lasers by cross-polarized wave generation,” Opt. Lett. 30, 920-922 (2005).
[CrossRef] [PubMed]

N. Minkovski, G. I. Petrov, S. M. Saltiel, O. Albert, and J. Etchepare, “Nonlinear polarization rotation and orthogonal polarization generation experienced in a single-beam configuration,” J. Opt. Soc. Am. B 21, 1659-1664 (2004).
[CrossRef]

N. Minkovski, G. I. Petrov, S. M. Saltiel, O. Albert, and J. Etchepare, “Polarization rotation induced by cascaded third-order processes,” Opt. Lett. 27, 2025-2027 (2002).
[CrossRef]

Petrocelli, G.

Petrov, G. I.

Pichini, E.

Reed, S.

Rousseau, J. -P.

Rousseau, P.

Ryan, J. F.

M. Dabbicco, A. M. Fox, G. von Plessen, and J. F. Ryan, “Role of χ(3) anisotropy in the generation of squeezed light in semiconductors,” Phys. Rev. B 53, 4479-4487 (1996).
[CrossRef]

Saltiel, S. M.

L. Canova, S. Kourtev, N. Minkovski, A. Jullien, R. Lopez-Martens, O. Albert, and S. M. Saltiel, “Efficient generation of cross-polarized femtosecond pulses in cubic crystals with holographic cut orientation,” Appl. Phys. Lett. 92, 231102 (2008).
[CrossRef]

S. Kourtev, N. Minkovski, L. Canova, O. Albert, A. Jullien, J. Etchepare, and S. M. Saltiel, “Nonlinear filtering and beam shaping with χ(3) nonlinear polarization interferometer,” Opt. Commun. 281, 3375-3380 (2008).
[CrossRef]

S. Kourtev, N. Minkovski, S. M. Saltiel, A. Jullien, O. Albert, and J. Etchepare, “Nonlinear mirror based on cross-polarized wave generation,” Opt. Lett. 31, 3143-3145 (2006).
[CrossRef] [PubMed]

A. Jullien, O. Albert, G. Chériaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Two crystal arrangement to fight efficiency saturation in cross-polarized wave generation,” Opt. Express 14, 2760-2769 (2006).
[CrossRef] [PubMed]

A. Jullien, S. Kourtev, O. Albert, G. Chériaux, J. Etchepare, N. Minkovski, and S. M. Saltiel, “Highly efficient temporal cleaner for femtosecond pulses based on cross-polarized wave generation in a dual crystal scheme,” Appl. Phys. B 84, 409-414 (2006).
[CrossRef]

A. Jullien, O. Albert, G. Chériaux, J. Etchepare, S. Kourtev, N. Minkovski, and S. M. Saltiel, “Nonlinear polarization rotation of elliptical light in cubic crystals, with application to cross-polarized wave generation,” J. Opt. Soc. Am. B 22, 2635-2641 (2005).
[CrossRef]

A. Jullien, O. Albert, F. Burgy, G. Hamoniaux, J.-P. Rousseau, J.-P. Chambaret, F. Augé-Rochereau, G. Chériaux, J. Etchepare, N. Minkovski, and S. M. Saltiel, “10−10 temporal contrast for femtosecond ultraintense lasers by cross-polarized wave generation,” Opt. Lett. 30, 920-922 (2005).
[CrossRef] [PubMed]

N. Minkovski, G. I. Petrov, S. M. Saltiel, O. Albert, and J. Etchepare, “Nonlinear polarization rotation and orthogonal polarization generation experienced in a single-beam configuration,” J. Opt. Soc. Am. B 21, 1659-1664 (2004).
[CrossRef]

N. Minkovski, G. I. Petrov, S. M. Saltiel, O. Albert, and J. Etchepare, “Polarization rotation induced by cascaded third-order processes,” Opt. Lett. 27, 2025-2027 (2002).
[CrossRef]

Schroeder, W. A.

M. D. Dvorak, W. A. Schroeder, D. R. Andersen, A. L. Smirl, and B. S. Werrett, “Measurement of the anisotropy of two-photon absorption coefficients in zinc-blende semiconductors,” IEEE J. Quantum Electron. 30, 256-268 (1994).
[CrossRef]

Scudieri, F.

Smirl, A. L.

M. D. Dvorak, W. A. Schroeder, D. R. Andersen, A. L. Smirl, and B. S. Werrett, “Measurement of the anisotropy of two-photon absorption coefficients in zinc-blende semiconductors,” IEEE J. Quantum Electron. 30, 256-268 (1994).
[CrossRef]

Svirko, Y. P.

Y. P. Svirko and N. I. Zheludev, Polarization of Light in Nonlinear Optics (Wiley, 1998).

Syrtsov, V. S.

