Abstract

A detailed analysis of two-dimensional liquid crystalline grating cells is presented. Crossed liquid crystalline gratings were prepared using two kinds of photo-alignment polymers, i.e., poly(vinyl cinnamate) (PVCi) and photocrosslinkable polymer liquid crystal (PCLC). The effects of the anchoring strength of photo-alignment polymer films and crossing angles of grating vectors on one pair of photo-alignment substrates were extensively investigated using elastic continuum analysis, Jones calculus, and diffraction theory. The anchoring strength of our PCLC film was sufficiently strong, and experimental observation was in good agreement with the theoretical values obtained assuming the strong anchoring (fixed boundary conditions), although PCLC still has limits with the capability of photo-alignment of the low-molar-mass liquid crystals.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.-H. Park, C.-J. Yu, J. Kim, S.-Y. Chung, and S.-D. Lee, “Concept of a liquid-crystal polarization beam splitter based on binary phase gratings,” Appl. Phys. Lett. 83, 1918-1920 (2003).
    [CrossRef]
  2. J. N. Eakin, Y. Xie, R. A. Pelcovits, M. D. Radcliffe, and G. P. Crawford, “Zero voltage Fréedericksz transition in periodically aligned liquid crystals,” Appl. Phys. Lett. 85, 1671-1673 (2004).
    [CrossRef]
  3. C.-J. Yu, J.-H. Park, J. Kim, M.-S. Jung, and S.-D. Lee, “Design of binary diffraction gratings of liquid crystals in a linearly graded phase model,” Appl. Opt. 43, 1783-1788 (2004).
    [CrossRef] [PubMed]
  4. C.-J. Yu, J.-H. Park, J. Kim, M.-S. Jung, and S.-D. Lee, “Diffraction patterns of binary liquid crystal gratings in homeotropic and hybrid geometries,” Mater. Sci. Eng. C 24, 247-250 (2004).
    [CrossRef]
  5. L. M. Blinov, G. Cipparrone, A. Mazzulla, C. Provenzano, S. P. Palto, M. I. Barnik, A. V. Arbuzov, and B. A. Umanskii, “Electric field controlled polarization grating based on a hybrid structure 'photosensitive polymer-liquid crysta'l”, Appl. Phys. Lett. 87, 061105 (2005).
    [CrossRef]
  6. G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98, 123102 (2005).
    [CrossRef]
  7. T. Sasaki, H. Ono, N. Kawatsuki, and M. Kuwabara, “Liquid-crystal phase gratings using photoregulated photocrosslinkable polymer liquid crystal,” Appl. Phys. Lett. 87, 161112 (2005).
    [CrossRef]
  8. C.-J. Yu, D.-W. Kim, J. Kim, and S.-D. Lee, “Polarization-invariant grating based on a photoaligned liquid crystal in an oppositely twisted binary configuration,” Opt. Lett. 30, 1995-1997 (2005).
    [CrossRef] [PubMed]
  9. S. P. Gorkhali, S. G. Cloutier, and G. P. Crawford, “Stable polarization gratings recorded in azo-dye-doped liquid crystals,” Appl. Phys. Lett. 88, 251113 (2006).
    [CrossRef]
  10. V. Kapoustine, A. Kazakevitch, V. So, and R. Tam, “Simple method of formation of switchable liquid crystal gratings by introducing periodic photoalignment pattern into liquid crystal cell,” Opt. Commun. 266, 1-5 (2006).
    [CrossRef]
  11. V. Presnyakov, K. Asatryan, T. Galstian, and V. Chigrinov, “Optical polarization grating induced liquid crystal microstructure using azo-dye command layer,” Opt. Express 14, 10558-10564 (2006).
    [CrossRef] [PubMed]
  12. H. Sarkissian, S. V. Serak, N. V. Tabiryan, L. B. Glebov, V. Rotar, and B. Y. Zeldovich, “Polarization-controlled switching between diffraction orders in transverse-periodically aligned nematic liquid crystals,” Opt. Lett. 31, 2248-2250 (2006).
    [CrossRef] [PubMed]
  13. W.-Y. Wu, T.-S. Mo, and A. Y.-G. Fuh, “Polarization characteristics of diffracted beams from twisted nematic gratings fabricated by the photoalignment effect in dye-doped liquid-crystal films,” J. Opt. Soc. Am. B 23, 1737-1742 (2006).
