Abstract

Tooth-shaped and multiple-teeth-shaped plasmonic filters in the metal–insulator–metal (MIM) waveguides are demonstrated numerically. By introducing a three-port waveguide splitter, a modified model based on multiple-beam interference and the scattering matrix method is given. The transmittance spectra as a function of teeth width, depth, period, and period number are addressed, respectively. The results show that the new structure not only performs the filtering function as well as MIM gratinglike structures, but that it is also of submicrometer size for ultrahigh integration and relatively easy fabrication.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmon on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  2. W. L. Barnes, A. Dereux, and T. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
    [CrossRef] [PubMed]
  3. J. Takahara, Y. Suguru, T. Hiroaki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett. 22, 475-477 (1997).
    [CrossRef] [PubMed]
  4. J. Krenn and J.-C. Weeber, “Surface plasmon polaritons in metal stripes and wires,” Philos. Trans. R. Soc. London, Ser. A 362, 739 (2004).
    [CrossRef]
  5. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508-511 (2006).
    [CrossRef] [PubMed]
  6. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356 (2000).
    [CrossRef]
  7. Z. Mei and D. Zhao, “Propagation of Laguerre-Gaussian and elegant Laguerre-Gaussian beams in apertured fractional Hankel transform systems,” J. Opt. Soc. Am. A 21, 2375-2381 (2004).
    [CrossRef]
  8. T. Lee and S. Gray, “Subwavelength light bending by metal slit structures,” Opt. Express 13, 9652-9659 (2005).
    [CrossRef] [PubMed]
  9. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
    [CrossRef]
  10. H. Gao, H. Shi, C. Wang, C. Du, X. Luo, Q. Deng, Y. Lv, X. Lin, and H. Yao, “Surface plasmon polariton propagation and combination in Y-shaped metallic channels,” Opt. Express 13, 10795-10800 (2005).
    [CrossRef] [PubMed]
  11. H. Zhao, X. Huang, and J. Huang, “Novel optical directional coupler based on surface plasmon polaritons,” Physica E (Amsterdam) 40, 3025-3029 (2008).
    [CrossRef]
  12. B. Wang and G. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29, 1992-1994 (2004).
    [CrossRef] [PubMed]
  13. Z. Han, L. Liu, and E. Forsberg, “Ultra-compact directional couplers and Mach-Zehnder interferometers employing surface plasmon polaritons,” Opt. Commun. 259, 690-695 (2006).
    [CrossRef]
  14. B. Wang and G. P. Wang, “Plasmonic waveguide ring resonator at terahertz frequencies,” Appl. Phys. Lett. 89, 133106 (2006).
    [CrossRef]
  15. B. Wang and G. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surface,” Appl. Phys. Lett. 87, 013107 (2005).
    [CrossRef]
  16. W. Lin and G. Wang, “Metal heterowaveguide superlattices for a plasmonic analog to electronic Bloch oscillations,” Appl. Phys. Lett. 91, 143121 (2007).
    [CrossRef]
  17. Z.-Y. Zhang, P. Huang, and X.-W. Guo, J.-Q. Wang, L. Fang, J.-L. Du, X.-G. Luo, and C.-L. Lei, “Multiple wavelength-channels in SPP waveguides for optical communication,” Chin. Phys. Lett. 25, 996-999 (2008).
    [CrossRef]
  18. A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Compact Bragg gratings for long-range surface plasmon polaritons,” J. Lightwave Technol. 24, 912-918 (2006).
    [CrossRef]
  19. A. Hossieni and Y. Massoud, “A low-loss metal-insulator-metal plasmonic bragg reflector,” Opt. Express 14, 11318-11323 (2006).
    [CrossRef] [PubMed]
  20. A. Hosseini, H. Nejati, and Y. Massoud, “Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors,” Opt. Express 16, 1475-1480 (2008).
    [CrossRef] [PubMed]
  21. J. Q. Liu, L. L. Wang, M. D. He, W. Q. Huang, D. Y. Wang, B. S. Zou, and S. C. Wen, “A wide bandgap plasmonic Bragg reflector,” Opt. Express 16, 4888-4894 (2008).
    [CrossRef] [PubMed]
  22. J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating,” Opt. Express 16, 413-425 (2008).
    [CrossRef] [PubMed]
  23. Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91-93 (2007).
    [CrossRef]
  24. Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui, and M. Nakagaki, “Characteristics of gap plasmon waveguide with stub structures,” Opt. Express 16, 16314-16325 (2008).
    [CrossRef] [PubMed]
  25. X.-S. Lin and X.-G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett. 33, 2874-2876 (2008).
    [CrossRef] [PubMed]
  26. J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
    [CrossRef]
  27. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  28. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

