Abstract

We propose a scheme for deterministically generating entanglement between two distant microwave cavities that interact with two single-molecule magnets (SMMs) and are connected by an optical fiber. In our scheme, the spontaneous decay of SMMs and photons damping in the fiber are efficiently suppressed via employing the stimulated Raman adiabatic passage (STIRAP). To check the experimental feasibility of our scheme, we numerically simulated the effects of some deviations of experimental parameters, and the numerical simulation shows that our scheme is robust with respect to those experimental parameters. We also discuss the effects of cavity damping, and as a result our proposal is good enough to demonstrate the generation of entanglement of microwave cavities within current experimental technology.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?,” Phys. Rev. 47, 777-780 (1935).
    [CrossRef]
  2. J. S. Bell, “On the Einstein-Podolsky-Rosen paradox,” Physics 1, 195-200 (1964).
  3. D. M. Greenberger, M. Horne, A. Shimony, and A. Zeilinger, “Bell's theorem without inequalities,” Am. J. Phys. 58, 1131-1143 (1990).
    [CrossRef]
  4. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge U. Press, 2000).
  5. C. H. Bennett and D. P. Vincenzo, “Quantum information and computation,” Nature (London) 404, 247-255 (2000).
    [CrossRef]
  6. D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature (London) 390, 575-579 (1997).
    [CrossRef]
  7. R. Prevedel, M. Aspelmeyer, C. Brukner, A. Zeilinger, and T. D. Jennewein, “Photonic entanglement as a resource in quantum computation and quantum communication,” J. Opt. Soc. Am. B 24, 241-248 (2007).
    [CrossRef]
  8. A. K. Ekert, “Quantum cryptography based on Bell's theorem,” Phys. Rev. Lett. 67, 661-663 (1991).
    [CrossRef] [PubMed]
  9. A. Barenco, D. Deutsch, A. Ekert, and R. Jozsa, “Conditional quantum dynamics and logic gates,” Phys. Rev. Lett. 74, 4083-4086 (1995).
    [CrossRef] [PubMed]
  10. W.-X. Yang, Z.-M. Zhan, and J.-H. Li, “Efficient scheme for multipartite entanglement and quantum information processing with trapped ions,” Phys. Rev. A 72, 062108 (2005).
    [CrossRef]
  11. W.-X. Yang, Z.-X. Gong, W.-B. Li, and X.-X. Yang, “Simple scheme for implementing the Deutsch-Jozsa algorithm in a thermal cavity,” J. Phys. A 40, 155-161 (2007).
    [CrossRef]
  12. S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392-2395 (2000).
    [CrossRef] [PubMed]
  13. A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
    [CrossRef] [PubMed]
  14. X. L. Feng, Z. M. Zhang, X. D. Li, S. Q. Gong, and Z. Z. Xu, “Entangling distant atoms by interference of polarized photons,” Phys. Rev. Lett. 90, 217902 (2003).
    [CrossRef] [PubMed]
  15. L. M. Duan and H. J. Kimble, “Efficient engineering of multiatom entanglement through single-photon detections,” Phys. Rev. Lett. 90, 253601 (2003).
    [CrossRef] [PubMed]
  16. S. Mancini and S. Bose, “Engineering an interaction and entanglement between distant atoms,” Phys. Rev. A 70, 022307 (2004).
    [CrossRef]
  17. X.-Y. Lu, J.-B. Liu, L.-G. Si, and X. Yang, “Continuous-variable entanglement in a two-mode four-level single-atom laser,” J. Phys. B 41, 035501 (2008).
    [CrossRef]
  18. X.-Y. Lu, J.-B. Liu, C.-L. Ding, and J.-H. Li, “Dispersive atom-field interaction scheme for three-dimensional entanglement between two spatially separated atoms,” Phys. Rev. A 78, 032305 (2008).
    [CrossRef]
  19. M. D. Lukin, S. F. Yelin, and M. Fleischhauer, “Entanglement of atomic ensembles by trapping correlated photon states,” Phys. Rev. Lett. 84, 4232-4235 (2000).
    [CrossRef] [PubMed]
  20. S. Clark, A. Peng, M. Gu, and S. Parkins, “Unconditional preparation of entanglement between atoms in cascaded optical cavities,” Phys. Rev. Lett. 91, 177901 (2003).
    [CrossRef] [PubMed]
  21. P. Peng and F. L. Li, “Entangling two atoms in spatially separated cavities through both photon emission and absorption processes,” Phys. Rev. A 75, 062320 (2007).
    [CrossRef]
  22. C. G. Christopher, “Proposal for a mesoscopic cavity QED realization of the Greenberger-Horne-Zeilinger state,” Phys. Rev. A 54, R2529-R2532 (1996).
    [CrossRef]
  23. J. A. Bergou and M. Hillery, “Generation of highly entangled field states in multiple micromaser cavities,” Phys. Rev. A 55, 4585-4588 (1997).
    [CrossRef]
  24. D. E. Browne and M. B. Plenio, “Robust generation of entanglement between two cavities mediated by short interactions with an atom,” Phys. Rev. A 67, 012325 (2003).
    [CrossRef]
  25. J. Larson and E. Andersson, “Cavity-state preparation using adiabatic transfer,” Phys. Rev. A 71, 053814 (2005).
    [CrossRef]
  26. Q. A. Turchette, C. S. Wood, B. E. King, C. J. Myatt, D. Leibfried, W. M. Itano, C. Monroe, and D. J. Wineland, “Deterministic entanglement of two trapped ions,” Phys. Rev. Lett. 81, 3631-3634 (1998).
    [CrossRef]
  27. D. E. Browne, M. B. Plenio, and S. F. Huelga, “Robust creation of entanglement between ions in spatially separate cavities,” Phys. Rev. Lett. 91, 067901 (2003).
    [CrossRef] [PubMed]
  28. J. H. Reina, L. Quiroga, and N. F. Johnson, “Quantum entanglement and information processing via excitons in optically driven quantum dots,” Phys. Rev. A 62, 012305 (2000).
    [CrossRef]
  29. U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Kölz, and K. Bergmann, “Population switching between vibrational levels in molecular beams,” Chem. Phys. Lett. 149, 463-463 (1988).
    [CrossRef]
  30. J. R. Kuklinski, U. Gaubatz, F. T. Hioe, and K. Bergmann, “Adiabatic population transfer in a three-level system driven by delayed laser pulses,” Phys. Rev. A 40, 6741-6744 (1989).
    [CrossRef] [PubMed]
  31. K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003-1025 (1998).
    [CrossRef]
  32. N. V. Vitanov, K. A. Suominen, and B. W. Shore, “Creation of coherent atomic superpositions by fractional stimulated Raman adiabatic passage,” J. Phys. B 32, 4535-4546 (1999).
    [CrossRef]
  33. Z. Kis and F. Renzoni, “Qubit rotation by stimulated Raman adiabatic passage,” Phys. Rev. A 65, 032318 (2002).
    [CrossRef]
  34. H. Goto and K. Ichimura, “Multiqubit controlled unitary gate by adiabatic passage with an optical cavity,” Phys. Rev. A 70, 012305 (2004).
    [CrossRef]
  35. S.-B. Zheng, “Nongeometric conditional phase shift via adiabatic evolution of dark eigenstates: a new approach to quantum computation,” Phys. Rev. Lett. 95, 080502 (2005).
    [CrossRef] [PubMed]
  36. X. Lacour, N. Sangouard, S. Guérin, and H. R. Jauslin, “Arbitrary state controlled-unitary gate by adiabatic passage,” Phys. Rev. A 73, 042321 (2006).
    [CrossRef]
  37. M. Amniat-Talab, S. Guéin, N. Sangouard, and H. R. Jauslin, “Atom-photon, atom-atom, and photon-photon entanglement preparation by fractional adiabatic passage,” Phys. Rev. A 71, 023805 (2005).
    [CrossRef]
  38. M. Amniat-Talab, S. Guérin, and H. R. Jauslin, “Decoherence-free creation of atom-atom entanglement in a cavity via fractional adiabatic passage,” Phys. Rev. A 72, 012339 (2005).
    [CrossRef]
  39. L.-B. Chen, M. Y. Ye, G. W. Lin, Q. H. Du, and X. M. Lin, “Generation of entanglement via adiabatic passage,” Phys. Rev. A 76, 062304 (2007).
    [CrossRef]
  40. S.-Y. Ye, Z.-R. Zhong, and S.-B. Zheng, “Deterministic generation of three-dimensional entanglement for two atoms separately trapped in two optical cavities,” Phys. Rev. A 77, 014303 (2008).
    [CrossRef]
  41. W. Ji, C. Wu, S. J. van Enk, and M. G. Raymer, “Mesoscopic entanglement of atomic ensembles through nonresonant stimulated Raman scattering,” Phys. Rev. A 75, 052305 (2007).
    [CrossRef]
  42. J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565-582 (2001).
    [CrossRef]
  43. A. Rauschenbeutel, P. Bertet, S. Osnaghi, G. Nogues, M. Brune, J. M. Raimond, and S. Haroche, “Controlled entanglement of two field modes in a cavity quantum electrodynamics experiment,” Phys. Rev. A 64, 050301(R) (2001).
    [CrossRef]
  44. R. Sessoli, D. Gatteschi, A. Caneschi, and M. A. Novak, “Magnetic bistability in a metal-ion cluster,” Nature 365, 141-143 (1993).
    [CrossRef]
  45. L. Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli, and B. Barbara, “Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets,” Nature 383, 145-147 (1996).
    [CrossRef]
  46. C. Sangregorio, T. Ohm, C. Paulsen, R. Sessoli, and D. Gatteschi, “Quantum tunneling of the magnetization in an iron cluster nanomagnet,” Phys. Rev. Lett. 78, 4645-4648 (1997).
    [CrossRef]
  47. J. R. Friedman, M. P. Sarachik, J. Tejada, and R. Ziolo, “Macroscopic measurement of resonant magnetization tunneling in high-spin molecules,” Phys. Rev. Lett. 76, 3830-3833 (1996).
    [CrossRef] [PubMed]
  48. W. Wernsdorfer and R. Sessoli, “Quantum phase interference and parity effects in magnetic molecular clusters,” Science 284, 133-135 (1999).
    [CrossRef] [PubMed]
  49. M. N. Leuenberger and D. Loss, “Quantum computing in molecular magnets,” Nature 410, 789-793 (2001).
    [CrossRef] [PubMed]
  50. E. M. Chudnovsky and D. A. Garanin, “Phonon superradiance and phonon laser effect in nanomagnets,” Phys. Rev. Lett. 93, 257205 (2004).
    [CrossRef]
  51. I. D. Tokman, G. A. Vugalter, A. I. Grebeneva, and V. I. Pozdnyakova, “Nonstationary interaction of a high-spin molecule or a rare earth metal ion with an acoustic wave and an alternating current magnetic field,” Phys. Rev. B 68, 174426 (2003).
    [CrossRef]
  52. A. V. Shvetsov, G. A. Vugalter, and A. I. Grebeneva, “Theoretical investigation of electromagnetically induced transparency in a crystal of molecular magnets,” Phys. Rev. B 74, 054416 (2006).
    [CrossRef]
  53. X.-T. Xie, W. Li, J. Li, W.-X. Yang, A. Yuan, and X. Yang, “Transverse acoustic wave in molecular magnets via electromagnetically induced transparency,” Phys. Rev. B 75, 184423 (2007).
    [CrossRef]
  54. Y. Wu and X. Yang, “Four-wave mixing in molecular magnets via electromagnetically induced transparency,” Phys. Rev. B 76, 054425 (2007).
    [CrossRef]
  55. Y. Wu and X. Yang, “Giant Kerr nonlinearities and solitons in a crystal of molecular magnets,” Appl. Phys. Lett. 91, 094104 (2007).
    [CrossRef]
  56. X.-Y. Lu, J.-B. Liu, Y. Tian, P.-J. Song, and Z.-M. Zhan, “Single molecular magnets as a source of continuous-variable entanglement,” Europhys. Lett. 82, 64003 (2008).
    [CrossRef]
  57. Y. Wu and X. Yang, “Highly efficient four-wave mixing in double- system in ultraslow propagation regime,” Phys. Rev. A 70, 053818 (2004).
    [CrossRef]
  58. Y. Wu, K. W. Chan, M.-C. Chu, and P. T. Leung, “Radiation modes of a cavity with a resonantly oscillating boundary,” Phys. Rev. A 59, 1662-1666 (1999).
    [CrossRef]
  59. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge U. Press, 1997), Chap. 14, p. 409.
  60. Y. Wu, L. Wen, and Y. Zhu, “Efficient hyper-Raman scattering in resonant coherent media,” Opt. Lett. 28, 631-633 (2003).
    [CrossRef] [PubMed]
  61. Y. Wu and R. Côté, “Bistability and quantum fluctuations in coherent photoassociation of a Bose-Einstein condensate,” Phys. Rev. A 65, 053603 (2002).
    [CrossRef]
  62. M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Deterministic cavity quantum electrodynamics with trapped ions,” J. Phys. B 36, 613-622 (2003).
    [CrossRef]
  63. S. Bertaina, S. Gambarelli, T. Mitra, B. Tsukerblat, A. Müller, and B. Barbara, “Quantum oscillations in a molecular magnet,” Nature 453, 203-206 (2008).
    [CrossRef] [PubMed]
  64. A. Ardavan, O. Rival, J. J. L. Morton, S. J. Blundell, A. M. Tyryshkin, G. A. Timco, and R. E. P. Winpenny, “Will spin-relaxation times in molecular magnets permit quantum information proce?” Phys. Rev. Lett. 98, 057201 (2007).
    [CrossRef] [PubMed]
  65. K. Petukhov, S. Bahr, W. Wernsdorfer, A.-L. Barra, and V. Mosser, “Magnetization dynamics in the single-molecule magnet Fe8 under pulsed microwave irradiation,” Phys. Rev. B 75, 064408 (2007).
    [CrossRef]
  66. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
    [CrossRef] [PubMed]
  67. P. E. Barclay, K. Srinivasan, and O. Painter, “Integration of fiber-coupled high-Q SiNx microdisks with atom chips,” Appl. Phys. Lett. 89, 131108 (2006).
    [CrossRef]

