Abstract

A robust laser-frequency-locking scheme to atomic transitions is proposed and demonstrated. In this scheme, dispersion of the Zeeman-shifted atoms instead of absorption in the dichroic atomic vapor laser lock (DAVLL) [Appl. Opt. 37, 3295 (1998) ] is measured and used as an error signal for stabilization feedback. The error signal of the proposed scheme can provide a wide locking range. Experimental demonstration with the transition between 5dD322 and 6pP122 of Ba+ is carried out for a grating feedback external-cavity laser diode at 650nm.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. L. Corwin, Z.-T. Lu, C. F. Hand, R. J. Epstein, and C. E. Wieman, “Frequency-stabilized diode laser with the Zeeman shift in an atomic vapor,” Appl. Opt. 37, 3295-3298 (1998).
    [CrossRef]
  2. B. Chéron, H. Gilles, J. Hamel, O. Moreau, and H. Sorel, “Laser frequency stabilization using Zeeman effect,” J. Phys. III 4, 401-406 (1994).
    [CrossRef]
  3. T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. M. Tino, “Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking,” Eur. Phys. J. D 22, 279-283 (2003).
    [CrossRef]
  4. A. Millett-Sikking, I. G. Hughes, P. Tierney, and S. L. Cornish, “DAVLL lineshapes in atomic rubidium,” J. Phys. B 40, 187-198 (2007).
    [CrossRef]
  5. M. L. Harris, S. L. Cornish, A. Tripathi, and I. G. Hughes, “Optimization of sub-Doppler DAVLL on the rubidium D2 line,” J. Phys. B 41, 085401 (2008).
    [CrossRef]
  6. N. Beverini, E. Maccioni, P. Marsili, A. Ruffini, and F. Sorrentino, “Frequency stabilization of a diode laser on the Cs D2 resonance line by the Zeeman effect in a vapor cell,” Appl. Phys. B: Lasers Opt. 73, 133-138 (2001).
    [CrossRef]
  7. J. I. Kim, C. Y. Park, J. Y. Yoem, E. B. Kim, and T. H. Yoon, “Frequency-stabilized high-power violet laser diode with an ytterbium hollow-cathode lamp,” Opt. Lett. 28, 245-247 (2003).
    [CrossRef] [PubMed]
  8. E. W. Streed, T. J. Weinhold, and D. Kielpinski, “Frequency stabilization of an ultraviolet laser to ions in a discharge,” Appl. Phys. Lett. 93, 071103 (2008).
    [CrossRef]
  9. K. Shimoda, Introduction to Laser Physics (Springer, 1984).
  10. T. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441-444 (1980).
    [CrossRef]
  11. A. Mårtensson-Pendrill, D. S. Gough, and P. Hannaford, “Isotope shifts and hyperfine structure in the 369.4 nm6s-6p1/2 resonance line of singly ionized ytterbium,” Phys. Rev. A 49, 3351-3365 (1994).
    [CrossRef] [PubMed]

2008 (2)

M. L. Harris, S. L. Cornish, A. Tripathi, and I. G. Hughes, “Optimization of sub-Doppler DAVLL on the rubidium D2 line,” J. Phys. B 41, 085401 (2008).
[CrossRef]

E. W. Streed, T. J. Weinhold, and D. Kielpinski, “Frequency stabilization of an ultraviolet laser to ions in a discharge,” Appl. Phys. Lett. 93, 071103 (2008).
[CrossRef]

2007 (1)

A. Millett-Sikking, I. G. Hughes, P. Tierney, and S. L. Cornish, “DAVLL lineshapes in atomic rubidium,” J. Phys. B 40, 187-198 (2007).
[CrossRef]

2003 (2)

T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. M. Tino, “Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking,” Eur. Phys. J. D 22, 279-283 (2003).
[CrossRef]

J. I. Kim, C. Y. Park, J. Y. Yoem, E. B. Kim, and T. H. Yoon, “Frequency-stabilized high-power violet laser diode with an ytterbium hollow-cathode lamp,” Opt. Lett. 28, 245-247 (2003).
[CrossRef] [PubMed]

2001 (1)

N. Beverini, E. Maccioni, P. Marsili, A. Ruffini, and F. Sorrentino, “Frequency stabilization of a diode laser on the Cs D2 resonance line by the Zeeman effect in a vapor cell,” Appl. Phys. B: Lasers Opt. 73, 133-138 (2001).
[CrossRef]

1998 (1)

1994 (2)

B. Chéron, H. Gilles, J. Hamel, O. Moreau, and H. Sorel, “Laser frequency stabilization using Zeeman effect,” J. Phys. III 4, 401-406 (1994).
[CrossRef]

A. Mårtensson-Pendrill, D. S. Gough, and P. Hannaford, “Isotope shifts and hyperfine structure in the 369.4 nm6s-6p1/2 resonance line of singly ionized ytterbium,” Phys. Rev. A 49, 3351-3365 (1994).
[CrossRef] [PubMed]

1980 (1)

T. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441-444 (1980).
[CrossRef]

Beverini, N.