    [CrossRef]
  14. J.-C. Chao, W.-Y. Wu, and A. Y.-G. Fuh, “Diffraction characteristics of a liquid crystal polarization grating analyzed using the finite-difference time-domain method,” Opt. Express 15, 16702-16711 (2007).
    [CrossRef] [PubMed]
  15. A. Denisov and J.-L. de B. de. la Tocnaye, “Resonant gratings in planar Grandjean cholesteric composite liquid crystals,” Appl. Opt. 46, 6680-6687 (2007).
    [CrossRef] [PubMed]
  16. E. Jang, H.-R. Kim, Y.-J. Na, and S.-D. Lee, “Multistage optical memory of a liquid crystal diffraction grating in a single beam rewriting scheme,” Appl. Phys. Lett. 91, 071109 (2007).
    [CrossRef]
  17. R. K. Komanduri and M. J. Escuti, “Elastic continuum analysis of the liquid crystal polarization grating,” Phys. Rev. E 76, 021701 (2007).
    [CrossRef]
  18. K.-C. Lo, J.-D. Wang, C.-R. Lee, and T.-S. Mo, “Electrically controllable and polarization-independent Fresnel zone plate in a circularly symmetric hybrid-aligned liquid crystal film with a photoconductive polymer layer,” Appl. Phys. Lett. 91, 181104 (2007).
    [CrossRef]
  19. H. Ono, S. Oikawa, and N. Kawatsuki, “Effects of anchoring strength on diffraction properties of liquid crystal phase gratings formed on photoalignment polymer films,” J. Appl. Phys. 101, 123523 (2007).
    [CrossRef]
  20. K. Pavani, I. Naydenova, S. Martin, J. Raghavendra, R. Howard, and V. Toal, “Electro-optical switching of liquid crystal diffraction gratings by using surface relief effect in the photopolymer,” Opt. Commun. 273, 367-369 (2007).
    [CrossRef]
  21. C. Provenzano, P. Pagliusi, and G. Cipparrone, “Electrically tunable two-dimensional liquid crystals gratings induced by polarization holography,” Opt. Express 15, 5872-5878 (2007).
    [CrossRef] [PubMed]
  22. T. Sasaki, H. Ono, N. Kawatsuki, and M. Kuwabara, “Diffraction properties of nematic phase gratings with photoregulated liquid crystal cells,” Jpn. J. Appl. Phys. 46, 698-702 (2007).
    [CrossRef]
  23. B. D. Snow, F. R. M. Adikan, J. C. Gates, C. B. E. Gawith, A. Dyadyusha, M. Kaczmarek, and P. G. R. Smith, “Line defects and temperature effects in liquid crystal tunable planar Bragg gratings,” Opt. Express 15, 17129-17135 (2007).
    [CrossRef] [PubMed]
  24. S.-W. Ke, T.-H. Lin, and A. Y.-G. Fuh, “Tunable grating based on stressed liquid crystal,” Opt. Express 16, 2062-2067 (2008).
    [CrossRef] [PubMed]
  25. W. Y. Wu, M. S. Li, H. C. Lin, and A. Y.-G. Fuh, “Two-dimensional holographic polarization grating formed on azo-dye-doped polyvinyl alcohol films,” J. Appl. Phys. 103, 083119 (2008).
    [CrossRef]
  26. H. Ono, A. Emoto, F. Takahashi, N. Kawatsuki, and T. Hasegawa, “Highly stable polarization gratings in photocrosslinkable polymer liquid crystals,” J. Appl. Phys. 94, 1298-1303 (2003).
    [CrossRef]
  27. N. Kawatsuki, T. Hasegawa, H. Ono, and T. Tamoto, “Formation of polarization gratings and surface relief gratings in photocrosslinkable polymer liquid crystals by polarization holography,” Adv. Mater. 15, 991-994 (2003).
    [CrossRef]
  28. N. Kawatsuki, N. Furuso, E. Uchida, and T. Yamamoto, “Control of in-plane and out-of-plane reorientation in photo-cross-linkable copolymer liquid crystal films by irradiation with linearly polarized ultraviolet light and annealing,” Macromol. Chem. Phys. 203, 2438-2445 (2002).
    [CrossRef]
  29. N. Kawatsuki, K. Goto, T. Kawakami, and T. Yamamoto, “Reversion of alignment direction in the thermally enhanced photoorientation of photocrosslinkable polymer liquid crystal films,” Macromolecules 35, 706-713 (2002).
    [CrossRef]
  30. S. Chandrasekhar, Liquid Crystals (Cambridge U. Press, 1977).