2008 (7)

2007 (2)

W. Lin and G. Wang, “Metal heterowaveguide superlattices for a plasmonic analog to electronic Bloch oscillations,” Appl. Phys. Lett. 91, 143121 (2007).
[CrossRef]

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91-93 (2007).
[CrossRef]

2006 (6)

Z. Han, L. Liu, and E. Forsberg, “Ultra-compact directional couplers and Mach-Zehnder interferometers employing surface plasmon polaritons,” Opt. Commun. 259, 690-695 (2006).
[CrossRef]

B. Wang and G. P. Wang, “Plasmonic waveguide ring resonator at terahertz frequencies,” Appl. Phys. Lett. 89, 133106 (2006).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Compact Bragg gratings for long-range surface plasmon polaritons,” J. Lightwave Technol. 24, 912-918 (2006).
[CrossRef]

A. Hossieni and Y. Massoud, “A low-loss metal-insulator-metal plasmonic bragg reflector,” Opt. Express 14, 11318-11323 (2006).
[CrossRef] [PubMed]

2005 (4)

T. Lee and S. Gray, “Subwavelength light bending by metal slit structures,” Opt. Express 13, 9652-9659 (2005).
[CrossRef] [PubMed]

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

H. Gao, H. Shi, C. Wang, C. Du, X. Luo, Q. Deng, Y. Lv, X. Lin, and H. Yao, “Surface plasmon polariton propagation and combination in Y-shaped metallic channels,” Opt. Express 13, 10795-10800 (2005).
[CrossRef] [PubMed]

B. Wang and G. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surface,” Appl. Phys. Lett. 87, 013107 (2005).
[CrossRef]

2004 (3)

2003 (1)

W. L. Barnes, A. Dereux, and T. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

2000 (1)

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356 (2000).
[CrossRef]

1997 (1)

Atwater, H. A.

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356 (2000).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Boltasseva, A.

Bozhevolnyi, S. I.

A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Compact Bragg gratings for long-range surface plasmon polaritons,” J. Lightwave Technol. 24, 912-918 (2006).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Brongersma, M. L.

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356 (2000).
[CrossRef]

Deng, Q.

Dereux, A.

W. L. Barnes, A. Dereux, and T. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Du, C.

Du, J.-L.

Z.-Y. Zhang, P. Huang, and X.-W. Guo, J.-Q. Wang, L. Fang, J.-L. Du, X.-G. Luo, and C.-L. Lei, “Multiple wavelength-channels in SPP waveguides for optical communication,” Chin. Phys. Lett. 25, 996-999 (2008).
[CrossRef]

Ebbesen, T.

W. L. Barnes, A. Dereux, and T. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Fan, S.

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

Fang, L.

Z.-Y. Zhang, P. Huang, and X.-W. Guo, J.-Q. Wang, L. Fang, J.-L. Du, X.-G. Luo, and C.-L. Lei, “Multiple wavelength-channels in SPP waveguides for optical communication,” Chin. Phys. Lett. 25, 996-999 (2008).
[CrossRef]

Forsberg, E.

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91-93 (2007).
[CrossRef]

Z. Han, L. Liu, and E. Forsberg, “Ultra-compact directional couplers and Mach-Zehnder interferometers employing surface plasmon polaritons,” Opt. Commun. 259, 690-695 (2006).
[CrossRef]

Fukui, M.

Gao, H.

Gray, S.

Guo, X.-W.

Z.-Y. Zhang, P. Huang, and X.-W. Guo, J.-Q. Wang, L. Fang, J.-L. Du, X.-G. Luo, and C.-L. Lei, “Multiple wavelength-channels in SPP waveguides for optical communication,” Chin. Phys. Lett. 25, 996-999 (2008).
[CrossRef]

Han, Z.

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91-93 (2007).
[CrossRef]

Z. Han, L. Liu, and E. Forsberg, “Ultra-compact directional couplers and Mach-Zehnder interferometers employing surface plasmon polaritons,” Opt. Commun. 259, 690-695 (2006).
[CrossRef]

Haraguchi, M.

Hartman, J. W.

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356 (2000).
[CrossRef]

Haus, H. A.

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

He, M. D.

He, S.

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91-93 (2007).
[CrossRef]

Hiroaki, T.

Hosseini, A.

Hossieni, A.

Huang, J.