N. Beverini, E. Maccioni, P. Marsili, A. Ruffini, and F. Sorrentino, “Frequency stabilization of a diode laser on the Cs D2 resonance line by the Zeeman effect in a vapor cell,” Appl. Phys. B: Lasers Opt. 73, 133-138 (2001).
[CrossRef]

Chéron, B.

B. Chéron, H. Gilles, J. Hamel, O. Moreau, and H. Sorel, “Laser frequency stabilization using Zeeman effect,” J. Phys. III 4, 401-406 (1994).
[CrossRef]

Cornish, S. L.

M. L. Harris, S. L. Cornish, A. Tripathi, and I. G. Hughes, “Optimization of sub-Doppler DAVLL on the rubidium D2 line,” J. Phys. B 41, 085401 (2008).
[CrossRef]

A. Millett-Sikking, I. G. Hughes, P. Tierney, and S. L. Cornish, “DAVLL lineshapes in atomic rubidium,” J. Phys. B 40, 187-198 (2007).
[CrossRef]

Corwin, K. L.

Couillaud, B.

T. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441-444 (1980).
[CrossRef]

Epstein, R. J.

Fattori, M.

T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. M. Tino, “Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking,” Eur. Phys. J. D 22, 279-283 (2003).
[CrossRef]

Gilles, H.

B. Chéron, H. Gilles, J. Hamel, O. Moreau, and H. Sorel, “Laser frequency stabilization using Zeeman effect,” J. Phys. III 4, 401-406 (1994).
[CrossRef]

Gough, D. S.

A. Mårtensson-Pendrill, D. S. Gough, and P. Hannaford, “Isotope shifts and hyperfine structure in the 369.4 nm6s-6p1/2 resonance line of singly ionized ytterbium,” Phys. Rev. A 49, 3351-3365 (1994).
[CrossRef] [PubMed]

Hamel, J.

B. Chéron, H. Gilles, J. Hamel, O. Moreau, and H. Sorel, “Laser frequency stabilization using Zeeman effect,” J. Phys. III 4, 401-406 (1994).
[CrossRef]

Hand, C. F.

Hannaford, P.

A. Mårtensson-Pendrill, D. S. Gough, and P. Hannaford, “Isotope shifts and hyperfine structure in the 369.4 nm6s-6p1/2 resonance line of singly ionized ytterbium,” Phys. Rev. A 49, 3351-3365 (1994).
[CrossRef] [PubMed]

Hänsch, T. W.

T. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441-444 (1980).
[CrossRef]

Harris, M. L.

M. L. Harris, S. L. Cornish, A. Tripathi, and I. G. Hughes, “Optimization of sub-Doppler DAVLL on the rubidium D2 line,” J. Phys. B 41, 085401 (2008).
[CrossRef]

Hughes, I. G.

M. L. Harris, S. L. Cornish, A. Tripathi, and I. G. Hughes, “Optimization of sub-Doppler DAVLL on the rubidium D2 line,” J. Phys. B 41, 085401 (2008).
[CrossRef]

A. Millett-Sikking, I. G. Hughes, P. Tierney, and S. L. Cornish, “DAVLL lineshapes in atomic rubidium,” J. Phys. B 40, 187-198 (2007).
[CrossRef]

Kielpinski, D.

E. W. Streed, T. J. Weinhold, and D. Kielpinski, “Frequency stabilization of an ultraviolet laser to ions in a discharge,” Appl. Phys. Lett. 93, 071103 (2008).
[CrossRef]

Kim, E. B.

Kim, J. I.

Lamporesi, G.

T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. M. Tino, “Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking,” Eur. Phys. J. D 22, 279-283 (2003).
[CrossRef]

Lu, Z.-T.

Maccioni, E.

N. Beverini, E. Maccioni, P. Marsili, A. Ruffini, and F. Sorrentino, “Frequency stabilization of a diode laser on the Cs D2 resonance line by the Zeeman effect in a vapor cell,” Appl. Phys. B: Lasers Opt. 73, 133-138 (2001).
[CrossRef]

Marsili, P.

