Abstract

We report the design and fabrication of a Bragg grating device on a silicone-based elastomer rib waveguide, constructed using solvent-assisted microcontact molding and polymer casting techniques. The waveguide design utilizes polydimethylsiloxane (PDMS) and hard polydimethylsiloxane (hPDMS) polymers as core and cladding materials, with a period of 0.55μm, a depth of 350  nm, and a grating length of 6 mm. Fabrication is relatively simple, with the hPDMS/PDMS waveguide and gratings cast from a two-layer mold made of a phenolic resin-based positive photoresist and an epoxy Novolak resin-based negative photoresist. The mold we have designed has a demonstrated operational lifespan in excess of ten successful waveguide fabrications. The transmission spectra of the resulting gratings were measured, with test results showing a band-rejection gain of −17 dB and a 3 dB bandwidth of 3  nm at transmission.

© 2009 Optical Society of America

Full Article  |  PDF Article

Corrections

Cheng-Sheng Huang, Edwin Yue-Bun Pun, and Wei-Chih Wang, "Fabrication of an elastomeric rib waveguide Bragg grating filter: publisher’s note," J. Opt. Soc. Am. B 28, 2855-2855 (2011)
https://www.osapublishing.org/josab/abstract.cfm?uri=josab-28-11-2855

References

  • View by:
  • |
  • |
  • |

  1. Fiber Optic Smart Structures, E.Udd, ed. (Wiley, 1995).
  2. Fiber Optic Sensors: An Introduction for Engineers and Scientists, E.Udd, ed. (Wiley, 1991).
  3. J. Meissner, W. Nowak, V. Slowik, and T. Klink, “Strain monitoring at a prestressed concrete bridge,” in Proceedings of the 12th International Conference on Optical Fibre Sensors, (Opt. Society of America, 1997), pp. 408-411.
  4. E. J. Friebele, “Fiber Bragg grating strain sensors: present and future applications in smart structures,” Optics & Photonics News 9, 33-37 (1998).
    [CrossRef]
  5. L. Bilro, J. L. Pinto, J. Oliveira, and R. Nogueira, “Gait monitoring with a wearable plastic optical sensor,” in 2008 IEEE Sensors (IEEE, 2008), pp. 787-790.
    [CrossRef]
  6. L. E. Dunne, P. Walsh, B. Smyth, and B. Caulfield, “Design and evaluation of a wearable optical sensor for monitoring seated spinal posture,” in 2006 10th IEEE International Symposium on Wearable Computers (IEEE, 2006), pp. 70-73.
  7. J.-S. Heo, J.-H. Chung, and J.-J. Lee, “Tactile sensor arrays using fiber Bragg grating sensors,” Sens. Actuators A Phys. 126, 312-327 (2006).
    [CrossRef]
  8. W.-C. Wang, R. Panergo, and P. Reinhall, “Development of a microfabricated scanning endoscope using SU-8-based optical waveguide,” in Smart Nondestructive Evaluation and Health Monitoring of Structural and Biological Systems II (SPIE-Int. Soc. Opt. Eng, 2003), pp. 305-313.
  9. L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE Journal of Selected Topics in Quantum Electronics 6, 54-68 (2000).
    [CrossRef]
  10. L. Eldada, R. Blomquist, M. Maxfield, D. Pant, G. Boudoughian, C. Poga, and R. A. Norwood, “Thermooptic planar polymer Bragg grating OADM's with broad tuning range,” IEEE Photon. Technol. Lett. 11, 448-450 (1999).
    [CrossRef]
  11. M.-C. Oh, M.-H. Lee, J.-H. Ahn, H.-J. Lee, and S. G. Han, “Polymeric wavelength filters with polymer gratings,” Appl. Phys. Lett. 72, 1559-1561 (1998).
    [CrossRef]
  12. N. Mukherjee, B. J. Eapen, D. M. Keicher, S. Q. Luong, and A. Mukherjee, “Distributed Bragg reflection in integrated waveguides of polymethylmethacrylate,” Appl. Phys. Lett. 67, 3715-3717 (1995).
    [CrossRef]
  13. J.-W. Kang, M.-J. Kim, J.-P. Kim, S.-J. Yoo, J.-S. Lee, D. Y. Kim, and J.-J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82, 3823-3825 (2003).
    [CrossRef]
  14. S. Aramaki, G. Assanto, G. I. Stegeman, and M. Marciniak, “Realization of integrated Bragg reflectors in DANS-polymer waveguides,” J. Lightwave Technol. 11, 1189-1195 (1993).
    [CrossRef]
  15. W. H. Wong and E. Y. B. Pun, “Polymeric waveguide wavelength filters using electron-beam direct writing,” Appl. Phys. Lett. 79, 3576-3578 (2001).
    [CrossRef]
  16. S. Ahn, K.-D. Lee, D.-H. Kim, and S.-S. Lee, “Polymeric wavelength filter based on a Bragg grating using nanoimprint technique,” IEEE Photon. Technol. Lett. 17, 2122-2124 (2005).
    [CrossRef]
  17. J. A. Rogers, M. Meier, and A. Dodabalapur, “Using printing and molding techniques to produce distributed feedback and Bragg reflector resonators for plastic lasers,” Appl. Phys. Lett. 73, 1766-1768 (1998).
    [CrossRef]
  18. C.-Y. Huang, W.-C. Wang, W.-J. Wu, and W. R. Ledoux, “Composite optical bend loss sensor for pressure and shear measurement,” IEEE Sens. J. 7, 1554-1565 (2007).
    [CrossRef]
  19. D. A. Chang-Yen, R. K. Eich, and B. K. Gale, “A monolithic PDMS waveguide system fabricated using soft-lithography techniques,” J. Lightwave Technol. 23, 2088-2093 (2005).
    [CrossRef]
  20. T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved pattern transfer in soft lithography using composite stamps,” Langmuir 18, 5314-5320 (2002).
    [CrossRef]
  21. E. Kim, Y. Xia, X.-M. Zhao, and G. M. Whitesides, “Solvent-assisted microcontact molding: A convenient method for fabricating three-dimensional structures on surfaces of polymers,” Adv. Mater. 9, 651-654 (1997).
    [CrossRef]
  22. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9, 919-933 (1973).
    [CrossRef]
  23. A. Yariv and M. Nakamura, “Periodic structures for integrated optics,” IEEE J. Quantum Electron. 13, 233-252 (1977).
    [CrossRef]
  24. Y. Xia, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Unconventional methods for fabricating and patterning nanostructures,” Chem. Rev. 99, 1823-1824 (1999).
    [CrossRef]
  25. C.-S. Huang and W.-C. Wang, “Flexible polymeric rib waveguide with self-align couplers system,” J. Vac. Sci. Technol. B 26, L13-L18 (2008).
    [CrossRef]
  26. R. V. Schmidt, D. C. Flanders, C. V. Shank, and R. D. Standley, “Narrow-band grating filters for thin-film optical waveguides,” Appl. Phys. Lett. 25, 651-652 (1974).
    [CrossRef]