2008 (5)

X.-Y. Lu, J.-B. Liu, L.-G. Si, and X. Yang, “Continuous-variable entanglement in a two-mode four-level single-atom laser,” J. Phys. B 41, 035501 (2008).
[CrossRef]

X.-Y. Lu, J.-B. Liu, C.-L. Ding, and J.-H. Li, “Dispersive atom-field interaction scheme for three-dimensional entanglement between two spatially separated atoms,” Phys. Rev. A 78, 032305 (2008).
[CrossRef]

S.-Y. Ye, Z.-R. Zhong, and S.-B. Zheng, “Deterministic generation of three-dimensional entanglement for two atoms separately trapped in two optical cavities,” Phys. Rev. A 77, 014303 (2008).
[CrossRef]

X.-Y. Lu, J.-B. Liu, Y. Tian, P.-J. Song, and Z.-M. Zhan, “Single molecular magnets as a source of continuous-variable entanglement,” Europhys. Lett. 82, 64003 (2008).
[CrossRef]

S. Bertaina, S. Gambarelli, T. Mitra, B. Tsukerblat, A. Müller, and B. Barbara, “Quantum oscillations in a molecular magnet,” Nature 453, 203-206 (2008).
[CrossRef] [PubMed]

2007 (10)

A. Ardavan, O. Rival, J. J. L. Morton, S. J. Blundell, A. M. Tyryshkin, G. A. Timco, and R. E. P. Winpenny, “Will spin-relaxation times in molecular magnets permit quantum information proce?” Phys. Rev. Lett. 98, 057201 (2007).
[CrossRef] [PubMed]

K. Petukhov, S. Bahr, W. Wernsdorfer, A.-L. Barra, and V. Mosser, “Magnetization dynamics in the single-molecule magnet Fe8 under pulsed microwave irradiation,” Phys. Rev. B 75, 064408 (2007).
[CrossRef]

R. Prevedel, M. Aspelmeyer, C. Brukner, A. Zeilinger, and T. D. Jennewein, “Photonic entanglement as a resource in quantum computation and quantum communication,” J. Opt. Soc. Am. B 24, 241-248 (2007).
[CrossRef]

X.-T. Xie, W. Li, J. Li, W.-X. Yang, A. Yuan, and X. Yang, “Transverse acoustic wave in molecular magnets via electromagnetically induced transparency,” Phys. Rev. B 75, 184423 (2007).
[CrossRef]

Y. Wu and X. Yang, “Four-wave mixing in molecular magnets via electromagnetically induced transparency,” Phys. Rev. B 76, 054425 (2007).
[CrossRef]

Y. Wu and X. Yang, “Giant Kerr nonlinearities and solitons in a crystal of molecular magnets,” Appl. Phys. Lett. 91, 094104 (2007).
[CrossRef]

W. Ji, C. Wu, S. J. van Enk, and M. G. Raymer, “Mesoscopic entanglement of atomic ensembles through nonresonant stimulated Raman scattering,” Phys. Rev. A 75, 052305 (2007).
[CrossRef]

L.-B. Chen, M. Y. Ye, G. W. Lin, Q. H. Du, and X. M. Lin, “Generation of entanglement via adiabatic passage,” Phys. Rev. A 76, 062304 (2007).
[CrossRef]

P. Peng and F. L. Li, “Entangling two atoms in spatially separated cavities through both photon emission and absorption processes,” Phys. Rev. A 75, 062320 (2007).
[CrossRef]

W.-X. Yang, Z.-X. Gong, W.-B. Li, and X.-X. Yang, “Simple scheme for implementing the Deutsch-Jozsa algorithm in a thermal cavity,” J. Phys. A 40, 155-161 (2007).
[CrossRef]

2006 (4)

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[CrossRef] [PubMed]

X. Lacour, N. Sangouard, S. Guérin, and H. R. Jauslin, “Arbitrary state controlled-unitary gate by adiabatic passage,” Phys. Rev. A 73, 042321 (2006).
[CrossRef]

A. V. Shvetsov, G. A. Vugalter, and A. I. Grebeneva, “Theoretical investigation of electromagnetically induced transparency in a crystal of molecular magnets,” Phys. Rev. B 74, 054416 (2006).
[CrossRef]

P. E. Barclay, K. Srinivasan, and O. Painter, “Integration of fiber-coupled high-Q SiNx microdisks with atom chips,” Appl. Phys. Lett. 89, 131108 (2006).
[CrossRef]

2005 (5)

M. Amniat-Talab, S. Guéin, N. Sangouard, and H. R. Jauslin, “Atom-photon, atom-atom, and photon-photon entanglement preparation by fractional adiabatic passage,” Phys. Rev. A 71, 023805 (2005).
[CrossRef]

M. Amniat-Talab, S. Guérin, and H. R. Jauslin, “Decoherence-free creation of atom-atom entanglement in a cavity via fractional adiabatic passage,” Phys. Rev. A 72, 012339 (2005).
[CrossRef]

S.-B. Zheng, “Nongeometric conditional phase shift via adiabatic evolution of dark eigenstates: a new approach to quantum computation,” Phys. Rev. Lett. 95, 080502 (2005).
[CrossRef] [PubMed]

W.-X. Yang, Z.-M. Zhan, and J.-H. Li, “Efficient scheme for multipartite entanglement and quantum information processing with trapped ions,” Phys. Rev. A 72, 062108 (2005).
[CrossRef]

J. Larson and E. Andersson, “Cavity-state preparation using adiabatic transfer,” Phys. Rev. A 71, 053814 (2005).
[CrossRef]

2004 (4)

S. Mancini and S. Bose, “Engineering an interaction and entanglement between distant atoms,” Phys. Rev. A 70, 022307 (2004).
[CrossRef]

H. Goto and K. Ichimura, “Multiqubit controlled unitary gate by adiabatic passage with an optical cavity,” Phys. Rev. A 70, 012305 (2004).
[CrossRef]

E. M. Chudnovsky and D. A. Garanin, “Phonon superradiance and phonon laser effect in nanomagnets,” Phys. Rev. Lett. 93, 257205 (2004).
[CrossRef]

Y. Wu and X. Yang, “Highly efficient four-wave mixing in double- system in ultraslow propagation regime,” Phys. Rev. A 70, 053818 (2004).
[CrossRef]

2003 (9)

I. D. Tokman, G. A. Vugalter, A. I. Grebeneva, and V. I. Pozdnyakova, “Nonstationary interaction of a high-spin molecule or a rare earth metal ion with an acoustic wave and an alternating current magnetic field,” Phys. Rev. B 68, 174426 (2003).
[CrossRef]

Y. Wu, L. Wen, and Y. Zhu, “Efficient hyper-Raman scattering in resonant coherent media,” Opt. Lett. 28, 631-633 (2003).
[CrossRef] [PubMed]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Deterministic cavity quantum electrodynamics with trapped ions,” J. Phys. B 36, 613-622 (2003).
[CrossRef]

D. E. Browne, M. B. Plenio, and S. F. Huelga, “Robust creation of entanglement between ions in spatially separate cavities,” Phys. Rev. Lett. 91, 067901 (2003).
[CrossRef] [PubMed]

D. E. Browne and M. B. Plenio, “Robust generation of entanglement between two cavities mediated by short interactions with an atom,” Phys. Rev. A 67, 012325 (2003).
[CrossRef]

X. L. Feng, Z. M. Zhang, X. D. Li, S. Q. Gong, and Z. Z. Xu, “Entangling distant atoms by interference of polarized photons,” Phys. Rev. Lett. 90, 217902 (2003).
[CrossRef] [PubMed]

L. M. Duan and H. J. Kimble, “Efficient engineering of multiatom entanglement through single-photon detections,” Phys. Rev. Lett. 90, 253601 (2003).
[CrossRef] [PubMed]

S. Clark, A. Peng, M. Gu, and S. Parkins, “Unconditional preparation of entanglement between atoms in cascaded optical cavities,” Phys. Rev. Lett. 91, 177901 (2003).
[CrossRef] [PubMed]

2002 (2)

Z. Kis and F. Renzoni, “Qubit rotation by stimulated Raman adiabatic passage,” Phys. Rev. A 65, 032318 (2002).
[CrossRef]

Y. Wu and R. Côté, “Bistability and quantum fluctuations in coherent photoassociation of a Bose-Einstein condensate,” Phys. Rev. A 65, 053603 (2002).
[CrossRef]

2001 (3)

M. N. Leuenberger and D. Loss, “Quantum computing in molecular magnets,” Nature 410, 789-793 (2001).
[CrossRef] [PubMed]

J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565-582 (2001).
[CrossRef]

A. Rauschenbeutel, P. Bertet, S. Osnaghi, G. Nogues, M. Brune, J. M. Raimond, and S. Haroche, “Controlled entanglement of two field modes in a cavity quantum electrodynamics experiment,” Phys. Rev. A 64, 050301(R) (2001).
[CrossRef]

2000 (4)

J. H. Reina, L. Quiroga, and N. F. Johnson, “Quantum entanglement and information processing via excitons in optically driven quantum dots,” Phys. Rev. A 62, 012305 (2000).
[CrossRef]

M. D. Lukin, S. F. Yelin, and M. Fleischhauer, “Entanglement of atomic ensembles by trapping correlated photon states,” Phys. Rev. Lett. 84, 4232-4235 (2000).
[CrossRef] [PubMed]

S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392-2395 (2000).
[CrossRef] [PubMed]