H. Zhao, X. Huang, and J. Huang, “Novel optical directional coupler based on surface plasmon polaritons,” Physica E (Amsterdam) 40, 3025-3029 (2008).
[CrossRef]

Huang, P.

Z.-Y. Zhang, P. Huang, and X.-W. Guo, J.-Q. Wang, L. Fang, J.-L. Du, X.-G. Luo, and C.-L. Lei, “Multiple wavelength-channels in SPP waveguides for optical communication,” Chin. Phys. Lett. 25, 996-999 (2008).
[CrossRef]

Huang, W. Q.

Huang, X.

H. Zhao, X. Huang, and J. Huang, “Novel optical directional coupler based on surface plasmon polaritons,” Physica E (Amsterdam) 40, 3025-3029 (2008).
[CrossRef]

Huang, X.-G.

Kim, H.

Kobayashi, T.

Krenn, J.

J. Krenn and J.-C. Weeber, “Surface plasmon polaritons in metal stripes and wires,” Philos. Trans. R. Soc. London, Ser. A 362, 739 (2004).
[CrossRef]

Laluet, J.-Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Lee, B.

Lee, T.

Lei, C.-L.

Z.-Y. Zhang, P. Huang, and X.-W. Guo, J.-Q. Wang, L. Fang, J.-L. Du, X.-G. Luo, and C.-L. Lei, “Multiple wavelength-channels in SPP waveguides for optical communication,” Chin. Phys. Lett. 25, 996-999 (2008).
[CrossRef]

Leosson, K.

Lin, W.

W. Lin and G. Wang, “Metal heterowaveguide superlattices for a plasmonic analog to electronic Bloch oscillations,” Appl. Phys. Lett. 91, 143121 (2007).
[CrossRef]

Lin, X.

Lin, X.-S.

Liu, J. Q.

Liu, L.

Z. Han, L. Liu, and E. Forsberg, “Ultra-compact directional couplers and Mach-Zehnder interferometers employing surface plasmon polaritons,” Opt. Commun. 259, 690-695 (2006).
[CrossRef]

Luo, X.

Luo, X.-G.

Z.-Y. Zhang, P. Huang, and X.-W. Guo, J.-Q. Wang, L. Fang, J.-L. Du, X.-G. Luo, and C.-L. Lei, “Multiple wavelength-channels in SPP waveguides for optical communication,” Chin. Phys. Lett. 25, 996-999 (2008).
[CrossRef]

Lv, Y.

Massoud, Y.

Matsuzaki, Y.

Mei, Z.

Morimoto, A.

Nakagaki, M.

Nejati, H.

Nikolajsen, T.

Okamoto, T.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Park, J.

Raether, H.

H. Raether, Surface Plasmon on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Shi, H.

Suguru, Y.

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Takahara, J.

Veronis, G.

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

Wang, B.

B. Wang and G. P. Wang, “Plasmonic waveguide ring resonator at terahertz frequencies,” Appl. Phys. Lett. 89, 133106 (2006).
[CrossRef]

B. Wang and G. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surface,” Appl. Phys. Lett. 87, 013107 (2005).
[CrossRef]

B. Wang and G. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29, 1992-1994 (2004).
[CrossRef] [PubMed]

Wang, C.

Wang, D. Y.

Wang, G.

W. Lin and G. Wang, “Metal heterowaveguide superlattices for a plasmonic analog to electronic Bloch oscillations,” Appl. Phys. Lett. 91, 143121 (2007).
[CrossRef]

B. Wang and G. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surface,” Appl. Phys. Lett. 87, 013107 (2005).
[CrossRef]

B. Wang and G. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29, 1992-1994 (2004).
[CrossRef] [PubMed]

Wang, G. P.

B. Wang and G. P. Wang, “Plasmonic waveguide ring resonator at terahertz frequencies,” Appl. Phys. Lett. 89, 133106 (2006).
[CrossRef]

Wang, J.-Q.

Z.-Y. Zhang, P. Huang, and X.-W. Guo, J.-Q. Wang, L. Fang, J.-L. Du, X.-G. Luo, and C.-L. Lei, “Multiple wavelength-channels in SPP waveguides for optical communication,” Chin. Phys. Lett. 25, 996-999 (2008).
[CrossRef]

Wang, L. L.

Weeber, J.-C.

J. Krenn and J.-C. Weeber, “Surface plasmon polaritons in metal stripes and wires,” Philos. Trans. R. Soc. London, Ser. A 362, 739 (2004).
[CrossRef]

Wen, S. C.

Yao, H.

Zhang, Z.-Y.