2008 (1)

C.-S. Huang and W.-C. Wang, “Flexible polymeric rib waveguide with self-align couplers system,” J. Vac. Sci. Technol. B 26, L13-L18 (2008).
[CrossRef]

2007 (1)

C.-Y. Huang, W.-C. Wang, W.-J. Wu, and W. R. Ledoux, “Composite optical bend loss sensor for pressure and shear measurement,” IEEE Sens. J. 7, 1554-1565 (2007).
[CrossRef]

2006 (1)

J.-S. Heo, J.-H. Chung, and J.-J. Lee, “Tactile sensor arrays using fiber Bragg grating sensors,” Sens. Actuators A Phys. 126, 312-327 (2006).
[CrossRef]

2005 (2)

S. Ahn, K.-D. Lee, D.-H. Kim, and S.-S. Lee, “Polymeric wavelength filter based on a Bragg grating using nanoimprint technique,” IEEE Photon. Technol. Lett. 17, 2122-2124 (2005).
[CrossRef]

D. A. Chang-Yen, R. K. Eich, and B. K. Gale, “A monolithic PDMS waveguide system fabricated using soft-lithography techniques,” J. Lightwave Technol. 23, 2088-2093 (2005).
[CrossRef]

2003 (1)

J.-W. Kang, M.-J. Kim, J.-P. Kim, S.-J. Yoo, J.-S. Lee, D. Y. Kim, and J.-J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82, 3823-3825 (2003).
[CrossRef]

2002 (1)

T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved pattern transfer in soft lithography using composite stamps,” Langmuir 18, 5314-5320 (2002).
[CrossRef]

2001 (1)

W. H. Wong and E. Y. B. Pun, “Polymeric waveguide wavelength filters using electron-beam direct writing,” Appl. Phys. Lett. 79, 3576-3578 (2001).
[CrossRef]

2000 (1)

L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE Journal of Selected Topics in Quantum Electronics 6, 54-68 (2000).
[CrossRef]

1999 (2)

L. Eldada, R. Blomquist, M. Maxfield, D. Pant, G. Boudoughian, C. Poga, and R. A. Norwood, “Thermooptic planar polymer Bragg grating OADM's with broad tuning range,” IEEE Photon. Technol. Lett. 11, 448-450 (1999).
[CrossRef]

Y. Xia, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Unconventional methods for fabricating and patterning nanostructures,” Chem. Rev. 99, 1823-1824 (1999).
[CrossRef]

1998 (3)

J. A. Rogers, M. Meier, and A. Dodabalapur, “Using printing and molding techniques to produce distributed feedback and Bragg reflector resonators for plastic lasers,” Appl. Phys. Lett. 73, 1766-1768 (1998).
[CrossRef]

M.-C. Oh, M.-H. Lee, J.-H. Ahn, H.-J. Lee, and S. G. Han, “Polymeric wavelength filters with polymer gratings,” Appl. Phys. Lett. 72, 1559-1561 (1998).
[CrossRef]

E. J. Friebele, “Fiber Bragg grating strain sensors: present and future applications in smart structures,” Optics & Photonics News 9, 33-37 (1998).
[CrossRef]

1997 (1)

E. Kim, Y. Xia, X.-M. Zhao, and G. M. Whitesides, “Solvent-assisted microcontact molding: A convenient method for fabricating three-dimensional structures on surfaces of polymers,” Adv. Mater. 9, 651-654 (1997).
[CrossRef]

1995 (1)