C. H. Bennett and D. P. Vincenzo, “Quantum information and computation,” Nature (London) 404, 247-255 (2000).
[CrossRef]

1999 (3)

W. Wernsdorfer and R. Sessoli, “Quantum phase interference and parity effects in magnetic molecular clusters,” Science 284, 133-135 (1999).
[CrossRef] [PubMed]

Y. Wu, K. W. Chan, M.-C. Chu, and P. T. Leung, “Radiation modes of a cavity with a resonantly oscillating boundary,” Phys. Rev. A 59, 1662-1666 (1999).
[CrossRef]

N. V. Vitanov, K. A. Suominen, and B. W. Shore, “Creation of coherent atomic superpositions by fractional stimulated Raman adiabatic passage,” J. Phys. B 32, 4535-4546 (1999).
[CrossRef]

1998 (2)

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003-1025 (1998).
[CrossRef]

Q. A. Turchette, C. S. Wood, B. E. King, C. J. Myatt, D. Leibfried, W. M. Itano, C. Monroe, and D. J. Wineland, “Deterministic entanglement of two trapped ions,” Phys. Rev. Lett. 81, 3631-3634 (1998).
[CrossRef]

1997 (3)

J. A. Bergou and M. Hillery, “Generation of highly entangled field states in multiple micromaser cavities,” Phys. Rev. A 55, 4585-4588 (1997).
[CrossRef]

C. Sangregorio, T. Ohm, C. Paulsen, R. Sessoli, and D. Gatteschi, “Quantum tunneling of the magnetization in an iron cluster nanomagnet,” Phys. Rev. Lett. 78, 4645-4648 (1997).
[CrossRef]

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature (London) 390, 575-579 (1997).
[CrossRef]

1996 (3)

J. R. Friedman, M. P. Sarachik, J. Tejada, and R. Ziolo, “Macroscopic measurement of resonant magnetization tunneling in high-spin molecules,” Phys. Rev. Lett. 76, 3830-3833 (1996).
[CrossRef] [PubMed]

L. Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli, and B. Barbara, “Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets,” Nature 383, 145-147 (1996).
[CrossRef]

C. G. Christopher, “Proposal for a mesoscopic cavity QED realization of the Greenberger-Horne-Zeilinger state,” Phys. Rev. A 54, R2529-R2532 (1996).
[CrossRef]

1995 (1)

A. Barenco, D. Deutsch, A. Ekert, and R. Jozsa, “Conditional quantum dynamics and logic gates,” Phys. Rev. Lett. 74, 4083-4086 (1995).
[CrossRef] [PubMed]

1993 (1)

R. Sessoli, D. Gatteschi, A. Caneschi, and M. A. Novak, “Magnetic bistability in a metal-ion cluster,” Nature 365, 141-143 (1993).
[CrossRef]

1991 (1)

A. K. Ekert, “Quantum cryptography based on Bell's theorem,” Phys. Rev. Lett. 67, 661-663 (1991).
[CrossRef] [PubMed]

1990 (1)

D. M. Greenberger, M. Horne, A. Shimony, and A. Zeilinger, “Bell's theorem without inequalities,” Am. J. Phys. 58, 1131-1143 (1990).
[CrossRef]

1989 (1)

J. R. Kuklinski, U. Gaubatz, F. T. Hioe, and K. Bergmann, “Adiabatic population transfer in a three-level system driven by delayed laser pulses,” Phys. Rev. A 40, 6741-6744 (1989).
[CrossRef] [PubMed]

1988 (1)

U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Kölz, and K. Bergmann, “Population switching between vibrational levels in molecular beams,” Chem. Phys. Lett. 149, 463-463 (1988).
[CrossRef]

1964 (1)

J. S. Bell, “On the Einstein-Podolsky-Rosen paradox,” Physics 1, 195-200 (1964).

1935 (1)

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?,” Phys. Rev. 47, 777-780 (1935).
[CrossRef]

Amniat-Talab, M.

M. Amniat-Talab, S. Guéin, N. Sangouard, and H. R. Jauslin, “Atom-photon, atom-atom, and photon-photon entanglement preparation by fractional adiabatic passage,” Phys. Rev. A 71, 023805 (2005).
[CrossRef]

M. Amniat-Talab, S. Guérin, and H. R. Jauslin, “Decoherence-free creation of atom-atom entanglement in a cavity via fractional adiabatic passage,” Phys. Rev. A 72, 012339 (2005).
[CrossRef]

Andersson, E.

J. Larson and E. Andersson, “Cavity-state preparation using adiabatic transfer,” Phys. Rev. A 71, 053814 (2005).
[CrossRef]

Ardavan, A.

A. Ardavan, O. Rival, J. J. L. Morton, S. J. Blundell, A. M. Tyryshkin, G. A. Timco, and R. E. P. Winpenny, “Will spin-relaxation times in molecular magnets permit quantum information proce?” Phys. Rev. Lett. 98, 057201 (2007).
[CrossRef] [PubMed]

Aspelmeyer, M.

Bahr, S.

K. Petukhov, S. Bahr, W. Wernsdorfer, A.-L. Barra, and V. Mosser, “Magnetization dynamics in the single-molecule magnet Fe8 under pulsed microwave irradiation,” Phys. Rev. B 75, 064408 (2007).
[CrossRef]

Ballou, R.

L. Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli, and B. Barbara, “Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets,” Nature 383, 145-147 (1996).
[CrossRef]

Barbara, B.

S. Bertaina, S. Gambarelli, T. Mitra, B. Tsukerblat, A. Müller, and B. Barbara, “Quantum oscillations in a molecular magnet,” Nature 453, 203-206 (2008).
[CrossRef] [PubMed]

L. Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli, and B. Barbara, “Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets,” Nature 383, 145-147 (1996).
[CrossRef]

Barclay, P. E.

P. E. Barclay, K. Srinivasan, and O. Painter, “Integration of fiber-coupled high-Q SiNx microdisks with atom chips,” Appl. Phys. Lett. 89, 131108 (2006).
[CrossRef]

Barenco, A.

A. Barenco, D. Deutsch, A. Ekert, and R. Jozsa, “Conditional quantum dynamics and logic gates,” Phys. Rev. Lett. 74, 4083-4086 (1995).
[CrossRef] [PubMed]

Barra, A.-L.

K. Petukhov, S. Bahr, W. Wernsdorfer, A.-L. Barra, and V. Mosser, “Magnetization dynamics in the single-molecule magnet Fe8 under pulsed microwave irradiation,” Phys. Rev. B 75, 064408 (2007).
[CrossRef]

Becker, M.

U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Kölz, and K. Bergmann, “Population switching between vibrational levels in molecular beams,” Chem. Phys. Lett. 149, 463-463 (1988).
[CrossRef]

Bell, J. S.

J. S. Bell, “On the Einstein-Podolsky-Rosen paradox,” Physics 1, 195-200 (1964).

Bennett, C. H.

C. H. Bennett and D. P. Vincenzo, “Quantum information and computation,” Nature (London) 404, 247-255 (2000).
[CrossRef]

Bergmann, K.

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003-1025 (1998).
[CrossRef]

J. R. Kuklinski, U. Gaubatz, F. T. Hioe, and K. Bergmann, “Adiabatic population transfer in a three-level system driven by delayed laser pulses,” Phys. Rev. A 40, 6741-6744 (1989).
[CrossRef] [PubMed]

U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Kölz, and K. Bergmann, “Population switching between vibrational levels in molecular beams,” Chem. Phys. Lett. 149, 463-463 (1988).
[CrossRef]

Bergou, J. A.

J. A. Bergou and M. Hillery, “Generation of highly entangled field states in multiple micromaser cavities,” Phys. Rev. A 55, 4585-4588 (1997).
[CrossRef]

Bertaina, S.

S. Bertaina, S. Gambarelli, T. Mitra, B. Tsukerblat, A. Müller, and B. Barbara, “Quantum oscillations in a molecular magnet,” Nature 453, 203-206 (2008).
[CrossRef] [PubMed]

Bertet, P.

A. Rauschenbeutel, P. Bertet, S. Osnaghi, G. Nogues, M. Brune, J. M. Raimond, and S. Haroche, “Controlled entanglement of two field modes in a cavity quantum electrodynamics experiment,” Phys. Rev. A 64, 050301(R) (2001).
[CrossRef]

Blundell, S. J.

A. Ardavan, O. Rival, J. J. L. Morton, S. J. Blundell, A. M. Tyryshkin, G. A. Timco, and R. E. P. Winpenny, “Will spin-relaxation times in molecular magnets permit quantum information proce?” Phys. Rev. Lett. 98, 057201 (2007).
[CrossRef] [PubMed]

Bose, S.

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[CrossRef] [PubMed]

S. Mancini and S. Bose, “Engineering an interaction and entanglement between distant atoms,” Phys. Rev. A 70, 022307 (2004).
[CrossRef]

Bouwmeester, D.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature (London) 390, 575-579 (1997).
[CrossRef]

Browne, D. E.

D. E. Browne and M. B. Plenio, “Robust generation of entanglement between two cavities mediated by short interactions with an atom,” Phys. Rev. A 67, 012325 (2003).
[CrossRef]

D. E. Browne, M. B. Plenio, and S. F. Huelga, “Robust creation of entanglement between ions in spatially separate cavities,” Phys. Rev. Lett. 91, 067901 (2003).
[CrossRef] [PubMed]

Brukner, C.

Brune, M.

A. Rauschenbeutel, P. Bertet, S. Osnaghi, G. Nogues, M. Brune, J. M. Raimond, and S. Haroche, “Controlled entanglement of two field modes in a cavity quantum electrodynamics experiment,” Phys. Rev. A 64, 050301(R) (2001).
[CrossRef]

J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565-582 (2001).
[CrossRef]

Caneschi, A.

R. Sessoli, D. Gatteschi, A. Caneschi, and M. A. Novak, “Magnetic bistability in a metal-ion cluster,” Nature 365, 141-143 (1993).
[CrossRef]

Chan, K. W.

Y. Wu, K. W. Chan, M.-C. Chu, and P. T. Leung, “Radiation modes of a cavity with a resonantly oscillating boundary,” Phys. Rev. A 59, 1662-1666 (1999).
[CrossRef]

Chen, L.-B.

L.-B. Chen, M. Y. Ye, G. W. Lin, Q. H. Du, and X. M. Lin, “Generation of entanglement via adiabatic passage,” Phys. Rev. A 76, 062304 (2007).
[CrossRef]

Christopher, C. G.

C. G. Christopher, “Proposal for a mesoscopic cavity QED realization of the Greenberger-Horne-Zeilinger state,” Phys. Rev. A 54, R2529-R2532 (1996).
[CrossRef]

Chu, M.-C.

Y. Wu, K. W. Chan, M.-C. Chu, and P. T. Leung, “Radiation modes of a cavity with a resonantly oscillating boundary,” Phys. Rev. A 59, 1662-1666 (1999).
[CrossRef]

Chuang, I. L.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge U. Press, 2000).

Chudnovsky, E. M.

E. M. Chudnovsky and D. A. Garanin, “Phonon superradiance and phonon laser effect in nanomagnets,” Phys. Rev. Lett. 93, 257205 (2004).
[CrossRef]

Clark, S.

S. Clark, A. Peng, M. Gu, and S. Parkins, “Unconditional preparation of entanglement between atoms in cascaded optical cavities,” Phys. Rev. Lett. 91, 177901 (2003).
[CrossRef] [PubMed]

Côté, R.

Y. Wu and R. Côté, “Bistability and quantum fluctuations in coherent photoassociation of a Bose-Einstein condensate,” Phys. Rev. A 65, 053603 (2002).
[CrossRef]

Deutsch, D.

A. Barenco, D. Deutsch, A. Ekert, and R. Jozsa, “Conditional quantum dynamics and logic gates,” Phys. Rev. Lett. 74, 4083-4086 (1995).
[CrossRef] [PubMed]

Ding, C.-L.