2008 (2)

W. Y. Wu, M. S. Li, H. C. Lin, and A. Y.-G. Fuh, “Two-dimensional holographic polarization grating formed on azo-dye-doped polyvinyl alcohol films,” J. Appl. Phys. 103, 083119 (2008).
[CrossRef]

S.-W. Ke, T.-H. Lin, and A. Y.-G. Fuh, “Tunable grating based on stressed liquid crystal,” Opt. Express 16, 2062-2067 (2008).
[CrossRef] [PubMed]

2007 (10)

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Electrically tunable two-dimensional liquid crystals gratings induced by polarization holography,” Opt. Express 15, 5872-5878 (2007).
[CrossRef] [PubMed]

A. Denisov and J.-L. de B. de. la Tocnaye, “Resonant gratings in planar Grandjean cholesteric composite liquid crystals,” Appl. Opt. 46, 6680-6687 (2007).
[CrossRef] [PubMed]

J.-C. Chao, W.-Y. Wu, and A. Y.-G. Fuh, “Diffraction characteristics of a liquid crystal polarization grating analyzed using the finite-difference time-domain method,” Opt. Express 15, 16702-16711 (2007).
[CrossRef] [PubMed]

B. D. Snow, F. R. M. Adikan, J. C. Gates, C. B. E. Gawith, A. Dyadyusha, M. Kaczmarek, and P. G. R. Smith, “Line defects and temperature effects in liquid crystal tunable planar Bragg gratings,” Opt. Express 15, 17129-17135 (2007).
[CrossRef] [PubMed]

E. Jang, H.-R. Kim, Y.-J. Na, and S.-D. Lee, “Multistage optical memory of a liquid crystal diffraction grating in a single beam rewriting scheme,” Appl. Phys. Lett. 91, 071109 (2007).
[CrossRef]

R. K. Komanduri and M. J. Escuti, “Elastic continuum analysis of the liquid crystal polarization grating,” Phys. Rev. E 76, 021701 (2007).
[CrossRef]

K.-C. Lo, J.-D. Wang, C.-R. Lee, and T.-S. Mo, “Electrically controllable and polarization-independent Fresnel zone plate in a circularly symmetric hybrid-aligned liquid crystal film with a photoconductive polymer layer,” Appl. Phys. Lett. 91, 181104 (2007).
[CrossRef]

H. Ono, S. Oikawa, and N. Kawatsuki, “Effects of anchoring strength on diffraction properties of liquid crystal phase gratings formed on photoalignment polymer films,” J. Appl. Phys. 101, 123523 (2007).
[CrossRef]