N. Mukherjee, B. J. Eapen, D. M. Keicher, S. Q. Luong, and A. Mukherjee, “Distributed Bragg reflection in integrated waveguides of polymethylmethacrylate,” Appl. Phys. Lett. 67, 3715-3717 (1995).
[CrossRef]

1993 (1)

S. Aramaki, G. Assanto, G. I. Stegeman, and M. Marciniak, “Realization of integrated Bragg reflectors in DANS-polymer waveguides,” J. Lightwave Technol. 11, 1189-1195 (1993).
[CrossRef]

1977 (1)

A. Yariv and M. Nakamura, “Periodic structures for integrated optics,” IEEE J. Quantum Electron. 13, 233-252 (1977).
[CrossRef]

1974 (1)

R. V. Schmidt, D. C. Flanders, C. V. Shank, and R. D. Standley, “Narrow-band grating filters for thin-film optical waveguides,” Appl. Phys. Lett. 25, 651-652 (1974).
[CrossRef]

1973 (1)

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9, 919-933 (1973).
[CrossRef]

Ahn, J. -H.

M.-C. Oh, M.-H. Lee, J.-H. Ahn, H.-J. Lee, and S. G. Han, “Polymeric wavelength filters with polymer gratings,” Appl. Phys. Lett. 72, 1559-1561 (1998).
[CrossRef]

Ahn, S.

S. Ahn, K.-D. Lee, D.-H. Kim, and S.-S. Lee, “Polymeric wavelength filter based on a Bragg grating using nanoimprint technique,” IEEE Photon. Technol. Lett. 17, 2122-2124 (2005).
[CrossRef]

Aramaki, S.

S. Aramaki, G. Assanto, G. I. Stegeman, and M. Marciniak, “Realization of integrated Bragg reflectors in DANS-polymer waveguides,” J. Lightwave Technol. 11, 1189-1195 (1993).
[CrossRef]

Assanto, G.

S. Aramaki, G. Assanto, G. I. Stegeman, and M. Marciniak, “Realization of integrated Bragg reflectors in DANS-polymer waveguides,” J. Lightwave Technol. 11, 1189-1195 (1993).
[CrossRef]

Bilro, L.

L. Bilro, J. L. Pinto, J. Oliveira, and R. Nogueira, “Gait monitoring with a wearable plastic optical sensor,” in 2008 IEEE Sensors (IEEE, 2008), pp. 787-790.
[CrossRef]

Blomquist, R.

L. Eldada, R. Blomquist, M. Maxfield, D. Pant, G. Boudoughian, C. Poga, and R. A. Norwood, “Thermooptic planar polymer Bragg grating OADM's with broad tuning range,” IEEE Photon. Technol. Lett. 11, 448-450 (1999).
[CrossRef]

Boudoughian, G.

L. Eldada, R. Blomquist, M. Maxfield, D. Pant, G. Boudoughian, C. Poga, and R. A. Norwood, “Thermooptic planar polymer Bragg grating OADM's with broad tuning range,” IEEE Photon. Technol. Lett. 11, 448-450 (1999).
[CrossRef]

Caulfield, B.

L. E. Dunne, P. Walsh, B. Smyth, and B. Caulfield, “Design and evaluation of a wearable optical sensor for monitoring seated spinal posture,” in 2006 10th IEEE International Symposium on Wearable Computers (IEEE, 2006), pp. 70-73.

Chang-Yen, D. A.

Chung, J. -H.

J.-S. Heo, J.-H. Chung, and J.-J. Lee, “Tactile sensor arrays using fiber Bragg grating sensors,” Sens. Actuators A Phys. 126, 312-327 (2006).
[CrossRef]

Dodabalapur, A.

J. A. Rogers, M. Meier, and A. Dodabalapur, “Using printing and molding techniques to produce distributed feedback and Bragg reflector resonators for plastic lasers,” Appl. Phys. Lett. 73, 1766-1768 (1998).
[CrossRef]

Dunne, L. E.

L. E. Dunne, P. Walsh, B. Smyth, and B. Caulfield, “Design and evaluation of a wearable optical sensor for monitoring seated spinal posture,” in 2006 10th IEEE International Symposium on Wearable Computers (IEEE, 2006), pp. 70-73.

Eapen, B. J.

N. Mukherjee, B. J. Eapen, D. M. Keicher, S. Q. Luong, and A. Mukherjee, “Distributed Bragg reflection in integrated waveguides of polymethylmethacrylate,” Appl. Phys. Lett. 67, 3715-3717 (1995).
[CrossRef]

Eich, R. K.

Eldada, L.

L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE Journal of Selected Topics in Quantum Electronics 6, 54-68 (2000).
[CrossRef]

L. Eldada, R. Blomquist, M. Maxfield, D. Pant, G. Boudoughian, C. Poga, and R. A. Norwood, “Thermooptic planar polymer Bragg grating OADM's with broad tuning range,” IEEE Photon. Technol. Lett. 11, 448-450 (1999).
[CrossRef]

Flanders, D. C.

R. V. Schmidt, D. C. Flanders, C. V. Shank, and R. D. Standley, “Narrow-band grating filters for thin-film optical waveguides,” Appl. Phys. Lett. 25, 651-652 (1974).
[CrossRef]

Friebele, E. J.