X.-Y. Lu, J.-B. Liu, C.-L. Ding, and J.-H. Li, “Dispersive atom-field interaction scheme for three-dimensional entanglement between two spatially separated atoms,” Phys. Rev. A 78, 032305 (2008).
[CrossRef]

Du, Q. H.

L.-B. Chen, M. Y. Ye, G. W. Lin, Q. H. Du, and X. M. Lin, “Generation of entanglement via adiabatic passage,” Phys. Rev. A 76, 062304 (2007).
[CrossRef]

Duan, L. M.

L. M. Duan and H. J. Kimble, “Efficient engineering of multiatom entanglement through single-photon detections,” Phys. Rev. Lett. 90, 253601 (2003).
[CrossRef] [PubMed]

Eibl, M.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature (London) 390, 575-579 (1997).
[CrossRef]

Einstein, A.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?,” Phys. Rev. 47, 777-780 (1935).
[CrossRef]

Ekert, A.

A. Barenco, D. Deutsch, A. Ekert, and R. Jozsa, “Conditional quantum dynamics and logic gates,” Phys. Rev. Lett. 74, 4083-4086 (1995).
[CrossRef] [PubMed]

Ekert, A. K.

A. K. Ekert, “Quantum cryptography based on Bell's theorem,” Phys. Rev. Lett. 67, 661-663 (1991).
[CrossRef] [PubMed]

Feng, X. L.

X. L. Feng, Z. M. Zhang, X. D. Li, S. Q. Gong, and Z. Z. Xu, “Entangling distant atoms by interference of polarized photons,” Phys. Rev. Lett. 90, 217902 (2003).
[CrossRef] [PubMed]

Fleischhauer, M.

M. D. Lukin, S. F. Yelin, and M. Fleischhauer, “Entanglement of atomic ensembles by trapping correlated photon states,” Phys. Rev. Lett. 84, 4232-4235 (2000).
[CrossRef] [PubMed]

Friedman, J. R.

J. R. Friedman, M. P. Sarachik, J. Tejada, and R. Ziolo, “Macroscopic measurement of resonant magnetization tunneling in high-spin molecules,” Phys. Rev. Lett. 76, 3830-3833 (1996).
[CrossRef] [PubMed]

Gambarelli, S.

S. Bertaina, S. Gambarelli, T. Mitra, B. Tsukerblat, A. Müller, and B. Barbara, “Quantum oscillations in a molecular magnet,” Nature 453, 203-206 (2008).
[CrossRef] [PubMed]

Garanin, D. A.

E. M. Chudnovsky and D. A. Garanin, “Phonon superradiance and phonon laser effect in nanomagnets,” Phys. Rev. Lett. 93, 257205 (2004).
[CrossRef]

Gatteschi, D.

C. Sangregorio, T. Ohm, C. Paulsen, R. Sessoli, and D. Gatteschi, “Quantum tunneling of the magnetization in an iron cluster nanomagnet,” Phys. Rev. Lett. 78, 4645-4648 (1997).
[CrossRef]

L. Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli, and B. Barbara, “Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets,” Nature 383, 145-147 (1996).
[CrossRef]

R. Sessoli, D. Gatteschi, A. Caneschi, and M. A. Novak, “Magnetic bistability in a metal-ion cluster,” Nature 365, 141-143 (1993).
[CrossRef]

Gaubatz, U.

J. R. Kuklinski, U. Gaubatz, F. T. Hioe, and K. Bergmann, “Adiabatic population transfer in a three-level system driven by delayed laser pulses,” Phys. Rev. A 40, 6741-6744 (1989).
[CrossRef] [PubMed]

U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Kölz, and K. Bergmann, “Population switching between vibrational levels in molecular beams,” Chem. Phys. Lett. 149, 463-463 (1988).
[CrossRef]

Gong, S. Q.

X. L. Feng, Z. M. Zhang, X. D. Li, S. Q. Gong, and Z. Z. Xu, “Entangling distant atoms by interference of polarized photons,” Phys. Rev. Lett. 90, 217902 (2003).
[CrossRef] [PubMed]

Gong, Z.-X.

W.-X. Yang, Z.-X. Gong, W.-B. Li, and X.-X. Yang, “Simple scheme for implementing the Deutsch-Jozsa algorithm in a thermal cavity,” J. Phys. A 40, 155-161 (2007).
[CrossRef]

Goto, H.

H. Goto and K. Ichimura, “Multiqubit controlled unitary gate by adiabatic passage with an optical cavity,” Phys. Rev. A 70, 012305 (2004).
[CrossRef]

Grebeneva, A. I.

A. V. Shvetsov, G. A. Vugalter, and A. I. Grebeneva, “Theoretical investigation of electromagnetically induced transparency in a crystal of molecular magnets,” Phys. Rev. B 74, 054416 (2006).
[CrossRef]

I. D. Tokman, G. A. Vugalter, A. I. Grebeneva, and V. I. Pozdnyakova, “Nonstationary interaction of a high-spin molecule or a rare earth metal ion with an acoustic wave and an alternating current magnetic field,” Phys. Rev. B 68, 174426 (2003).
[CrossRef]

Greenberger, D. M.

D. M. Greenberger, M. Horne, A. Shimony, and A. Zeilinger, “Bell's theorem without inequalities,” Am. J. Phys. 58, 1131-1143 (1990).
[CrossRef]

Gu, M.

S. Clark, A. Peng, M. Gu, and S. Parkins, “Unconditional preparation of entanglement between atoms in cascaded optical cavities,” Phys. Rev. Lett. 91, 177901 (2003).
[CrossRef] [PubMed]

Guéin, S.

M. Amniat-Talab, S. Guéin, N. Sangouard, and H. R. Jauslin, “Atom-photon, atom-atom, and photon-photon entanglement preparation by fractional adiabatic passage,” Phys. Rev. A 71, 023805 (2005).
[CrossRef]

Guérin, S.

X. Lacour, N. Sangouard, S. Guérin, and H. R. Jauslin, “Arbitrary state controlled-unitary gate by adiabatic passage,” Phys. Rev. A 73, 042321 (2006).
[CrossRef]

M. Amniat-Talab, S. Guérin, and H. R. Jauslin, “Decoherence-free creation of atom-atom entanglement in a cavity via fractional adiabatic passage,” Phys. Rev. A 72, 012339 (2005).
[CrossRef]

Guo, G. C.

S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392-2395 (2000).
[CrossRef] [PubMed]

Haroche, S.

A. Rauschenbeutel, P. Bertet, S. Osnaghi, G. Nogues, M. Brune, J. M. Raimond, and S. Haroche, “Controlled entanglement of two field modes in a cavity quantum electrodynamics experiment,” Phys. Rev. A 64, 050301(R) (2001).
[CrossRef]

J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565-582 (2001).
[CrossRef]

Hayasaka, K.

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Deterministic cavity quantum electrodynamics with trapped ions,” J. Phys. B 36, 613-622 (2003).
[CrossRef]

Hillery, M.

J. A. Bergou and M. Hillery, “Generation of highly entangled field states in multiple micromaser cavities,” Phys. Rev. A 55, 4585-4588 (1997).
[CrossRef]

Hioe, F. T.

J. R. Kuklinski, U. Gaubatz, F. T. Hioe, and K. Bergmann, “Adiabatic population transfer in a three-level system driven by delayed laser pulses,” Phys. Rev. A 40, 6741-6744 (1989).
[CrossRef] [PubMed]

Horne, M.

D. M. Greenberger, M. Horne, A. Shimony, and A. Zeilinger, “Bell's theorem without inequalities,” Am. J. Phys. 58, 1131-1143 (1990).
[CrossRef]

Huelga, S. F.

D. E. Browne, M. B. Plenio, and S. F. Huelga, “Robust creation of entanglement between ions in spatially separate cavities,” Phys. Rev. Lett. 91, 067901 (2003).
[CrossRef] [PubMed]

Ichimura, K.

H. Goto and K. Ichimura, “Multiqubit controlled unitary gate by adiabatic passage with an optical cavity,” Phys. Rev. A 70, 012305 (2004).
[CrossRef]

Itano, W. M.

Q. A. Turchette, C. S. Wood, B. E. King, C. J. Myatt, D. Leibfried, W. M. Itano, C. Monroe, and D. J. Wineland, “Deterministic entanglement of two trapped ions,” Phys. Rev. Lett. 81, 3631-3634 (1998).
[CrossRef]

Jauslin, H. R.

X. Lacour, N. Sangouard, S. Guérin, and H. R. Jauslin, “Arbitrary state controlled-unitary gate by adiabatic passage,” Phys. Rev. A 73, 042321 (2006).
[CrossRef]

M. Amniat-Talab, S. Guérin, and H. R. Jauslin, “Decoherence-free creation of atom-atom entanglement in a cavity via fractional adiabatic passage,” Phys. Rev. A 72, 012339 (2005).
[CrossRef]

M. Amniat-Talab, S. Guéin, N. Sangouard, and H. R. Jauslin, “Atom-photon, atom-atom, and photon-photon entanglement preparation by fractional adiabatic passage,” Phys. Rev. A 71, 023805 (2005).
[CrossRef]

Jennewein, T. D.

Ji, W.

W. Ji, C. Wu, S. J. van Enk, and M. G. Raymer, “Mesoscopic entanglement of atomic ensembles through nonresonant stimulated Raman scattering,” Phys. Rev. A 75, 052305 (2007).
[CrossRef]

Johnson, N. F.

J. H. Reina, L. Quiroga, and N. F. Johnson, “Quantum entanglement and information processing via excitons in optically driven quantum dots,” Phys. Rev. A 62, 012305 (2000).
[CrossRef]

Jozsa, R.

A. Barenco, D. Deutsch, A. Ekert, and R. Jozsa, “Conditional quantum dynamics and logic gates,” Phys. Rev. Lett. 74, 4083-4086 (1995).
[CrossRef] [PubMed]

Keller, M.

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Deterministic cavity quantum electrodynamics with trapped ions,” J. Phys. B 36, 613-622 (2003).
[CrossRef]

Kimble, H. J.

L. M. Duan and H. J. Kimble, “Efficient engineering of multiatom entanglement through single-photon detections,” Phys. Rev. Lett. 90, 253601 (2003).
[CrossRef] [PubMed]

King, B. E.

Q. A. Turchette, C. S. Wood, B. E. King, C. J. Myatt, D. Leibfried, W. M. Itano, C. Monroe, and D. J. Wineland, “Deterministic entanglement of two trapped ions,” Phys. Rev. Lett. 81, 3631-3634 (1998).
[CrossRef]

Kippenberg, T. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

Kis, Z.

Z. Kis and F. Renzoni, “Qubit rotation by stimulated Raman adiabatic passage,” Phys. Rev. A 65, 032318 (2002).
[CrossRef]

Kölz, M.

U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Kölz, and K. Bergmann, “Population switching between vibrational levels in molecular beams,” Chem. Phys. Lett. 149, 463-463 (1988).
[CrossRef]

Kuklinski, J. R.

J. R. Kuklinski, U. Gaubatz, F. T. Hioe, and K. Bergmann, “Adiabatic population transfer in a three-level system driven by delayed laser pulses,” Phys. Rev. A 40, 6741-6744 (1989).
[CrossRef] [PubMed]

Lacour, X.

X. Lacour, N. Sangouard, S. Guérin, and H. R. Jauslin, “Arbitrary state controlled-unitary gate by adiabatic passage,” Phys. Rev. A 73, 042321 (2006).
[CrossRef]

Lange, B.

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Deterministic cavity quantum electrodynamics with trapped ions,” J. Phys. B 36, 613-622 (2003).
[CrossRef]

Lange, W.

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Deterministic cavity quantum electrodynamics with trapped ions,” J. Phys. B 36, 613-622 (2003).
[CrossRef]

Larson, J.