V. M. Gordienko, P. M. Mikheev, and V. S. Syrtsov, “Nonlinear rotation of the polarization of the intense femtosecond laser radiation in BaF2,” Bull. Russ. Acad. Sci.: Phys. 71, 122-125 (2007).
[CrossRef]

von Plessen, G.

M. Dabbicco, A. M. Fox, G. von Plessen, and J. F. Ryan, “Role of χ(3) anisotropy in the generation of squeezed light in semiconductors,” Phys. Rev. B 53, 4479-4487 (1996).
[CrossRef]

Werrett, B. S.

D. C. Hutchings and B. S. Werrett, “Theory of the anisotropy of ultrafast nonlinear refraction in zinc-blende semiconductors,” Phys. Rev. B 52, 8150-8159 (1995).
[CrossRef]

M. D. Dvorak, W. A. Schroeder, D. R. Andersen, A. L. Smirl, and B. S. Werrett, “Measurement of the anisotropy of two-photon absorption coefficients in zinc-blende semiconductors,” IEEE J. Quantum Electron. 30, 256-268 (1994).
[CrossRef]

Yanovsky, V.

Yariv, A.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).

Yeh, P.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).

Zheludev, N. I.

Y. P. Svirko and N. I. Zheludev, Polarization of Light in Nonlinear Optics (Wiley, 1998).

Appl. Phys. B (1)

A. Jullien, S. Kourtev, O. Albert, G. Chériaux, J. Etchepare, N. Minkovski, and S. M. Saltiel, “Highly efficient temporal cleaner for femtosecond pulses based on cross-polarized wave generation in a dual crystal scheme,” Appl. Phys. B 84, 409-414 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

L. Canova, S. Kourtev, N. Minkovski, A. Jullien, R. Lopez-Martens, O. Albert, and S. M. Saltiel, “Efficient generation of cross-polarized femtosecond pulses in cubic crystals with holographic cut orientation,” Appl. Phys. Lett. 92, 231102 (2008).
[CrossRef]

Bull. Russ. Acad. Sci.: Phys. (1)

V. M. Gordienko, P. M. Mikheev, and V. S. Syrtsov, “Nonlinear rotation of the polarization of the intense femtosecond laser radiation in BaF2,” Bull. Russ. Acad. Sci.: Phys. 71, 122-125 (2007).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. D. Dvorak, W. A. Schroeder, D. R. Andersen, A. L. Smirl, and B. S. Werrett, “Measurement of the anisotropy of two-photon absorption coefficients in zinc-blende semiconductors,” IEEE J. Quantum Electron. 30, 256-268 (1994).
[CrossRef]

J. Opt. Soc. Am. B (4)

Opt. Commun. (1)

S. Kourtev, N. Minkovski, L. Canova, O. Albert, A. Jullien, J. Etchepare, and S. M. Saltiel, “Nonlinear filtering and beam shaping with χ(3) nonlinear polarization interferometer,” Opt. Commun. 281, 3375-3380 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Phys. Rev. B (2)

D. C. Hutchings and B. S. Werrett, “Theory of the anisotropy of ultrafast nonlinear refraction in zinc-blende semiconductors,” Phys. Rev. B 52, 8150-8159 (1995).
[CrossRef]

M. Dabbicco, A. M. Fox, G. von Plessen, and J. F. Ryan, “Role of χ(3) anisotropy in the generation of squeezed light in semiconductors,” Phys. Rev. B 53, 4479-4487 (1996).
[CrossRef]

Other (2)

Y. P. Svirko and N. I. Zheludev, Polarization of Light in Nonlinear Optics (Wiley, 1998).

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Definition of angles. ( x , y , z ) —basis of the nonlinear crystal; ( A , B , k ) —light propagation basis. The coordinate system ( A , B , k ) can be obtained from ( x , y , z ) by rotating ( x , y , z ) first around the z axis by an angle φ, then around the new y axis by ϑ, and finally by β around the k axis.

Fig. 2
Fig. 2

Calculated values of γ 2 normalized to γ 0 as function of angle β for different crystal orientations. σ = 1.2 .

Fig. 3
Fig. 3

Calculated values of γ 1 and γ 5 normalized to γ 0 as functions of the angle β for z-cut ([001]) and holographic-cut ([101]) crystal orientations. σ = 1.2 .

Fig. 4
Fig. 4

Numerically calculated plane-wave XPW efficiency (right scale, thick lines) and phase shift between the fundamental and XPW (left scale, thin lines) for [001] (z-cut) and [101] (holographic-cut) directions of light propagation. σ = 1.2 ; β = 22.5 ° for [001] and β = 115.5 ° for [101] orientation, respectively.