E. J. Friebele, “Fiber Bragg grating strain sensors: present and future applications in smart structures,” Optics & Photonics News 9, 33-37 (1998).
[CrossRef]

Gale, B. K.

Han, S. G.

M.-C. Oh, M.-H. Lee, J.-H. Ahn, H.-J. Lee, and S. G. Han, “Polymeric wavelength filters with polymer gratings,” Appl. Phys. Lett. 72, 1559-1561 (1998).
[CrossRef]

Heo, J. -S.

J.-S. Heo, J.-H. Chung, and J.-J. Lee, “Tactile sensor arrays using fiber Bragg grating sensors,” Sens. Actuators A Phys. 126, 312-327 (2006).
[CrossRef]

Huang, C. -Y.

C.-Y. Huang, W.-C. Wang, W.-J. Wu, and W. R. Ledoux, “Composite optical bend loss sensor for pressure and shear measurement,” IEEE Sens. J. 7, 1554-1565 (2007).
[CrossRef]

Huang, C.-S.

C.-S. Huang and W.-C. Wang, “Flexible polymeric rib waveguide with self-align couplers system,” J. Vac. Sci. Technol. B 26, L13-L18 (2008).
[CrossRef]

Kang, J.-W.

J.-W. Kang, M.-J. Kim, J.-P. Kim, S.-J. Yoo, J.-S. Lee, D. Y. Kim, and J.-J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82, 3823-3825 (2003).
[CrossRef]

Keicher, D. M.

N. Mukherjee, B. J. Eapen, D. M. Keicher, S. Q. Luong, and A. Mukherjee, “Distributed Bragg reflection in integrated waveguides of polymethylmethacrylate,” Appl. Phys. Lett. 67, 3715-3717 (1995).
[CrossRef]

Kim, D. Y.

J.-W. Kang, M.-J. Kim, J.-P. Kim, S.-J. Yoo, J.-S. Lee, D. Y. Kim, and J.-J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82, 3823-3825 (2003).
[CrossRef]

Kim, D.-H.

S. Ahn, K.-D. Lee, D.-H. Kim, and S.-S. Lee, “Polymeric wavelength filter based on a Bragg grating using nanoimprint technique,” IEEE Photon. Technol. Lett. 17, 2122-2124 (2005).
[CrossRef]

Kim, E.

E. Kim, Y. Xia, X.-M. Zhao, and G. M. Whitesides, “Solvent-assisted microcontact molding: A convenient method for fabricating three-dimensional structures on surfaces of polymers,” Adv. Mater. 9, 651-654 (1997).
[CrossRef]

Kim, J.-J.

J.-W. Kang, M.-J. Kim, J.-P. Kim, S.-J. Yoo, J.-S. Lee, D. Y. Kim, and J.-J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82, 3823-3825 (2003).
[CrossRef]

Kim, J.-P.

J.-W. Kang, M.-J. Kim, J.-P. Kim, S.-J. Yoo, J.-S. Lee, D. Y. Kim, and J.-J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82, 3823-3825 (2003).
[CrossRef]

Kim, M.-J.

J.-W. Kang, M.-J. Kim, J.-P. Kim, S.-J. Yoo, J.-S. Lee, D. Y. Kim, and J.-J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82, 3823-3825 (2003).
[CrossRef]

Klink, T.

J. Meissner, W. Nowak, V. Slowik, and T. Klink, “Strain monitoring at a prestressed concrete bridge,” in Proceedings of the 12th International Conference on Optical Fibre Sensors, (Opt. Society of America, 1997), pp. 408-411.

Ledoux, W. R.

C.-Y. Huang, W.-C. Wang, W.-J. Wu, and W. R. Ledoux, “Composite optical bend loss sensor for pressure and shear measurement,” IEEE Sens. J. 7, 1554-1565 (2007).
[CrossRef]

Lee, H. -J.

M.-C. Oh, M.-H. Lee, J.-H. Ahn, H.-J. Lee, and S. G. Han, “Polymeric wavelength filters with polymer gratings,” Appl. Phys. Lett. 72, 1559-1561 (1998).
[CrossRef]

Lee, J. -J.

J.-S. Heo, J.-H. Chung, and J.-J. Lee, “Tactile sensor arrays using fiber Bragg grating sensors,” Sens. Actuators A Phys. 126, 312-327 (2006).
[CrossRef]

Lee, J.-S.

J.-W. Kang, M.-J. Kim, J.-P. Kim, S.-J. Yoo, J.-S. Lee, D. Y. Kim, and J.-J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82, 3823-3825 (2003).
[CrossRef]

Lee, K.-D.

S. Ahn, K.-D. Lee, D.-H. Kim, and S.-S. Lee, “Polymeric wavelength filter based on a Bragg grating using nanoimprint technique,” IEEE Photon. Technol. Lett. 17, 2122-2124 (2005).
[CrossRef]

Lee, M. -H.

M.-C. Oh, M.-H. Lee, J.-H. Ahn, H.-J. Lee, and S. G. Han, “Polymeric wavelength filters with polymer gratings,” Appl. Phys. Lett. 72, 1559-1561 (1998).
[CrossRef]

Lee, S.-S.