K. Pavani, I. Naydenova, S. Martin, J. Raghavendra, R. Howard, and V. Toal, “Electro-optical switching of liquid crystal diffraction gratings by using surface relief effect in the photopolymer,” Opt. Commun. 273, 367-369 (2007).
[CrossRef]

T. Sasaki, H. Ono, N. Kawatsuki, and M. Kuwabara, “Diffraction properties of nematic phase gratings with photoregulated liquid crystal cells,” Jpn. J. Appl. Phys. 46, 698-702 (2007).
[CrossRef]

2006 (5)

2005 (4)

C.-J. Yu, D.-W. Kim, J. Kim, and S.-D. Lee, “Polarization-invariant grating based on a photoaligned liquid crystal in an oppositely twisted binary configuration,” Opt. Lett. 30, 1995-1997 (2005).
[CrossRef] [PubMed]

L. M. Blinov, G. Cipparrone, A. Mazzulla, C. Provenzano, S. P. Palto, M. I. Barnik, A. V. Arbuzov, and B. A. Umanskii, “Electric field controlled polarization grating based on a hybrid structure 'photosensitive polymer-liquid crysta'l”, Appl. Phys. Lett. 87, 061105 (2005).
[CrossRef]

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98, 123102 (2005).
[CrossRef]

T. Sasaki, H. Ono, N. Kawatsuki, and M. Kuwabara, “Liquid-crystal phase gratings using photoregulated photocrosslinkable polymer liquid crystal,” Appl. Phys. Lett. 87, 161112 (2005).
[CrossRef]

2004 (3)

C.-J. Yu, J.-H. Park, J. Kim, M.-S. Jung, and S.-D. Lee, “Diffraction patterns of binary liquid crystal gratings in homeotropic and hybrid geometries,” Mater. Sci. Eng. C 24, 247-250 (2004).
[CrossRef]

J. N. Eakin, Y. Xie, R. A. Pelcovits, M. D. Radcliffe, and G. P. Crawford, “Zero voltage Fréedericksz transition in periodically aligned liquid crystals,” Appl. Phys. Lett. 85, 1671-1673 (2004).
[CrossRef]

C.-J. Yu, J.-H. Park, J. Kim, M.-S. Jung, and S.-D. Lee, “Design of binary diffraction gratings of liquid crystals in a linearly graded phase model,” Appl. Opt. 43, 1783-1788 (2004).
[CrossRef] [PubMed]

2003 (3)

J.-H. Park, C.-J. Yu, J. Kim, S.-Y. Chung, and S.-D. Lee, “Concept of a liquid-crystal polarization beam splitter based on binary phase gratings,” Appl. Phys. Lett. 83, 1918-1920 (2003).
[CrossRef]

H. Ono, A. Emoto, F. Takahashi, N. Kawatsuki, and T. Hasegawa, “Highly stable polarization gratings in photocrosslinkable polymer liquid crystals,” J. Appl. Phys. 94, 1298-1303 (2003).
[CrossRef]

N. Kawatsuki, T. Hasegawa, H. Ono, and T. Tamoto, “Formation of polarization gratings and surface relief gratings in photocrosslinkable polymer liquid crystals by polarization holography,” Adv. Mater. 15, 991-994 (2003).
[CrossRef]

2002 (2)

N. Kawatsuki, N. Furuso, E. Uchida, and T. Yamamoto, “Control of in-plane and out-of-plane reorientation in photo-cross-linkable copolymer liquid crystal films by irradiation with linearly polarized ultraviolet light and annealing,” Macromol. Chem. Phys. 203, 2438-2445 (2002).
[CrossRef]

N. Kawatsuki, K. Goto, T. Kawakami, and T. Yamamoto, “Reversion of alignment direction in the thermally enhanced photoorientation of photocrosslinkable polymer liquid crystal films,” Macromolecules 35, 706-713 (2002).
[CrossRef]

Adikan, F. R. M.

Arbuzov, A. V.