N. Beverini, E. Maccioni, P. Marsili, A. Ruffini, and F. Sorrentino, “Frequency stabilization of a diode laser on the Cs D2 resonance line by the Zeeman effect in a vapor cell,” Appl. Phys. B: Lasers Opt. 73, 133-138 (2001).
[CrossRef]

Mårtensson-Pendrill, A.

A. Mårtensson-Pendrill, D. S. Gough, and P. Hannaford, “Isotope shifts and hyperfine structure in the 369.4 nm6s-6p1/2 resonance line of singly ionized ytterbium,” Phys. Rev. A 49, 3351-3365 (1994).
[CrossRef] [PubMed]

Millett-Sikking, A.

A. Millett-Sikking, I. G. Hughes, P. Tierney, and S. L. Cornish, “DAVLL lineshapes in atomic rubidium,” J. Phys. B 40, 187-198 (2007).
[CrossRef]

Moreau, O.

B. Chéron, H. Gilles, J. Hamel, O. Moreau, and H. Sorel, “Laser frequency stabilization using Zeeman effect,” J. Phys. III 4, 401-406 (1994).
[CrossRef]

Park, C. Y.

Petelski, T.

T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. M. Tino, “Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking,” Eur. Phys. J. D 22, 279-283 (2003).
[CrossRef]

Ruffini, A.

N. Beverini, E. Maccioni, P. Marsili, A. Ruffini, and F. Sorrentino, “Frequency stabilization of a diode laser on the Cs D2 resonance line by the Zeeman effect in a vapor cell,” Appl. Phys. B: Lasers Opt. 73, 133-138 (2001).
[CrossRef]

Shimoda, K.

K. Shimoda, Introduction to Laser Physics (Springer, 1984).

Sorel, H.

B. Chéron, H. Gilles, J. Hamel, O. Moreau, and H. Sorel, “Laser frequency stabilization using Zeeman effect,” J. Phys. III 4, 401-406 (1994).
[CrossRef]

Sorrentino, F.

N. Beverini, E. Maccioni, P. Marsili, A. Ruffini, and F. Sorrentino, “Frequency stabilization of a diode laser on the Cs D2 resonance line by the Zeeman effect in a vapor cell,” Appl. Phys. B: Lasers Opt. 73, 133-138 (2001).
[CrossRef]

Streed, E. W.

E. W. Streed, T. J. Weinhold, and D. Kielpinski, “Frequency stabilization of an ultraviolet laser to ions in a discharge,” Appl. Phys. Lett. 93, 071103 (2008).
[CrossRef]

Stuhler, J.

T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. M. Tino, “Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking,” Eur. Phys. J. D 22, 279-283 (2003).
[CrossRef]

Tierney, P.

A. Millett-Sikking, I. G. Hughes, P. Tierney, and S. L. Cornish, “DAVLL lineshapes in atomic rubidium,” J. Phys. B 40, 187-198 (2007).
[CrossRef]

Tino, G. M.

T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. M. Tino, “Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking,” Eur. Phys. J. D 22, 279-283 (2003).
[CrossRef]

Tripathi, A.

M. L. Harris, S. L. Cornish, A. Tripathi, and I. G. Hughes, “Optimization of sub-Doppler DAVLL on the rubidium D2 line,” J. Phys. B 41, 085401 (2008).
[CrossRef]

Weinhold, T. J.

E. W. Streed, T. J. Weinhold, and D. Kielpinski, “Frequency stabilization of an ultraviolet laser to ions in a discharge,” Appl. Phys. Lett. 93, 071103 (2008).
[CrossRef]

Wieman, C. E.

Yoem, J. Y.

Yoon, T. H.

Appl. Opt. (1)

Appl. Phys. B: Lasers Opt. (1)

N. Beverini, E. Maccioni, P. Marsili, A. Ruffini, and F. Sorrentino, “Frequency stabilization of a diode laser on the Cs D2 resonance line by the Zeeman effect in a vapor cell,” Appl. Phys. B: Lasers Opt. 73, 133-138 (2001).
[CrossRef]

Appl. Phys. Lett. (1)

E. W. Streed, T. J. Weinhold, and D. Kielpinski, “Frequency stabilization of an ultraviolet laser to ions in a discharge,” Appl. Phys. Lett. 93, 071103 (2008).
[CrossRef]

Eur. Phys. J. D (1)

T. Petelski, M. Fattori, G. Lamporesi, J. Stuhler, and G. M. Tino, “Doppler-free spectroscopy using magnetically induced dichroism of atomic vapor: a new scheme for laser frequency locking,” Eur. Phys. J. D 22, 279-283 (2003).
[CrossRef]

J. Phys. B (2)

A. Millett-Sikking, I. G. Hughes, P. Tierney, and S. L. Cornish, “DAVLL lineshapes in atomic rubidium,” J. Phys. B 40, 187-198 (2007).
[CrossRef]