S. Ahn, K.-D. Lee, D.-H. Kim, and S.-S. Lee, “Polymeric wavelength filter based on a Bragg grating using nanoimprint technique,” IEEE Photon. Technol. Lett. 17, 2122-2124 (2005).
[CrossRef]

Love, J. C.

T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved pattern transfer in soft lithography using composite stamps,” Langmuir 18, 5314-5320 (2002).
[CrossRef]

Luong, S. Q.

N. Mukherjee, B. J. Eapen, D. M. Keicher, S. Q. Luong, and A. Mukherjee, “Distributed Bragg reflection in integrated waveguides of polymethylmethacrylate,” Appl. Phys. Lett. 67, 3715-3717 (1995).
[CrossRef]

Marciniak, M.

S. Aramaki, G. Assanto, G. I. Stegeman, and M. Marciniak, “Realization of integrated Bragg reflectors in DANS-polymer waveguides,” J. Lightwave Technol. 11, 1189-1195 (1993).
[CrossRef]

Maxfield, M.

L. Eldada, R. Blomquist, M. Maxfield, D. Pant, G. Boudoughian, C. Poga, and R. A. Norwood, “Thermooptic planar polymer Bragg grating OADM's with broad tuning range,” IEEE Photon. Technol. Lett. 11, 448-450 (1999).
[CrossRef]

Meier, M.

J. A. Rogers, M. Meier, and A. Dodabalapur, “Using printing and molding techniques to produce distributed feedback and Bragg reflector resonators for plastic lasers,” Appl. Phys. Lett. 73, 1766-1768 (1998).
[CrossRef]

Meissner, J.

J. Meissner, W. Nowak, V. Slowik, and T. Klink, “Strain monitoring at a prestressed concrete bridge,” in Proceedings of the 12th International Conference on Optical Fibre Sensors, (Opt. Society of America, 1997), pp. 408-411.

Mukherjee, A.

N. Mukherjee, B. J. Eapen, D. M. Keicher, S. Q. Luong, and A. Mukherjee, “Distributed Bragg reflection in integrated waveguides of polymethylmethacrylate,” Appl. Phys. Lett. 67, 3715-3717 (1995).
[CrossRef]

Mukherjee, N.

N. Mukherjee, B. J. Eapen, D. M. Keicher, S. Q. Luong, and A. Mukherjee, “Distributed Bragg reflection in integrated waveguides of polymethylmethacrylate,” Appl. Phys. Lett. 67, 3715-3717 (1995).
[CrossRef]

Nakamura, M.

A. Yariv and M. Nakamura, “Periodic structures for integrated optics,” IEEE J. Quantum Electron. 13, 233-252 (1977).
[CrossRef]

Nogueira, R.

L. Bilro, J. L. Pinto, J. Oliveira, and R. Nogueira, “Gait monitoring with a wearable plastic optical sensor,” in 2008 IEEE Sensors (IEEE, 2008), pp. 787-790.
[CrossRef]

Norwood, R. A.

L. Eldada, R. Blomquist, M. Maxfield, D. Pant, G. Boudoughian, C. Poga, and R. A. Norwood, “Thermooptic planar polymer Bragg grating OADM's with broad tuning range,” IEEE Photon. Technol. Lett. 11, 448-450 (1999).
[CrossRef]

Nowak, W.

J. Meissner, W. Nowak, V. Slowik, and T. Klink, “Strain monitoring at a prestressed concrete bridge,” in Proceedings of the 12th International Conference on Optical Fibre Sensors, (Opt. Society of America, 1997), pp. 408-411.

Odom, T. W.

T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved pattern transfer in soft lithography using composite stamps,” Langmuir 18, 5314-5320 (2002).
[CrossRef]

Oh, M. -C.

M.-C. Oh, M.-H. Lee, J.-H. Ahn, H.-J. Lee, and S. G. Han, “Polymeric wavelength filters with polymer gratings,” Appl. Phys. Lett. 72, 1559-1561 (1998).
[CrossRef]

Oliveira, J.

L. Bilro, J. L. Pinto, J. Oliveira, and R. Nogueira, “Gait monitoring with a wearable plastic optical sensor,” in 2008 IEEE Sensors (IEEE, 2008), pp. 787-790.
[CrossRef]

Panergo, R.

W.-C. Wang, R. Panergo, and P. Reinhall, “Development of a microfabricated scanning endoscope using SU-8-based optical waveguide,” in Smart Nondestructive Evaluation and Health Monitoring of Structural and Biological Systems II (SPIE-Int. Soc. Opt. Eng, 2003), pp. 305-313.

Pant, D.

L. Eldada, R. Blomquist, M. Maxfield, D. Pant, G. Boudoughian, C. Poga, and R. A. Norwood, “Thermooptic planar polymer Bragg grating OADM's with broad tuning range,” IEEE Photon. Technol. Lett. 11, 448-450 (1999).
[CrossRef]

Paul, K. E.

T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved pattern transfer in soft lithography using composite stamps,” Langmuir 18, 5314-5320 (2002).
[CrossRef]

Y. Xia, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Unconventional methods for fabricating and patterning nanostructures,” Chem. Rev. 99, 1823-1824 (1999).
[CrossRef]

Pinto, J. L.