J. Larson and E. Andersson, “Cavity-state preparation using adiabatic transfer,” Phys. Rev. A 71, 053814 (2005).
[CrossRef]

Leibfried, D.

Q. A. Turchette, C. S. Wood, B. E. King, C. J. Myatt, D. Leibfried, W. M. Itano, C. Monroe, and D. J. Wineland, “Deterministic entanglement of two trapped ions,” Phys. Rev. Lett. 81, 3631-3634 (1998).
[CrossRef]

Leuenberger, M. N.

M. N. Leuenberger and D. Loss, “Quantum computing in molecular magnets,” Nature 410, 789-793 (2001).
[CrossRef] [PubMed]

Leung, P. T.

Y. Wu, K. W. Chan, M.-C. Chu, and P. T. Leung, “Radiation modes of a cavity with a resonantly oscillating boundary,” Phys. Rev. A 59, 1662-1666 (1999).
[CrossRef]

Li, F. L.

P. Peng and F. L. Li, “Entangling two atoms in spatially separated cavities through both photon emission and absorption processes,” Phys. Rev. A 75, 062320 (2007).
[CrossRef]

Li, J.

X.-T. Xie, W. Li, J. Li, W.-X. Yang, A. Yuan, and X. Yang, “Transverse acoustic wave in molecular magnets via electromagnetically induced transparency,” Phys. Rev. B 75, 184423 (2007).
[CrossRef]

Li, J.-H.

X.-Y. Lu, J.-B. Liu, C.-L. Ding, and J.-H. Li, “Dispersive atom-field interaction scheme for three-dimensional entanglement between two spatially separated atoms,” Phys. Rev. A 78, 032305 (2008).
[CrossRef]

W.-X. Yang, Z.-M. Zhan, and J.-H. Li, “Efficient scheme for multipartite entanglement and quantum information processing with trapped ions,” Phys. Rev. A 72, 062108 (2005).
[CrossRef]

Li, W.

X.-T. Xie, W. Li, J. Li, W.-X. Yang, A. Yuan, and X. Yang, “Transverse acoustic wave in molecular magnets via electromagnetically induced transparency,” Phys. Rev. B 75, 184423 (2007).
[CrossRef]

Li, W.-B.

W.-X. Yang, Z.-X. Gong, W.-B. Li, and X.-X. Yang, “Simple scheme for implementing the Deutsch-Jozsa algorithm in a thermal cavity,” J. Phys. A 40, 155-161 (2007).
[CrossRef]

Li, X. D.

X. L. Feng, Z. M. Zhang, X. D. Li, S. Q. Gong, and Z. Z. Xu, “Entangling distant atoms by interference of polarized photons,” Phys. Rev. Lett. 90, 217902 (2003).
[CrossRef] [PubMed]

Lin, G. W.

L.-B. Chen, M. Y. Ye, G. W. Lin, Q. H. Du, and X. M. Lin, “Generation of entanglement via adiabatic passage,” Phys. Rev. A 76, 062304 (2007).
[CrossRef]

Lin, X. M.

L.-B. Chen, M. Y. Ye, G. W. Lin, Q. H. Du, and X. M. Lin, “Generation of entanglement via adiabatic passage,” Phys. Rev. A 76, 062304 (2007).
[CrossRef]

Lionti, F.

L. Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli, and B. Barbara, “Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets,” Nature 383, 145-147 (1996).
[CrossRef]

Liu, J.-B.

X.-Y. Lu, J.-B. Liu, C.-L. Ding, and J.-H. Li, “Dispersive atom-field interaction scheme for three-dimensional entanglement between two spatially separated atoms,” Phys. Rev. A 78, 032305 (2008).
[CrossRef]

X.-Y. Lu, J.-B. Liu, L.-G. Si, and X. Yang, “Continuous-variable entanglement in a two-mode four-level single-atom laser,” J. Phys. B 41, 035501 (2008).
[CrossRef]

X.-Y. Lu, J.-B. Liu, Y. Tian, P.-J. Song, and Z.-M. Zhan, “Single molecular magnets as a source of continuous-variable entanglement,” Europhys. Lett. 82, 64003 (2008).
[CrossRef]

Loss, D.

M. N. Leuenberger and D. Loss, “Quantum computing in molecular magnets,” Nature 410, 789-793 (2001).
[CrossRef] [PubMed]

Lu, X.-Y.

X.-Y. Lu, J.-B. Liu, Y. Tian, P.-J. Song, and Z.-M. Zhan, “Single molecular magnets as a source of continuous-variable entanglement,” Europhys. Lett. 82, 64003 (2008).
[CrossRef]

X.-Y. Lu, J.-B. Liu, L.-G. Si, and X. Yang, “Continuous-variable entanglement in a two-mode four-level single-atom laser,” J. Phys. B 41, 035501 (2008).
[CrossRef]

X.-Y. Lu, J.-B. Liu, C.-L. Ding, and J.-H. Li, “Dispersive atom-field interaction scheme for three-dimensional entanglement between two spatially separated atoms,” Phys. Rev. A 78, 032305 (2008).
[CrossRef]

Lukin, M. D.

M. D. Lukin, S. F. Yelin, and M. Fleischhauer, “Entanglement of atomic ensembles by trapping correlated photon states,” Phys. Rev. Lett. 84, 4232-4235 (2000).
[CrossRef] [PubMed]

Mancini, S.

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[CrossRef] [PubMed]

S. Mancini and S. Bose, “Engineering an interaction and entanglement between distant atoms,” Phys. Rev. A 70, 022307 (2004).
[CrossRef]

Mattle, K.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature (London) 390, 575-579 (1997).
[CrossRef]

Mitra, T.

S. Bertaina, S. Gambarelli, T. Mitra, B. Tsukerblat, A. Müller, and B. Barbara, “Quantum oscillations in a molecular magnet,” Nature 453, 203-206 (2008).
[CrossRef] [PubMed]

Monroe, C.

Q. A. Turchette, C. S. Wood, B. E. King, C. J. Myatt, D. Leibfried, W. M. Itano, C. Monroe, and D. J. Wineland, “Deterministic entanglement of two trapped ions,” Phys. Rev. Lett. 81, 3631-3634 (1998).
[CrossRef]

Morton, J. J. L.

A. Ardavan, O. Rival, J. J. L. Morton, S. J. Blundell, A. M. Tyryshkin, G. A. Timco, and R. E. P. Winpenny, “Will spin-relaxation times in molecular magnets permit quantum information proce?” Phys. Rev. Lett. 98, 057201 (2007).
[CrossRef] [PubMed]

Mosser, V.

K. Petukhov, S. Bahr, W. Wernsdorfer, A.-L. Barra, and V. Mosser, “Magnetization dynamics in the single-molecule magnet Fe8 under pulsed microwave irradiation,” Phys. Rev. B 75, 064408 (2007).
[CrossRef]

Müller, A.

S. Bertaina, S. Gambarelli, T. Mitra, B. Tsukerblat, A. Müller, and B. Barbara, “Quantum oscillations in a molecular magnet,” Nature 453, 203-206 (2008).
[CrossRef] [PubMed]

Myatt, C. J.

Q. A. Turchette, C. S. Wood, B. E. King, C. J. Myatt, D. Leibfried, W. M. Itano, C. Monroe, and D. J. Wineland, “Deterministic entanglement of two trapped ions,” Phys. Rev. Lett. 81, 3631-3634 (1998).
[CrossRef]

Nielsen, M. A.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge U. Press, 2000).

Nogues, G.

A. Rauschenbeutel, P. Bertet, S. Osnaghi, G. Nogues, M. Brune, J. M. Raimond, and S. Haroche, “Controlled entanglement of two field modes in a cavity quantum electrodynamics experiment,” Phys. Rev. A 64, 050301(R) (2001).
[CrossRef]

Novak, M. A.

R. Sessoli, D. Gatteschi, A. Caneschi, and M. A. Novak, “Magnetic bistability in a metal-ion cluster,” Nature 365, 141-143 (1993).
[CrossRef]

Ohm, T.

C. Sangregorio, T. Ohm, C. Paulsen, R. Sessoli, and D. Gatteschi, “Quantum tunneling of the magnetization in an iron cluster nanomagnet,” Phys. Rev. Lett. 78, 4645-4648 (1997).
[CrossRef]

Osnaghi, S.

A. Rauschenbeutel, P. Bertet, S. Osnaghi, G. Nogues, M. Brune, J. M. Raimond, and S. Haroche, “Controlled entanglement of two field modes in a cavity quantum electrodynamics experiment,” Phys. Rev. A 64, 050301(R) (2001).
[CrossRef]

Painter, O.

P. E. Barclay, K. Srinivasan, and O. Painter, “Integration of fiber-coupled high-Q SiNx microdisks with atom chips,” Appl. Phys. Lett. 89, 131108 (2006).
[CrossRef]

Painter, O. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

Pan, J. W.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature (London) 390, 575-579 (1997).
[CrossRef]

Parkins, S.

S. Clark, A. Peng, M. Gu, and S. Parkins, “Unconditional preparation of entanglement between atoms in cascaded optical cavities,” Phys. Rev. Lett. 91, 177901 (2003).
[CrossRef] [PubMed]

Paulsen, C.

C. Sangregorio, T. Ohm, C. Paulsen, R. Sessoli, and D. Gatteschi, “Quantum tunneling of the magnetization in an iron cluster nanomagnet,” Phys. Rev. Lett. 78, 4645-4648 (1997).
[CrossRef]

Peng, A.

S. Clark, A. Peng, M. Gu, and S. Parkins, “Unconditional preparation of entanglement between atoms in cascaded optical cavities,” Phys. Rev. Lett. 91, 177901 (2003).
[CrossRef] [PubMed]

Peng, P.

P. Peng and F. L. Li, “Entangling two atoms in spatially separated cavities through both photon emission and absorption processes,” Phys. Rev. A 75, 062320 (2007).
[CrossRef]

Petukhov, K.

K. Petukhov, S. Bahr, W. Wernsdorfer, A.-L. Barra, and V. Mosser, “Magnetization dynamics in the single-molecule magnet Fe8 under pulsed microwave irradiation,” Phys. Rev. B 75, 064408 (2007).
[CrossRef]

Plenio, M. B.

D. E. Browne and M. B. Plenio, “Robust generation of entanglement between two cavities mediated by short interactions with an atom,” Phys. Rev. A 67, 012325 (2003).
[CrossRef]

D. E. Browne, M. B. Plenio, and S. F. Huelga, “Robust creation of entanglement between ions in spatially separate cavities,” Phys. Rev. Lett. 91, 067901 (2003).
[CrossRef] [PubMed]

Podolsky, B.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?,” Phys. Rev. 47, 777-780 (1935).
[CrossRef]

Pozdnyakova, V. I.

I. D. Tokman, G. A. Vugalter, A. I. Grebeneva, and V. I. Pozdnyakova, “Nonstationary interaction of a high-spin molecule or a rare earth metal ion with an acoustic wave and an alternating current magnetic field,” Phys. Rev. B 68, 174426 (2003).
[CrossRef]

Prevedel, R.

Quiroga, L.

J. H. Reina, L. Quiroga, and N. F. Johnson, “Quantum entanglement and information processing via excitons in optically driven quantum dots,” Phys. Rev. A 62, 012305 (2000).
[CrossRef]

Raimond, J. M.

A. Rauschenbeutel, P. Bertet, S. Osnaghi, G. Nogues, M. Brune, J. M. Raimond, and S. Haroche, “Controlled entanglement of two field modes in a cavity quantum electrodynamics experiment,” Phys. Rev. A 64, 050301(R) (2001).
[CrossRef]

J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565-582 (2001).
[CrossRef]

Rauschenbeutel, A.

A. Rauschenbeutel, P. Bertet, S. Osnaghi, G. Nogues, M. Brune, J. M. Raimond, and S. Haroche, “Controlled entanglement of two field modes in a cavity quantum electrodynamics experiment,” Phys. Rev. A 64, 050301(R) (2001).
[CrossRef]

Raymer, M. G.