M. L. Harris, S. L. Cornish, A. Tripathi, and I. G. Hughes, “Optimization of sub-Doppler DAVLL on the rubidium D2 line,” J. Phys. B 41, 085401 (2008).
[CrossRef]

J. Phys. III (1)

B. Chéron, H. Gilles, J. Hamel, O. Moreau, and H. Sorel, “Laser frequency stabilization using Zeeman effect,” J. Phys. III 4, 401-406 (1994).
[CrossRef]

Opt. Commun. (1)

T. W. Hänsch and B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441-444 (1980).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (1)

A. Mårtensson-Pendrill, D. S. Gough, and P. Hannaford, “Isotope shifts and hyperfine structure in the 369.4 nm6s-6p1/2 resonance line of singly ionized ytterbium,” Phys. Rev. A 49, 3351-3365 (1994).
[CrossRef] [PubMed]

Other (1)

K. Shimoda, Introduction to Laser Physics (Springer, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Experimental setup. QWP is a quarter-wave plate, PBS is a polarized beam splitter, PD is a photodiode, and DA is a differential amplifier. (b) Energy level structure of atoms in the absorption cell.

Fig. 2
Fig. 2

(a) χ x , y , (b) χ x , y of the Lorentz-broadened and Zeeman-shifted spectral lines, and (c) the signal of Eq. (8) as functions of δ. In these plots, ω Z is chosen as 2 γ . Ordinates are scaled in an arbitrary unit.

Fig. 3
Fig. 3

Signals of Eqs. (8, 15) as a function of δ for several specific ω Z in the Gauss limit. Ordinates are scaled in an arbitrary unit. ω Z is chosen as (a) 0.5 ω G , (b) ω G , (c) 3 ω G , and (d) 5 ω G . Solid curves and dashed curves represent the signals from the scheme introduced in this paper and the DAVLL scheme, respectively.

Fig. 4
Fig. 4

(a) Signal gradient, (b) peak intensity, and (c) locking range of the present scheme (solid curves) and the DAVLL (dotted curves) as a function of ω Z . The definition of the locking range here is the maximum detuning at which the signal intensity is half of the peak intensity.

Fig. 5
Fig. 5

(a) Experimentally obtained signals as a function of the laser detuning for some specific values of magnetic field. The fitted curve for 79 mT is also shown. (b) Error signal without and with the feedback to PZT.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

E x = E 0 cos θ e i ( k z ω t ) ,
E y = E 0 sin θ e i ( k z ω t ) .
χ x = χ x i χ x = 2 α L δ i γ δ 2 + γ 2 ,
χ y = χ y i χ y = α L [ δ + ω Z i γ ( δ + ω Z ) 2 + γ 2 + δ ω Z i γ ( δ ω Z ) 2 + γ 2 ] ,
E = ( E x E y ) = ( exp ( χ x k L 2 ϵ 0 ) exp ( i χ x k L 2 ϵ 0 ) cos θ exp ( χ y k L 2 ϵ 0 ) exp ( i χ y k L 2 ϵ 0 ) sin θ ) E 0 ,
E = ( E x E y ) = 1 2 ( e i π 4 e i π 4 e i π 4 e i π 4 ) E .
I = a ( E x 2 E y 2 ) = 2 a Im ( E x * E y ) = a E 0 2 sin 2 θ exp [ k L 2 ϵ 0 ( χ x + χ y ) ] sin [ k L 2 ϵ 0 ( χ y χ x ) ] ,
I = a k L E 0 2 2 ϵ 0 ( χ y χ x ) .
χ x = 2 α G F ( δ ω G ) ,
χ y = α G [ F ( δ + ω Z ω G ) + F ( δ ω Z ω G ) ] ,
χ x = 2 α G G ( δ ω G ) ,
χ y = α G { G ( δ + ω Z ω G ) + G ( δ ω Z ω G ) } ,
G ( ζ ) = e ζ 2 ,
F ( ζ ) = 2 π e ζ 2 0 ζ e ξ 2 d ξ .
I DAVLL = a k L E 0 2 α G ϵ 0 [ G ( δ + ω Z ω G ) G ( δ ω Z ω G ) ] .
{ χ x = α G [ F ( δ + ω Z 15 ω G ) + F ( δ ω Z 15 ω G ) ] χ y = α G 4 [ F ( δ + 9 ω Z 15 ω G ) + F ( δ 9 ω Z 15 ω G ) + 3 F ( δ + 13 ω Z 15 ω G ) + 3 F ( δ 13 ω Z 15 ω G ) ] } ,

Metrics