L. Bilro, J. L. Pinto, J. Oliveira, and R. Nogueira, “Gait monitoring with a wearable plastic optical sensor,” in 2008 IEEE Sensors (IEEE, 2008), pp. 787-790.
[CrossRef]

Poga, C.

L. Eldada, R. Blomquist, M. Maxfield, D. Pant, G. Boudoughian, C. Poga, and R. A. Norwood, “Thermooptic planar polymer Bragg grating OADM's with broad tuning range,” IEEE Photon. Technol. Lett. 11, 448-450 (1999).
[CrossRef]

Pun, E. Y. B.

W. H. Wong and E. Y. B. Pun, “Polymeric waveguide wavelength filters using electron-beam direct writing,” Appl. Phys. Lett. 79, 3576-3578 (2001).
[CrossRef]

Reinhall, P.

W.-C. Wang, R. Panergo, and P. Reinhall, “Development of a microfabricated scanning endoscope using SU-8-based optical waveguide,” in Smart Nondestructive Evaluation and Health Monitoring of Structural and Biological Systems II (SPIE-Int. Soc. Opt. Eng, 2003), pp. 305-313.

Rogers, J. A.

Y. Xia, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Unconventional methods for fabricating and patterning nanostructures,” Chem. Rev. 99, 1823-1824 (1999).
[CrossRef]

J. A. Rogers, M. Meier, and A. Dodabalapur, “Using printing and molding techniques to produce distributed feedback and Bragg reflector resonators for plastic lasers,” Appl. Phys. Lett. 73, 1766-1768 (1998).
[CrossRef]

Schmidt, R. V.

R. V. Schmidt, D. C. Flanders, C. V. Shank, and R. D. Standley, “Narrow-band grating filters for thin-film optical waveguides,” Appl. Phys. Lett. 25, 651-652 (1974).
[CrossRef]

Shacklette, L. W.

L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE Journal of Selected Topics in Quantum Electronics 6, 54-68 (2000).
[CrossRef]

Shank, C. V.

R. V. Schmidt, D. C. Flanders, C. V. Shank, and R. D. Standley, “Narrow-band grating filters for thin-film optical waveguides,” Appl. Phys. Lett. 25, 651-652 (1974).
[CrossRef]

Slowik, V.

J. Meissner, W. Nowak, V. Slowik, and T. Klink, “Strain monitoring at a prestressed concrete bridge,” in Proceedings of the 12th International Conference on Optical Fibre Sensors, (Opt. Society of America, 1997), pp. 408-411.

Smyth, B.

L. E. Dunne, P. Walsh, B. Smyth, and B. Caulfield, “Design and evaluation of a wearable optical sensor for monitoring seated spinal posture,” in 2006 10th IEEE International Symposium on Wearable Computers (IEEE, 2006), pp. 70-73.

Standley, R. D.

R. V. Schmidt, D. C. Flanders, C. V. Shank, and R. D. Standley, “Narrow-band grating filters for thin-film optical waveguides,” Appl. Phys. Lett. 25, 651-652 (1974).
[CrossRef]

Stegeman, G. I.

S. Aramaki, G. Assanto, G. I. Stegeman, and M. Marciniak, “Realization of integrated Bragg reflectors in DANS-polymer waveguides,” J. Lightwave Technol. 11, 1189-1195 (1993).
[CrossRef]

Walsh, P.

L. E. Dunne, P. Walsh, B. Smyth, and B. Caulfield, “Design and evaluation of a wearable optical sensor for monitoring seated spinal posture,” in 2006 10th IEEE International Symposium on Wearable Computers (IEEE, 2006), pp. 70-73.

Wang, W. -C.

C.-Y. Huang, W.-C. Wang, W.-J. Wu, and W. R. Ledoux, “Composite optical bend loss sensor for pressure and shear measurement,” IEEE Sens. J. 7, 1554-1565 (2007).
[CrossRef]

Wang, W.-C.

C.-S. Huang and W.-C. Wang, “Flexible polymeric rib waveguide with self-align couplers system,” J. Vac. Sci. Technol. B 26, L13-L18 (2008).
[CrossRef]

W.-C. Wang, R. Panergo, and P. Reinhall, “Development of a microfabricated scanning endoscope using SU-8-based optical waveguide,” in Smart Nondestructive Evaluation and Health Monitoring of Structural and Biological Systems II (SPIE-Int. Soc. Opt. Eng, 2003), pp. 305-313.

Whitesides, G. M.

T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved pattern transfer in soft lithography using composite stamps,” Langmuir 18, 5314-5320 (2002).
[CrossRef]

Y. Xia, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Unconventional methods for fabricating and patterning nanostructures,” Chem. Rev. 99, 1823-1824 (1999).
[CrossRef]

E. Kim, Y. Xia, X.-M. Zhao, and G. M. Whitesides, “Solvent-assisted microcontact molding: A convenient method for fabricating three-dimensional structures on surfaces of polymers,” Adv. Mater. 9, 651-654 (1997).
[CrossRef]

Wolfe, D. B.

T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved pattern transfer in soft lithography using composite stamps,” Langmuir 18, 5314-5320 (2002).
[CrossRef]

Wong, W. H.

W. H. Wong and E. Y. B. Pun, “Polymeric waveguide wavelength filters using electron-beam direct writing,” Appl. Phys. Lett. 79, 3576-3578 (2001).
[CrossRef]

Wu, W. -J.