W. Ji, C. Wu, S. J. van Enk, and M. G. Raymer, “Mesoscopic entanglement of atomic ensembles through nonresonant stimulated Raman scattering,” Phys. Rev. A 75, 052305 (2007).
[CrossRef]

Reina, J. H.

J. H. Reina, L. Quiroga, and N. F. Johnson, “Quantum entanglement and information processing via excitons in optically driven quantum dots,” Phys. Rev. A 62, 012305 (2000).
[CrossRef]

Renzoni, F.

Z. Kis and F. Renzoni, “Qubit rotation by stimulated Raman adiabatic passage,” Phys. Rev. A 65, 032318 (2002).
[CrossRef]

Rival, O.

A. Ardavan, O. Rival, J. J. L. Morton, S. J. Blundell, A. M. Tyryshkin, G. A. Timco, and R. E. P. Winpenny, “Will spin-relaxation times in molecular magnets permit quantum information proce?” Phys. Rev. Lett. 98, 057201 (2007).
[CrossRef] [PubMed]

Rosen, N.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?,” Phys. Rev. 47, 777-780 (1935).
[CrossRef]

Rudecki, P.

U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Kölz, and K. Bergmann, “Population switching between vibrational levels in molecular beams,” Chem. Phys. Lett. 149, 463-463 (1988).
[CrossRef]

Sangouard, N.

X. Lacour, N. Sangouard, S. Guérin, and H. R. Jauslin, “Arbitrary state controlled-unitary gate by adiabatic passage,” Phys. Rev. A 73, 042321 (2006).
[CrossRef]

M. Amniat-Talab, S. Guéin, N. Sangouard, and H. R. Jauslin, “Atom-photon, atom-atom, and photon-photon entanglement preparation by fractional adiabatic passage,” Phys. Rev. A 71, 023805 (2005).
[CrossRef]

Sangregorio, C.

C. Sangregorio, T. Ohm, C. Paulsen, R. Sessoli, and D. Gatteschi, “Quantum tunneling of the magnetization in an iron cluster nanomagnet,” Phys. Rev. Lett. 78, 4645-4648 (1997).
[CrossRef]

Sarachik, M. P.

J. R. Friedman, M. P. Sarachik, J. Tejada, and R. Ziolo, “Macroscopic measurement of resonant magnetization tunneling in high-spin molecules,” Phys. Rev. Lett. 76, 3830-3833 (1996).
[CrossRef] [PubMed]

Schiemann, S.

U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Kölz, and K. Bergmann, “Population switching between vibrational levels in molecular beams,” Chem. Phys. Lett. 149, 463-463 (1988).
[CrossRef]

Scully, M. O.

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge U. Press, 1997), Chap. 14, p. 409.

Serafini, A.

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[CrossRef] [PubMed]

Sessoli, R.

W. Wernsdorfer and R. Sessoli, “Quantum phase interference and parity effects in magnetic molecular clusters,” Science 284, 133-135 (1999).
[CrossRef] [PubMed]

C. Sangregorio, T. Ohm, C. Paulsen, R. Sessoli, and D. Gatteschi, “Quantum tunneling of the magnetization in an iron cluster nanomagnet,” Phys. Rev. Lett. 78, 4645-4648 (1997).
[CrossRef]

L. Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli, and B. Barbara, “Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets,” Nature 383, 145-147 (1996).
[CrossRef]

R. Sessoli, D. Gatteschi, A. Caneschi, and M. A. Novak, “Magnetic bistability in a metal-ion cluster,” Nature 365, 141-143 (1993).
[CrossRef]

Shimony, A.

D. M. Greenberger, M. Horne, A. Shimony, and A. Zeilinger, “Bell's theorem without inequalities,” Am. J. Phys. 58, 1131-1143 (1990).
[CrossRef]

Shore, B. W.

N. V. Vitanov, K. A. Suominen, and B. W. Shore, “Creation of coherent atomic superpositions by fractional stimulated Raman adiabatic passage,” J. Phys. B 32, 4535-4546 (1999).
[CrossRef]

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003-1025 (1998).
[CrossRef]

Shvetsov, A. V.

A. V. Shvetsov, G. A. Vugalter, and A. I. Grebeneva, “Theoretical investigation of electromagnetically induced transparency in a crystal of molecular magnets,” Phys. Rev. B 74, 054416 (2006).
[CrossRef]

Si, L.-G.

X.-Y. Lu, J.-B. Liu, L.-G. Si, and X. Yang, “Continuous-variable entanglement in a two-mode four-level single-atom laser,” J. Phys. B 41, 035501 (2008).
[CrossRef]

Song, P.-J.

X.-Y. Lu, J.-B. Liu, Y. Tian, P.-J. Song, and Z.-M. Zhan, “Single molecular magnets as a source of continuous-variable entanglement,” Europhys. Lett. 82, 64003 (2008).
[CrossRef]

Spillane, S. M.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

Srinivasan, K.

P. E. Barclay, K. Srinivasan, and O. Painter, “Integration of fiber-coupled high-Q SiNx microdisks with atom chips,” Appl. Phys. Lett. 89, 131108 (2006).
[CrossRef]

Suominen, K. A.

N. V. Vitanov, K. A. Suominen, and B. W. Shore, “Creation of coherent atomic superpositions by fractional stimulated Raman adiabatic passage,” J. Phys. B 32, 4535-4546 (1999).
[CrossRef]

Tejada, J.

J. R. Friedman, M. P. Sarachik, J. Tejada, and R. Ziolo, “Macroscopic measurement of resonant magnetization tunneling in high-spin molecules,” Phys. Rev. Lett. 76, 3830-3833 (1996).
[CrossRef] [PubMed]

Theuer, H.

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003-1025 (1998).
[CrossRef]

Thomas, L.

L. Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli, and B. Barbara, “Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets,” Nature 383, 145-147 (1996).
[CrossRef]

Tian, Y.

X.-Y. Lu, J.-B. Liu, Y. Tian, P.-J. Song, and Z.-M. Zhan, “Single molecular magnets as a source of continuous-variable entanglement,” Europhys. Lett. 82, 64003 (2008).
[CrossRef]

Timco, G. A.

A. Ardavan, O. Rival, J. J. L. Morton, S. J. Blundell, A. M. Tyryshkin, G. A. Timco, and R. E. P. Winpenny, “Will spin-relaxation times in molecular magnets permit quantum information proce?” Phys. Rev. Lett. 98, 057201 (2007).
[CrossRef] [PubMed]

Tokman, I. D.

I. D. Tokman, G. A. Vugalter, A. I. Grebeneva, and V. I. Pozdnyakova, “Nonstationary interaction of a high-spin molecule or a rare earth metal ion with an acoustic wave and an alternating current magnetic field,” Phys. Rev. B 68, 174426 (2003).
[CrossRef]

Tsukerblat, B.

S. Bertaina, S. Gambarelli, T. Mitra, B. Tsukerblat, A. Müller, and B. Barbara, “Quantum oscillations in a molecular magnet,” Nature 453, 203-206 (2008).
[CrossRef] [PubMed]

Turchette, Q. A.

Q. A. Turchette, C. S. Wood, B. E. King, C. J. Myatt, D. Leibfried, W. M. Itano, C. Monroe, and D. J. Wineland, “Deterministic entanglement of two trapped ions,” Phys. Rev. Lett. 81, 3631-3634 (1998).
[CrossRef]

Tyryshkin, A. M.

A. Ardavan, O. Rival, J. J. L. Morton, S. J. Blundell, A. M. Tyryshkin, G. A. Timco, and R. E. P. Winpenny, “Will spin-relaxation times in molecular magnets permit quantum information proce?” Phys. Rev. Lett. 98, 057201 (2007).
[CrossRef] [PubMed]

Vahala, K. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

van Enk, S. J.

W. Ji, C. Wu, S. J. van Enk, and M. G. Raymer, “Mesoscopic entanglement of atomic ensembles through nonresonant stimulated Raman scattering,” Phys. Rev. A 75, 052305 (2007).
[CrossRef]

Vincenzo, D. P.

C. H. Bennett and D. P. Vincenzo, “Quantum information and computation,” Nature (London) 404, 247-255 (2000).
[CrossRef]

Vitanov, N. V.

N. V. Vitanov, K. A. Suominen, and B. W. Shore, “Creation of coherent atomic superpositions by fractional stimulated Raman adiabatic passage,” J. Phys. B 32, 4535-4546 (1999).
[CrossRef]

Vugalter, G. A.

A. V. Shvetsov, G. A. Vugalter, and A. I. Grebeneva, “Theoretical investigation of electromagnetically induced transparency in a crystal of molecular magnets,” Phys. Rev. B 74, 054416 (2006).
[CrossRef]

I. D. Tokman, G. A. Vugalter, A. I. Grebeneva, and V. I. Pozdnyakova, “Nonstationary interaction of a high-spin molecule or a rare earth metal ion with an acoustic wave and an alternating current magnetic field,” Phys. Rev. B 68, 174426 (2003).
[CrossRef]

Walther, H.

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Deterministic cavity quantum electrodynamics with trapped ions,” J. Phys. B 36, 613-622 (2003).
[CrossRef]

Weinfurter, H.

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature (London) 390, 575-579 (1997).
[CrossRef]

Wen, L.

Wernsdorfer, W.

K. Petukhov, S. Bahr, W. Wernsdorfer, A.-L. Barra, and V. Mosser, “Magnetization dynamics in the single-molecule magnet Fe8 under pulsed microwave irradiation,” Phys. Rev. B 75, 064408 (2007).
[CrossRef]

W. Wernsdorfer and R. Sessoli, “Quantum phase interference and parity effects in magnetic molecular clusters,” Science 284, 133-135 (1999).
[CrossRef] [PubMed]

Wineland, D. J.

Q. A. Turchette, C. S. Wood, B. E. King, C. J. Myatt, D. Leibfried, W. M. Itano, C. Monroe, and D. J. Wineland, “Deterministic entanglement of two trapped ions,” Phys. Rev. Lett. 81, 3631-3634 (1998).
[CrossRef]

Winpenny, R. E. P.

A. Ardavan, O. Rival, J. J. L. Morton, S. J. Blundell, A. M. Tyryshkin, G. A. Timco, and R. E. P. Winpenny, “Will spin-relaxation times in molecular magnets permit quantum information proce?” Phys. Rev. Lett. 98, 057201 (2007).
[CrossRef] [PubMed]

Wood, C. S.

Q. A. Turchette, C. S. Wood, B. E. King, C. J. Myatt, D. Leibfried, W. M. Itano, C. Monroe, and D. J. Wineland, “Deterministic entanglement of two trapped ions,” Phys. Rev. Lett. 81, 3631-3634 (1998).
[CrossRef]

Wu, C.

W. Ji, C. Wu, S. J. van Enk, and M. G. Raymer, “Mesoscopic entanglement of atomic ensembles through nonresonant stimulated Raman scattering,” Phys. Rev. A 75, 052305 (2007).
[CrossRef]

Wu, Y.

Y. Wu and X. Yang, “Four-wave mixing in molecular magnets via electromagnetically induced transparency,” Phys. Rev. B 76, 054425 (2007).
[CrossRef]

Y. Wu and X. Yang, “Giant Kerr nonlinearities and solitons in a crystal of molecular magnets,” Appl. Phys. Lett. 91, 094104 (2007).
[CrossRef]

Y. Wu and X. Yang, “Highly efficient four-wave mixing in double- system in ultraslow propagation regime,” Phys. Rev. A 70, 053818 (2004).
[CrossRef]

Y. Wu, L. Wen, and Y. Zhu, “Efficient hyper-Raman scattering in resonant coherent media,” Opt. Lett. 28, 631-633 (2003).
[CrossRef] [PubMed]

Y. Wu and R. Côté, “Bistability and quantum fluctuations in coherent photoassociation of a Bose-Einstein condensate,” Phys. Rev. A 65, 053603 (2002).
[CrossRef]

Y. Wu, K. W. Chan, M.-C. Chu, and P. T. Leung, “Radiation modes of a cavity with a resonantly oscillating boundary,” Phys. Rev. A 59, 1662-1666 (1999).
[CrossRef]

Xie, X.-T.