L. M. Blinov, G. Cipparrone, A. Mazzulla, C. Provenzano, S. P. Palto, M. I. Barnik, A. V. Arbuzov, and B. A. Umanskii, “Electric field controlled polarization grating based on a hybrid structure 'photosensitive polymer-liquid crysta'l”, Appl. Phys. Lett. 87, 061105 (2005).
[CrossRef]

Asatryan, K.

Barnik, M. I.

L. M. Blinov, G. Cipparrone, A. Mazzulla, C. Provenzano, S. P. Palto, M. I. Barnik, A. V. Arbuzov, and B. A. Umanskii, “Electric field controlled polarization grating based on a hybrid structure 'photosensitive polymer-liquid crysta'l”, Appl. Phys. Lett. 87, 061105 (2005).
[CrossRef]

Blinov, L. M.

L. M. Blinov, G. Cipparrone, A. Mazzulla, C. Provenzano, S. P. Palto, M. I. Barnik, A. V. Arbuzov, and B. A. Umanskii, “Electric field controlled polarization grating based on a hybrid structure 'photosensitive polymer-liquid crysta'l”, Appl. Phys. Lett. 87, 061105 (2005).
[CrossRef]

Callan-Jones, A.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98, 123102 (2005).
[CrossRef]

Chandrasekhar, S.

S. Chandrasekhar, Liquid Crystals (Cambridge U. Press, 1977).

Chao, J.-C.

Chigrinov, V.

Chung, S.-Y.

J.-H. Park, C.-J. Yu, J. Kim, S.-Y. Chung, and S.-D. Lee, “Concept of a liquid-crystal polarization beam splitter based on binary phase gratings,” Appl. Phys. Lett. 83, 1918-1920 (2003).
[CrossRef]

Cipparrone, G.

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Electrically tunable two-dimensional liquid crystals gratings induced by polarization holography,” Opt. Express 15, 5872-5878 (2007).
[CrossRef] [PubMed]

L. M. Blinov, G. Cipparrone, A. Mazzulla, C. Provenzano, S. P. Palto, M. I. Barnik, A. V. Arbuzov, and B. A. Umanskii, “Electric field controlled polarization grating based on a hybrid structure 'photosensitive polymer-liquid crysta'l”, Appl. Phys. Lett. 87, 061105 (2005).
[CrossRef]

Cloutier, S. G.

S. P. Gorkhali, S. G. Cloutier, and G. P. Crawford, “Stable polarization gratings recorded in azo-dye-doped liquid crystals,” Appl. Phys. Lett. 88, 251113 (2006).
[CrossRef]

Crawford, G. P.

S. P. Gorkhali, S. G. Cloutier, and G. P. Crawford, “Stable polarization gratings recorded in azo-dye-doped liquid crystals,” Appl. Phys. Lett. 88, 251113 (2006).
[CrossRef]

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98, 123102 (2005).
[CrossRef]

J. N. Eakin, Y. Xie, R. A. Pelcovits, M. D. Radcliffe, and G. P. Crawford, “Zero voltage Fréedericksz transition in periodically aligned liquid crystals,” Appl. Phys. Lett. 85, 1671-1673 (2004).
[CrossRef]

de. la Tocnaye, J.-L. de B.

Denisov, A.

Dyadyusha, A.

Eakin, J. N.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98, 123102 (2005).
[CrossRef]

J. N. Eakin, Y. Xie, R. A. Pelcovits, M. D. Radcliffe, and G. P. Crawford, “Zero voltage Fréedericksz transition in periodically aligned liquid crystals,” Appl. Phys. Lett. 85, 1671-1673 (2004).
[CrossRef]

Emoto, A.

H. Ono, A. Emoto, F. Takahashi, N. Kawatsuki, and T. Hasegawa, “Highly stable polarization gratings in photocrosslinkable polymer liquid crystals,” J. Appl. Phys. 94, 1298-1303 (2003).
[CrossRef]

Escuti, M. J.