C.-Y. Huang, W.-C. Wang, W.-J. Wu, and W. R. Ledoux, “Composite optical bend loss sensor for pressure and shear measurement,” IEEE Sens. J. 7, 1554-1565 (2007).
[CrossRef]

Xia, Y.

Y. Xia, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Unconventional methods for fabricating and patterning nanostructures,” Chem. Rev. 99, 1823-1824 (1999).
[CrossRef]

E. Kim, Y. Xia, X.-M. Zhao, and G. M. Whitesides, “Solvent-assisted microcontact molding: A convenient method for fabricating three-dimensional structures on surfaces of polymers,” Adv. Mater. 9, 651-654 (1997).
[CrossRef]

Yariv, A.

A. Yariv and M. Nakamura, “Periodic structures for integrated optics,” IEEE J. Quantum Electron. 13, 233-252 (1977).
[CrossRef]

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9, 919-933 (1973).
[CrossRef]

Yoo, S.-J.

J.-W. Kang, M.-J. Kim, J.-P. Kim, S.-J. Yoo, J.-S. Lee, D. Y. Kim, and J.-J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82, 3823-3825 (2003).
[CrossRef]

Zhao, X.-M.

E. Kim, Y. Xia, X.-M. Zhao, and G. M. Whitesides, “Solvent-assisted microcontact molding: A convenient method for fabricating three-dimensional structures on surfaces of polymers,” Adv. Mater. 9, 651-654 (1997).
[CrossRef]

Adv. Mater. (1)

E. Kim, Y. Xia, X.-M. Zhao, and G. M. Whitesides, “Solvent-assisted microcontact molding: A convenient method for fabricating three-dimensional structures on surfaces of polymers,” Adv. Mater. 9, 651-654 (1997).
[CrossRef]

Appl. Phys. Lett. (6)

R. V. Schmidt, D. C. Flanders, C. V. Shank, and R. D. Standley, “Narrow-band grating filters for thin-film optical waveguides,” Appl. Phys. Lett. 25, 651-652 (1974).
[CrossRef]

M.-C. Oh, M.-H. Lee, J.-H. Ahn, H.-J. Lee, and S. G. Han, “Polymeric wavelength filters with polymer gratings,” Appl. Phys. Lett. 72, 1559-1561 (1998).
[CrossRef]

N. Mukherjee, B. J. Eapen, D. M. Keicher, S. Q. Luong, and A. Mukherjee, “Distributed Bragg reflection in integrated waveguides of polymethylmethacrylate,” Appl. Phys. Lett. 67, 3715-3717 (1995).
[CrossRef]

J.-W. Kang, M.-J. Kim, J.-P. Kim, S.-J. Yoo, J.-S. Lee, D. Y. Kim, and J.-J. Kim, “Polymeric wavelength filters fabricated using holographic surface relief gratings on azobenzene-containing polymer films,” Appl. Phys. Lett. 82, 3823-3825 (2003).
[CrossRef]

W. H. Wong and E. Y. B. Pun, “Polymeric waveguide wavelength filters using electron-beam direct writing,” Appl. Phys. Lett. 79, 3576-3578 (2001).
[CrossRef]

J. A. Rogers, M. Meier, and A. Dodabalapur, “Using printing and molding techniques to produce distributed feedback and Bragg reflector resonators for plastic lasers,” Appl. Phys. Lett. 73, 1766-1768 (1998).
[CrossRef]

Chem. Rev. (1)

Y. Xia, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Unconventional methods for fabricating and patterning nanostructures,” Chem. Rev. 99, 1823-1824 (1999).
[CrossRef]

IEEE J. Quantum Electron. (2)

A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9, 919-933 (1973).
[CrossRef]

A. Yariv and M. Nakamura, “Periodic structures for integrated optics,” IEEE J. Quantum Electron. 13, 233-252 (1977).
[CrossRef]

IEEE Journal of Selected Topics in Quantum Electronics (1)

L. Eldada and L. W. Shacklette, “Advances in polymer integrated optics,” IEEE Journal of Selected Topics in Quantum Electronics 6, 54-68 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

L. Eldada, R. Blomquist, M. Maxfield, D. Pant, G. Boudoughian, C. Poga, and R. A. Norwood, “Thermooptic planar polymer Bragg grating OADM's with broad tuning range,” IEEE Photon. Technol. Lett. 11, 448-450 (1999).
[CrossRef]

S. Ahn, K.-D. Lee, D.-H. Kim, and S.-S. Lee, “Polymeric wavelength filter based on a Bragg grating using nanoimprint technique,” IEEE Photon. Technol. Lett. 17, 2122-2124 (2005).
[CrossRef]

IEEE Sens. J. (1)

C.-Y. Huang, W.-C. Wang, W.-J. Wu, and W. R. Ledoux, “Composite optical bend loss sensor for pressure and shear measurement,” IEEE Sens. J. 7, 1554-1565 (2007).
[CrossRef]

J. Lightwave Technol. (2)

S. Aramaki, G. Assanto, G. I. Stegeman, and M. Marciniak, “Realization of integrated Bragg reflectors in DANS-polymer waveguides,” J. Lightwave Technol. 11, 1189-1195 (1993).
[CrossRef]