X.-T. Xie, W. Li, J. Li, W.-X. Yang, A. Yuan, and X. Yang, “Transverse acoustic wave in molecular magnets via electromagnetically induced transparency,” Phys. Rev. B 75, 184423 (2007).
[CrossRef]

Xu, Z. Z.

X. L. Feng, Z. M. Zhang, X. D. Li, S. Q. Gong, and Z. Z. Xu, “Entangling distant atoms by interference of polarized photons,” Phys. Rev. Lett. 90, 217902 (2003).
[CrossRef] [PubMed]

Yang, W.-X.

W.-X. Yang, Z.-X. Gong, W.-B. Li, and X.-X. Yang, “Simple scheme for implementing the Deutsch-Jozsa algorithm in a thermal cavity,” J. Phys. A 40, 155-161 (2007).
[CrossRef]

X.-T. Xie, W. Li, J. Li, W.-X. Yang, A. Yuan, and X. Yang, “Transverse acoustic wave in molecular magnets via electromagnetically induced transparency,” Phys. Rev. B 75, 184423 (2007).
[CrossRef]

W.-X. Yang, Z.-M. Zhan, and J.-H. Li, “Efficient scheme for multipartite entanglement and quantum information processing with trapped ions,” Phys. Rev. A 72, 062108 (2005).
[CrossRef]

Yang, X.

X.-Y. Lu, J.-B. Liu, L.-G. Si, and X. Yang, “Continuous-variable entanglement in a two-mode four-level single-atom laser,” J. Phys. B 41, 035501 (2008).
[CrossRef]

X.-T. Xie, W. Li, J. Li, W.-X. Yang, A. Yuan, and X. Yang, “Transverse acoustic wave in molecular magnets via electromagnetically induced transparency,” Phys. Rev. B 75, 184423 (2007).
[CrossRef]

Y. Wu and X. Yang, “Giant Kerr nonlinearities and solitons in a crystal of molecular magnets,” Appl. Phys. Lett. 91, 094104 (2007).
[CrossRef]

Y. Wu and X. Yang, “Four-wave mixing in molecular magnets via electromagnetically induced transparency,” Phys. Rev. B 76, 054425 (2007).
[CrossRef]

Y. Wu and X. Yang, “Highly efficient four-wave mixing in double- system in ultraslow propagation regime,” Phys. Rev. A 70, 053818 (2004).
[CrossRef]

Yang, X.-X.

W.-X. Yang, Z.-X. Gong, W.-B. Li, and X.-X. Yang, “Simple scheme for implementing the Deutsch-Jozsa algorithm in a thermal cavity,” J. Phys. A 40, 155-161 (2007).
[CrossRef]

Ye, M. Y.

L.-B. Chen, M. Y. Ye, G. W. Lin, Q. H. Du, and X. M. Lin, “Generation of entanglement via adiabatic passage,” Phys. Rev. A 76, 062304 (2007).
[CrossRef]

Ye, S.-Y.

S.-Y. Ye, Z.-R. Zhong, and S.-B. Zheng, “Deterministic generation of three-dimensional entanglement for two atoms separately trapped in two optical cavities,” Phys. Rev. A 77, 014303 (2008).
[CrossRef]

Yelin, S. F.

M. D. Lukin, S. F. Yelin, and M. Fleischhauer, “Entanglement of atomic ensembles by trapping correlated photon states,” Phys. Rev. Lett. 84, 4232-4235 (2000).
[CrossRef] [PubMed]

Yuan, A.

X.-T. Xie, W. Li, J. Li, W.-X. Yang, A. Yuan, and X. Yang, “Transverse acoustic wave in molecular magnets via electromagnetically induced transparency,” Phys. Rev. B 75, 184423 (2007).
[CrossRef]

Zeilinger, A.

R. Prevedel, M. Aspelmeyer, C. Brukner, A. Zeilinger, and T. D. Jennewein, “Photonic entanglement as a resource in quantum computation and quantum communication,” J. Opt. Soc. Am. B 24, 241-248 (2007).
[CrossRef]

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature (London) 390, 575-579 (1997).
[CrossRef]

D. M. Greenberger, M. Horne, A. Shimony, and A. Zeilinger, “Bell's theorem without inequalities,” Am. J. Phys. 58, 1131-1143 (1990).
[CrossRef]

Zhan, Z.-M.

X.-Y. Lu, J.-B. Liu, Y. Tian, P.-J. Song, and Z.-M. Zhan, “Single molecular magnets as a source of continuous-variable entanglement,” Europhys. Lett. 82, 64003 (2008).
[CrossRef]

W.-X. Yang, Z.-M. Zhan, and J.-H. Li, “Efficient scheme for multipartite entanglement and quantum information processing with trapped ions,” Phys. Rev. A 72, 062108 (2005).
[CrossRef]

Zhang, Z. M.

X. L. Feng, Z. M. Zhang, X. D. Li, S. Q. Gong, and Z. Z. Xu, “Entangling distant atoms by interference of polarized photons,” Phys. Rev. Lett. 90, 217902 (2003).
[CrossRef] [PubMed]

Zheng, S. B.

S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392-2395 (2000).
[CrossRef] [PubMed]

Zheng, S.-B.

S.-Y. Ye, Z.-R. Zhong, and S.-B. Zheng, “Deterministic generation of three-dimensional entanglement for two atoms separately trapped in two optical cavities,” Phys. Rev. A 77, 014303 (2008).
[CrossRef]

S.-B. Zheng, “Nongeometric conditional phase shift via adiabatic evolution of dark eigenstates: a new approach to quantum computation,” Phys. Rev. Lett. 95, 080502 (2005).
[CrossRef] [PubMed]

Zhong, Z.-R.

S.-Y. Ye, Z.-R. Zhong, and S.-B. Zheng, “Deterministic generation of three-dimensional entanglement for two atoms separately trapped in two optical cavities,” Phys. Rev. A 77, 014303 (2008).
[CrossRef]

Zhu, Y.

Ziolo, R.

J. R. Friedman, M. P. Sarachik, J. Tejada, and R. Ziolo, “Macroscopic measurement of resonant magnetization tunneling in high-spin molecules,” Phys. Rev. Lett. 76, 3830-3833 (1996).
[CrossRef] [PubMed]

Zubairy, M. S.

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge U. Press, 1997), Chap. 14, p. 409.

Am. J. Phys. (1)

D. M. Greenberger, M. Horne, A. Shimony, and A. Zeilinger, “Bell's theorem without inequalities,” Am. J. Phys. 58, 1131-1143 (1990).
[CrossRef]

Appl. Phys. Lett. (2)

Y. Wu and X. Yang, “Giant Kerr nonlinearities and solitons in a crystal of molecular magnets,” Appl. Phys. Lett. 91, 094104 (2007).
[CrossRef]

P. E. Barclay, K. Srinivasan, and O. Painter, “Integration of fiber-coupled high-Q SiNx microdisks with atom chips,” Appl. Phys. Lett. 89, 131108 (2006).
[CrossRef]

Chem. Phys. Lett. (1)

U. Gaubatz, P. Rudecki, M. Becker, S. Schiemann, M. Kölz, and K. Bergmann, “Population switching between vibrational levels in molecular beams,” Chem. Phys. Lett. 149, 463-463 (1988).
[CrossRef]

Europhys. Lett. (1)

X.-Y. Lu, J.-B. Liu, Y. Tian, P.-J. Song, and Z.-M. Zhan, “Single molecular magnets as a source of continuous-variable entanglement,” Europhys. Lett. 82, 64003 (2008).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. A (1)

W.-X. Yang, Z.-X. Gong, W.-B. Li, and X.-X. Yang, “Simple scheme for implementing the Deutsch-Jozsa algorithm in a thermal cavity,” J. Phys. A 40, 155-161 (2007).
[CrossRef]

J. Phys. B (3)

X.-Y. Lu, J.-B. Liu, L.-G. Si, and X. Yang, “Continuous-variable entanglement in a two-mode four-level single-atom laser,” J. Phys. B 41, 035501 (2008).
[CrossRef]

N. V. Vitanov, K. A. Suominen, and B. W. Shore, “Creation of coherent atomic superpositions by fractional stimulated Raman adiabatic passage,” J. Phys. B 32, 4535-4546 (1999).
[CrossRef]

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Deterministic cavity quantum electrodynamics with trapped ions,” J. Phys. B 36, 613-622 (2003).
[CrossRef]

Nature (4)

S. Bertaina, S. Gambarelli, T. Mitra, B. Tsukerblat, A. Müller, and B. Barbara, “Quantum oscillations in a molecular magnet,” Nature 453, 203-206 (2008).
[CrossRef] [PubMed]

M. N. Leuenberger and D. Loss, “Quantum computing in molecular magnets,” Nature 410, 789-793 (2001).
[CrossRef] [PubMed]

R. Sessoli, D. Gatteschi, A. Caneschi, and M. A. Novak, “Magnetic bistability in a metal-ion cluster,” Nature 365, 141-143 (1993).
[CrossRef]

L. Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli, and B. Barbara, “Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets,” Nature 383, 145-147 (1996).
[CrossRef]

Nature (London) (2)

C. H. Bennett and D. P. Vincenzo, “Quantum information and computation,” Nature (London) 404, 247-255 (2000).
[CrossRef]

D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature (London) 390, 575-579 (1997).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. (1)

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?,” Phys. Rev. 47, 777-780 (1935).
[CrossRef]

Phys. Rev. A (22)

Y. Wu and R. Côté, “Bistability and quantum fluctuations in coherent photoassociation of a Bose-Einstein condensate,” Phys. Rev. A 65, 053603 (2002).
[CrossRef]

Y. Wu and X. Yang, “Highly efficient four-wave mixing in double- system in ultraslow propagation regime,” Phys. Rev. A 70, 053818 (2004).
[CrossRef]

Y. Wu, K. W. Chan, M.-C. Chu, and P. T. Leung, “Radiation modes of a cavity with a resonantly oscillating boundary,” Phys. Rev. A 59, 1662-1666 (1999).
[CrossRef]

J. R. Kuklinski, U. Gaubatz, F. T. Hioe, and K. Bergmann, “Adiabatic population transfer in a three-level system driven by delayed laser pulses,” Phys. Rev. A 40, 6741-6744 (1989).
[CrossRef] [PubMed]

J. H. Reina, L. Quiroga, and N. F. Johnson, “Quantum entanglement and information processing via excitons in optically driven quantum dots,” Phys. Rev. A 62, 012305 (2000).
[CrossRef]

A. Rauschenbeutel, P. Bertet, S. Osnaghi, G. Nogues, M. Brune, J. M. Raimond, and S. Haroche, “Controlled entanglement of two field modes in a cavity quantum electrodynamics experiment,” Phys. Rev. A 64, 050301(R) (2001).
[CrossRef]

Z. Kis and F. Renzoni, “Qubit rotation by stimulated Raman adiabatic passage,” Phys. Rev. A 65, 032318 (2002).
[CrossRef]

H. Goto and K. Ichimura, “Multiqubit controlled unitary gate by adiabatic passage with an optical cavity,” Phys. Rev. A 70, 012305 (2004).
[CrossRef]

X. Lacour, N. Sangouard, S. Guérin, and H. R. Jauslin, “Arbitrary state controlled-unitary gate by adiabatic passage,” Phys. Rev. A 73, 042321 (2006).
[CrossRef]