Z.-Y. Zhang, P. Huang, and X.-W. Guo, J.-Q. Wang, L. Fang, J.-L. Du, X.-G. Luo, and C.-L. Lei, “Multiple wavelength-channels in SPP waveguides for optical communication,” Chin. Phys. Lett. 25, 996-999 (2008).
[CrossRef]

Zhao, D.

Zhao, H.

H. Zhao, X. Huang, and J. Huang, “Novel optical directional coupler based on surface plasmon polaritons,” Physica E (Amsterdam) 40, 3025-3029 (2008).
[CrossRef]

Zou, B. S.

Appl. Phys. Lett. (4)

B. Wang and G. P. Wang, “Plasmonic waveguide ring resonator at terahertz frequencies,” Appl. Phys. Lett. 89, 133106 (2006).
[CrossRef]

B. Wang and G. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surface,” Appl. Phys. Lett. 87, 013107 (2005).
[CrossRef]

W. Lin and G. Wang, “Metal heterowaveguide superlattices for a plasmonic analog to electronic Bloch oscillations,” Appl. Phys. Lett. 91, 143121 (2007).
[CrossRef]

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005).
[CrossRef]

Chin. Phys. Lett. (1)

Z.-Y. Zhang, P. Huang, and X.-W. Guo, J.-Q. Wang, L. Fang, J.-L. Du, X.-G. Luo, and C.-L. Lei, “Multiple wavelength-channels in SPP waveguides for optical communication,” Chin. Phys. Lett. 25, 996-999 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91-93 (2007).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

Nature (2)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508-511 (2006).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

Z. Han, L. Liu, and E. Forsberg, “Ultra-compact directional couplers and Mach-Zehnder interferometers employing surface plasmon polaritons,” Opt. Commun. 259, 690-695 (2006).
[CrossRef]

Opt. Express (7)

Opt. Lett. (3)

Philos. Trans. R. Soc. London, Ser. A (1)

J. Krenn and J.-C. Weeber, “Surface plasmon polaritons in metal stripes and wires,” Philos. Trans. R. Soc. London, Ser. A 362, 739 (2004).
[CrossRef]

Phys. Rev. B (2)

M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356 (2000).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[CrossRef]

Physica E (Amsterdam) (1)

H. Zhao, X. Huang, and J. Huang, “Novel optical directional coupler based on surface plasmon polaritons,” Physica E (Amsterdam) 40, 3025-3029 (2008).
[CrossRef]

Other (3)

H. Raether, Surface Plasmon on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Real part of the effective index of refraction versus the width of a MIM slit waveguide structure. (b) Propagation length as a function of wavelength with different width of a MIM slit waveguide structure.

Fig. 2
Fig. 2

Structure schematics of a single tooth-shaped waveguide filter, with the slit width of w, the tooth width of w t , and the tooth depth of d. (b) The transmittance of the filter with d = 100 nm and d = 300 nm at a fixed w = 50 nm , w t = 50 nm .

Fig. 3
Fig. 3

Normalized transmittance of a three-port waveguide splitter with w = 50 nm by having input into Port 1 for (a) and Port 3 for (b).

Fig. 4
Fig. 4

Comparison of the modified semianalytical model with the FDTD results and the simple model.

Fig. 5
Fig. 5

Schematic of a multiple-teeth-shaped MIM waveguide structure. (b) Transmittance of the multiple-teeth-shaped waveguide filter with w t = 50 nm , Λ = 150 nm , d = 260.5 nm , and N = 5 .

Fig. 6
Fig. 6

Central wavelength of the bandgap and the bandgap width as a function of the teeth depth of d at various teeth widths. (b) Central wavelength of the bandgap and the bandgap width as a function of teeth widths of w t at various teeth depths.

Fig. 7
Fig. 7

Transmittance spectra of multiteeth filters with different periods and a fixed N = 5 . (b) Transmittance spectra of multiteeth filters consisting of 3–7 periods with a fixed Λ = 150 nm

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ϵ d k z 2 + ϵ m k z 1 coth ( i k z 1 2 w ) = 0 ,
ϵ m ( ω ) = ϵ ω p 2 ω ( ω + i γ ) .
T = t 1 + s 1 s 3 1 r 3 exp ( i ϕ ( λ ) ) exp ( i ϕ ( λ ) ) 2 ,
ϕ ( λ ) = 2 π ( n eff 2 d + w ) λ + Δ ϕ .
λ m = 2 ( n eff 2 d + w ) ( 2 m + 1 ) Δ ϕ π , ( m = 0 , 1 , 2 , ) ,

Metrics