D. A. Chang-Yen, R. K. Eich, and B. K. Gale, “A monolithic PDMS waveguide system fabricated using soft-lithography techniques,” J. Lightwave Technol. 23, 2088-2093 (2005).
[CrossRef]

J. Vac. Sci. Technol. B (1)

C.-S. Huang and W.-C. Wang, “Flexible polymeric rib waveguide with self-align couplers system,” J. Vac. Sci. Technol. B 26, L13-L18 (2008).
[CrossRef]

Langmuir (1)

T. W. Odom, J. C. Love, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Improved pattern transfer in soft lithography using composite stamps,” Langmuir 18, 5314-5320 (2002).
[CrossRef]

Optics & Photonics News (1)

E. J. Friebele, “Fiber Bragg grating strain sensors: present and future applications in smart structures,” Optics & Photonics News 9, 33-37 (1998).
[CrossRef]

Sens. Actuators A Phys. (1)

J.-S. Heo, J.-H. Chung, and J.-J. Lee, “Tactile sensor arrays using fiber Bragg grating sensors,” Sens. Actuators A Phys. 126, 312-327 (2006).
[CrossRef]

Other (6)

W.-C. Wang, R. Panergo, and P. Reinhall, “Development of a microfabricated scanning endoscope using SU-8-based optical waveguide,” in Smart Nondestructive Evaluation and Health Monitoring of Structural and Biological Systems II (SPIE-Int. Soc. Opt. Eng, 2003), pp. 305-313.

L. Bilro, J. L. Pinto, J. Oliveira, and R. Nogueira, “Gait monitoring with a wearable plastic optical sensor,” in 2008 IEEE Sensors (IEEE, 2008), pp. 787-790.
[CrossRef]

L. E. Dunne, P. Walsh, B. Smyth, and B. Caulfield, “Design and evaluation of a wearable optical sensor for monitoring seated spinal posture,” in 2006 10th IEEE International Symposium on Wearable Computers (IEEE, 2006), pp. 70-73.

Fiber Optic Smart Structures, E.Udd, ed. (Wiley, 1995).

Fiber Optic Sensors: An Introduction for Engineers and Scientists, E.Udd, ed. (Wiley, 1991).

J. Meissner, W. Nowak, V. Slowik, and T. Klink, “Strain monitoring at a prestressed concrete bridge,” in Proceedings of the 12th International Conference on Optical Fibre Sensors, (Opt. Society of America, 1997), pp. 408-411.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(a) Use two-beam interference to form a grating pattern. (b) Define the waveguide width by photolithography. (c) Construct a two-layer of composite (hPDMS) stamp. (d) Wet the composite stamp. (e) Put the wetted stamp on top of a prebaked SU-8 film. (f) Release the stamp and fully crosslink the SU-8 film by UV exposure.

Fig. 2
Fig. 2

Sylgard 184 PDMS fails to replicate the grating structure.

Fig. 3
Fig. 3

(a) A rib WBG. (b) Cross section of a rib waveguide. (c) A close-up of the grating on top and sides of a rib waveguide.

Fig. 4
Fig. 4

Transmission spectrum of the SU-8 rib waveguide Bragg grating filter.

Fig. 5
Fig. 5

Comparison of the grating period at two locations. SEM shows the top view of grating at (a) and (b) 5.5 mm away from each other.

Fig. 6
Fig. 6

(a) T-top feature was formed on the SU-8 2002 which results in narrower waveguide trench on top, (b) spin coated hPDMS and PDMS as core and cladding materials, (c) the hPDMS is broken during the demolding process, (d) SEM image of hPDMS stuck inside the SU-8 waveguide trench, and (e) OE43/PDMS was demolded from the SU-8 mold successfully but the grating pattern collapses and sticks to each other.

Fig. 7
Fig. 7

(a) Cross section of a 12 μ m wide AZ1512 waveguide trench. (b) Waveguide grating structure released from the AZ1512 mold.

Fig. 8
Fig. 8

(a) Simulated TE mode profile for hPDMS/PDMS rib waveguide and (b) transmission spectrum from an elastomeric Bragg grating filter.

Fig. 9
Fig. 9

Comparison of the grating period at two locations. SEM shows the top view of grating at (a) center and (b) 5.5 mm away from the center.

Fig. 10
Fig. 10

Absorbance of 160 μ m thick PDMS and 35 μ m thick hPDMS.

Fig. 11
Fig. 11

(a) Propagation loss owing to the random surface roughness and (b) variation of coupling efficiencies owing to the misalignment with single mode fiber input. Both intensities were calculated only inside the rib region and normalized to the input intensity. (c) Transmission spectrum of a 1 cm long hPDMS/PDMS waveguide. The dashed line represents the base line intensity (transmission spectrum of the input fiber) and the solid line shows the output intensity with light passing through input and output fibers and the rib waveguide. The result shows the total loss was around 12 dB/cm.

Fig. 12
Fig. 12

The soft and flexible Bragg grating filter.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Λ = λ / ( sin   θ 1 + sin   θ 2 ) .
λ B = 2 Λ N .
η 0 = tanh 2 ( | κ | L ) ,
Δ λ Δ h h eff λ ( n f 2 N 2 1 ) + Δ Λ Λ λ .

Metrics