Fig. 5
Fig. 5

Plane-wave XPW efficiency η: (a) for [001] orientation, and (b) for [101] orientation as function of angle β for different input intensities. See text for definition of S. σ = 1.2 .

Fig. 6
Fig. 6

XPW efficiencies (right scale) for [001] and [101] orientations assuming Gaussian spatial and temporal profiles of the input beam. Angle β is always optimized for maximum efficiency. The shift of optimum β from its value β 0 for very low input intensity is also shown (left scale). β 0 is 22.5° for [001] and 64.5° for [101] orientation, respectively, and σ = 1.2 .

Fig. 7
Fig. 7

Experimental setup.

Fig. 8
Fig. 8

XPW generation efficiency for 2 mm BaF 2 holographic- and z-cut samples. Straight lines are quadratic-law fits.

Fig. 9
Fig. 9

Experimental β dependencies (symbols) for 2 mm z-cut BaF 2 . XPW generation efficiency is normalized to the average of all four maxima. Curves are numerically computed β dependences for different S and assuming Gaussian beam and pulse profiles. In calculations σ = 1.2 is used.

Fig. 10
Fig. 10

Experimental β dependencies (symbols) for 2 mm holographic-cut BaF 2 . XPW generation efficiency is normalized to the average of the two higher maxima. Curves are numerically computed β dependences for different S and assuming Gaussian beam and pulse profiles. In calculations σ = 1.2 is used.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

Δ E n 2 c 2 2 E t 2 = μ 0 2 P NL t 2 ,
P NL ( E ) = ε 0 χ ( 3 ) E E E .
2 E i z 2 n 2 c 2 2 E i t 2 = ε 0 μ 0 2 t 2 j , k , l χ i j k l ( 3 ) E j E k E l ,
E i ( z , t ) = 1 2 E i ( z ) exp [ i ( ω t k z ) ] + 1 2 E i ( z ) exp [ + i ( ω t k z ) ] .
d E i ( z ) d z = i 2 π 8 n λ j , k , l = x z χ i j k l ( 3 ) [ E j ( z ) E k ( z ) E l ( z ) + E j ( z ) E k ( z ) E l ( z ) + E j ( z ) E k ( z ) E l ( z ) ] ,
( E A E B E k ) = T ( φ , ϑ , β ) ( E x E y E z ) ,
T ( φ , ϑ , β ) = ( cos   β   cos   ϑ   cos   φ sin   β   sin   φ cos   β   cos   ϑ   sin   φ + sin   β   cos   φ cos   β   sin   ϑ sin   β   cos   ϑ   cos   φ cos   β   sin   φ sin   β   cos   ϑ   sin   φ + cos   β   cos   φ sin   β   sin   ϑ sin   ϑ   cos   φ sin   ϑ   sin   φ cos   ϑ ) .
( E x E y E z ) = T 1 ( φ , ϑ , β ) ( E A E B E k )
d A ( ζ ) d ζ = i γ 1 A A A + i γ 2 A A B + 2 i γ 2 A B A + 2 i γ 3 A B B + i γ 3 B B A + i γ 4 B B B ,
d B ( ζ ) d ζ = i γ 5 B B B + i γ 4 B B A + 2 i γ 4 A B B + 2 i γ 3 A B A + i γ 3 A A B + i γ 2 A A A .
γ 5 ( β , φ , ϑ ) = γ 1 ( β + π / 2 , φ , ϑ ) ,
γ 4 ( β , φ , ϑ ) = γ 2 ( β + π / 2 , φ , ϑ ) .
γ 1 = γ 0 j , k = 1 3 [ δ j k + ( 1 δ j k ) ( 1 σ ) ] T 1 j T j 1 1 ( T k 1 1 ) 2 ,
γ 2 = γ 0 j , k = 1 3 [ δ j k + ( 1 δ j k ) ( 1 σ ) ] T 2 j T j 1 1 ( T k 1 1 ) 2 ,
γ 3 = γ 0 j , k = 1 3 { [ δ j k + 2 3 ( 1 δ j k ) ( 1 σ ) ] T j 2 T k 1 1 T k 2 1 + 1 3 ( 1 δ j k ) ( 1 σ ) T j 1 1 ( T k 2 1 ) 2 } T 1 j ,
γ 4 = γ 0 j , k = 1 3 [ δ j k + ( 1 δ j k ) ( 1 σ ) ] T 1 j T j 2 1 ( T k 2 1 ) 2 ,
γ 5 = γ 0 j , k = 1 3 [ δ j k + ( 1 δ j k ) ( 1 σ ) ] T 2 j T j 2 1 ( T k 2 1 ) 2 ,

Metrics