M. Amniat-Talab, S. Guéin, N. Sangouard, and H. R. Jauslin, “Atom-photon, atom-atom, and photon-photon entanglement preparation by fractional adiabatic passage,” Phys. Rev. A 71, 023805 (2005).
[CrossRef]

M. Amniat-Talab, S. Guérin, and H. R. Jauslin, “Decoherence-free creation of atom-atom entanglement in a cavity via fractional adiabatic passage,” Phys. Rev. A 72, 012339 (2005).
[CrossRef]

L.-B. Chen, M. Y. Ye, G. W. Lin, Q. H. Du, and X. M. Lin, “Generation of entanglement via adiabatic passage,” Phys. Rev. A 76, 062304 (2007).
[CrossRef]

S.-Y. Ye, Z.-R. Zhong, and S.-B. Zheng, “Deterministic generation of three-dimensional entanglement for two atoms separately trapped in two optical cavities,” Phys. Rev. A 77, 014303 (2008).
[CrossRef]

W. Ji, C. Wu, S. J. van Enk, and M. G. Raymer, “Mesoscopic entanglement of atomic ensembles through nonresonant stimulated Raman scattering,” Phys. Rev. A 75, 052305 (2007).
[CrossRef]

X.-Y. Lu, J.-B. Liu, C.-L. Ding, and J.-H. Li, “Dispersive atom-field interaction scheme for three-dimensional entanglement between two spatially separated atoms,” Phys. Rev. A 78, 032305 (2008).
[CrossRef]

P. Peng and F. L. Li, “Entangling two atoms in spatially separated cavities through both photon emission and absorption processes,” Phys. Rev. A 75, 062320 (2007).
[CrossRef]

C. G. Christopher, “Proposal for a mesoscopic cavity QED realization of the Greenberger-Horne-Zeilinger state,” Phys. Rev. A 54, R2529-R2532 (1996).
[CrossRef]

J. A. Bergou and M. Hillery, “Generation of highly entangled field states in multiple micromaser cavities,” Phys. Rev. A 55, 4585-4588 (1997).
[CrossRef]

D. E. Browne and M. B. Plenio, “Robust generation of entanglement between two cavities mediated by short interactions with an atom,” Phys. Rev. A 67, 012325 (2003).
[CrossRef]

J. Larson and E. Andersson, “Cavity-state preparation using adiabatic transfer,” Phys. Rev. A 71, 053814 (2005).
[CrossRef]

W.-X. Yang, Z.-M. Zhan, and J.-H. Li, “Efficient scheme for multipartite entanglement and quantum information processing with trapped ions,” Phys. Rev. A 72, 062108 (2005).
[CrossRef]

S. Mancini and S. Bose, “Engineering an interaction and entanglement between distant atoms,” Phys. Rev. A 70, 022307 (2004).
[CrossRef]

Phys. Rev. B (5)

I. D. Tokman, G. A. Vugalter, A. I. Grebeneva, and V. I. Pozdnyakova, “Nonstationary interaction of a high-spin molecule or a rare earth metal ion with an acoustic wave and an alternating current magnetic field,” Phys. Rev. B 68, 174426 (2003).
[CrossRef]

A. V. Shvetsov, G. A. Vugalter, and A. I. Grebeneva, “Theoretical investigation of electromagnetically induced transparency in a crystal of molecular magnets,” Phys. Rev. B 74, 054416 (2006).
[CrossRef]

X.-T. Xie, W. Li, J. Li, W.-X. Yang, A. Yuan, and X. Yang, “Transverse acoustic wave in molecular magnets via electromagnetically induced transparency,” Phys. Rev. B 75, 184423 (2007).
[CrossRef]

Y. Wu and X. Yang, “Four-wave mixing in molecular magnets via electromagnetically induced transparency,” Phys. Rev. B 76, 054425 (2007).
[CrossRef]

K. Petukhov, S. Bahr, W. Wernsdorfer, A.-L. Barra, and V. Mosser, “Magnetization dynamics in the single-molecule magnet Fe8 under pulsed microwave irradiation,” Phys. Rev. B 75, 064408 (2007).
[CrossRef]

Phys. Rev. Lett. (16)

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[CrossRef] [PubMed]

A. Ardavan, O. Rival, J. J. L. Morton, S. J. Blundell, A. M. Tyryshkin, G. A. Timco, and R. E. P. Winpenny, “Will spin-relaxation times in molecular magnets permit quantum information proce?” Phys. Rev. Lett. 98, 057201 (2007).
[CrossRef] [PubMed]

E. M. Chudnovsky and D. A. Garanin, “Phonon superradiance and phonon laser effect in nanomagnets,” Phys. Rev. Lett. 93, 257205 (2004).
[CrossRef]

A. K. Ekert, “Quantum cryptography based on Bell's theorem,” Phys. Rev. Lett. 67, 661-663 (1991).
[CrossRef] [PubMed]

A. Barenco, D. Deutsch, A. Ekert, and R. Jozsa, “Conditional quantum dynamics and logic gates,” Phys. Rev. Lett. 74, 4083-4086 (1995).
[CrossRef] [PubMed]

S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392-2395 (2000).
[CrossRef] [PubMed]

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[CrossRef] [PubMed]

X. L. Feng, Z. M. Zhang, X. D. Li, S. Q. Gong, and Z. Z. Xu, “Entangling distant atoms by interference of polarized photons,” Phys. Rev. Lett. 90, 217902 (2003).
[CrossRef] [PubMed]

L. M. Duan and H. J. Kimble, “Efficient engineering of multiatom entanglement through single-photon detections,” Phys. Rev. Lett. 90, 253601 (2003).
[CrossRef] [PubMed]

Q. A. Turchette, C. S. Wood, B. E. King, C. J. Myatt, D. Leibfried, W. M. Itano, C. Monroe, and D. J. Wineland, “Deterministic entanglement of two trapped ions,” Phys. Rev. Lett. 81, 3631-3634 (1998).
[CrossRef]

D. E. Browne, M. B. Plenio, and S. F. Huelga, “Robust creation of entanglement between ions in spatially separate cavities,” Phys. Rev. Lett. 91, 067901 (2003).
[CrossRef] [PubMed]

M. D. Lukin, S. F. Yelin, and M. Fleischhauer, “Entanglement of atomic ensembles by trapping correlated photon states,” Phys. Rev. Lett. 84, 4232-4235 (2000).
[CrossRef] [PubMed]

S. Clark, A. Peng, M. Gu, and S. Parkins, “Unconditional preparation of entanglement between atoms in cascaded optical cavities,” Phys. Rev. Lett. 91, 177901 (2003).
[CrossRef] [PubMed]

S.-B. Zheng, “Nongeometric conditional phase shift via adiabatic evolution of dark eigenstates: a new approach to quantum computation,” Phys. Rev. Lett. 95, 080502 (2005).
[CrossRef] [PubMed]

C. Sangregorio, T. Ohm, C. Paulsen, R. Sessoli, and D. Gatteschi, “Quantum tunneling of the magnetization in an iron cluster nanomagnet,” Phys. Rev. Lett. 78, 4645-4648 (1997).
[CrossRef]

J. R. Friedman, M. P. Sarachik, J. Tejada, and R. Ziolo, “Macroscopic measurement of resonant magnetization tunneling in high-spin molecules,” Phys. Rev. Lett. 76, 3830-3833 (1996).
[CrossRef] [PubMed]

Physics (1)

J. S. Bell, “On the Einstein-Podolsky-Rosen paradox,” Physics 1, 195-200 (1964).

Rev. Mod. Phys. (2)

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003-1025 (1998).
[CrossRef]

J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565-582 (2001).
[CrossRef]

Science (1)

W. Wernsdorfer and R. Sessoli, “Quantum phase interference and parity effects in magnetic molecular clusters,” Science 284, 133-135 (1999).
[CrossRef] [PubMed]

Other (2)

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge U. Press, 2000).

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge U. Press, 1997), Chap. 14, p. 409.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Two general SMMs interact with two spatially separated single-mode cavities (cavities A and B), respectively. (a) The linkage pattern of the cavity–fiber–cavity system is considered here. (b) The four-level configuration of SMM j ( j = A , B ) . A classical field with Rabi frequency Ω j and cavity field with coupling coefficient G j resonantly induce transitions 2 j 1 j and 2 j 0 j , respectively.

Fig. 2
Fig. 2

Geometrical configuration of the SMM cavity field system in the proposed scheme.

Fig. 3
Fig. 3

Time dependence of Rabi frequencies of laser fields and cavity modes [panel (a)] and time evolution of the populations of corresponding system states [panel (b)]. The system parameters are set as d A = 14 μ m , d B = 8 μ m , y A = y B = 0 , τ = 6 μ s , W l = W c = 10 μ m , and v = 1 m s , λ j = 1 mm (corresponding to ν j 3 × 10 11 HZ ), g A = 4 Γ , g B = Γ , and Ω 0 = 15 Γ .

Fig. 4
Fig. 4

Fidelity of realizing the entangled state Ψ e versus y j [panel (a)] and d j [panel (b)] when t = 20 μ s . The other system parameters are the same as in Fig. 3.

Fig. 5
Fig. 5

Fidelity of realizing the entangled state Ψ e versus τ when t = 20 μ s . The other system parameters are the same as in Fig. 3.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

H ̂ = H ̂ 0 S + H ̂ 0 F + V ̂ ,
H ̂ 0 S = j ( D S ̂ j z 2 + H ̂ tr g μ B S ̂ j x H 0 ) ,
H ̂ 0 F = ν A a ̂ A a ̂ A + ν B a ̂ B a ̂ B ,
V ̂ = g μ B 2 j ( S ̂ j H j e i ω j t + S ̂ j j a ̂ j + H.c. ) ,
H I sc = j = A , B [ Ω j ( t ) 2 j 1 + G j ( t ) a j 2 j 0 + H.c ] ,
Ω j ( t ) = g μ B H j ( t ) 2 2 S ̂ j y 1 , G j = g μ B j ( t ) 2 S ̂ j x 0 ,
H I c f = η [ b ̂ ( a ̂ A + a ̂ B ) + H.c ] ,
H I = H I sc + H I c f = j = A , B [ Ω j ( t ) 2 j 1 + G j ( t ) a ̂ j 2 j 0 + η b ̂ a ̂ j + H.c ] .
φ 1 = 1 A 0 B 00 c 0 f ,
φ 2 = 2 A 0 B 00 c 0 f ,
φ 3 = 0 A 0 B 10 c 0 f ,
φ 4 = 0 A 0 B 00 c 1 f ,
φ 5 = 0 A 0 B 01 c 0 f ,
φ 6 = 0 A 2 B 00 c 0 f ,
φ 7 = 0 A 1 B 00 c 0 f .
ψ ( t ) dark = D [ G A ( t ) Ω B ( t ) φ 1 Ω A ( t ) Ω B ( t ) φ 3 + Ω A ( t ) Ω B ( t ) φ 5 G B ( t ) Ω A ( t ) φ 7 ] ,
lim t G B ( t ) Ω A ( t ) G A ( t ) Ω B ( t ) = 0 , lim t Ω A ( t ) Ω B ( t ) G A ( t ) Ω B ( t ) = 0 ,
lim t + G A ( t ) Ω B ( t ) Ω A ( t ) Ω B ( t ) = 0 , lim t + G B ( t ) Ω A ( t ) Ω A ( t ) Ω B ( t ) = 0 ,
Ω A ( t ) = Ω 0 exp ( y A 2 W l 2 ) exp ( ( v t d A ) 2 W l 2 ) ,
Ω B ( t ) = Ω 0 exp ( y B 2 W l 2 ) exp ( [ v ( t τ ) d B ] 2 W l 2 ) ,
G A ( t ) = g A exp ( ( v t ) 2 W c ) cos ( 2 π y A λ A ) ,
G B ( t ) = g B exp ( v 2 ( t τ ) 2 W c ) cos ( 2 π y B λ B ) ,

Metrics