R. K. Komanduri and M. J. Escuti, “Elastic continuum analysis of the liquid crystal polarization grating,” Phys. Rev. E 76, 021701 (2007).
[CrossRef]

Fuh, A. Y.-G.

Furuso, N.

N. Kawatsuki, N. Furuso, E. Uchida, and T. Yamamoto, “Control of in-plane and out-of-plane reorientation in photo-cross-linkable copolymer liquid crystal films by irradiation with linearly polarized ultraviolet light and annealing,” Macromol. Chem. Phys. 203, 2438-2445 (2002).
[CrossRef]

Galstian, T.

Gates, J. C.

Gawith, C. B. E.

Glebov, L. B.

Gorkhali, S. P.

S. P. Gorkhali, S. G. Cloutier, and G. P. Crawford, “Stable polarization gratings recorded in azo-dye-doped liquid crystals,” Appl. Phys. Lett. 88, 251113 (2006).
[CrossRef]

Goto, K.

N. Kawatsuki, K. Goto, T. Kawakami, and T. Yamamoto, “Reversion of alignment direction in the thermally enhanced photoorientation of photocrosslinkable polymer liquid crystal films,” Macromolecules 35, 706-713 (2002).
[CrossRef]

Hasegawa, T.

N. Kawatsuki, T. Hasegawa, H. Ono, and T. Tamoto, “Formation of polarization gratings and surface relief gratings in photocrosslinkable polymer liquid crystals by polarization holography,” Adv. Mater. 15, 991-994 (2003).
[CrossRef]

H. Ono, A. Emoto, F. Takahashi, N. Kawatsuki, and T. Hasegawa, “Highly stable polarization gratings in photocrosslinkable polymer liquid crystals,” J. Appl. Phys. 94, 1298-1303 (2003).
[CrossRef]

Howard, R.

K. Pavani, I. Naydenova, S. Martin, J. Raghavendra, R. Howard, and V. Toal, “Electro-optical switching of liquid crystal diffraction gratings by using surface relief effect in the photopolymer,” Opt. Commun. 273, 367-369 (2007).
[CrossRef]

Jang, E.

E. Jang, H.-R. Kim, Y.-J. Na, and S.-D. Lee, “Multistage optical memory of a liquid crystal diffraction grating in a single beam rewriting scheme,” Appl. Phys. Lett. 91, 071109 (2007).
[CrossRef]

Jung, M.-S.

C.-J. Yu, J.-H. Park, J. Kim, M.-S. Jung, and S.-D. Lee, “Design of binary diffraction gratings of liquid crystals in a linearly graded phase model,” Appl. Opt. 43, 1783-1788 (2004).
[CrossRef] [PubMed]

C.-J. Yu, J.-H. Park, J. Kim, M.-S. Jung, and S.-D. Lee, “Diffraction patterns of binary liquid crystal gratings in homeotropic and hybrid geometries,” Mater. Sci. Eng. C 24, 247-250 (2004).
[CrossRef]

Kaczmarek, M.

Kapoustine, V.

V. Kapoustine, A. Kazakevitch, V. So, and R. Tam, “Simple method of formation of switchable liquid crystal gratings by introducing periodic photoalignment pattern into liquid crystal cell,” Opt. Commun. 266, 1-5 (2006).
[CrossRef]

Kawakami, T.

N. Kawatsuki, K. Goto, T. Kawakami, and T. Yamamoto, “Reversion of alignment direction in the thermally enhanced photoorientation of photocrosslinkable polymer liquid crystal films,” Macromolecules 35, 706-713 (2002).
[CrossRef]

Kawatsuki, N.

H. Ono, S. Oikawa, and N. Kawatsuki, “Effects of anchoring strength on diffraction properties of liquid crystal phase gratings formed on photoalignment polymer films,” J. Appl. Phys. 101, 123523 (2007).
[CrossRef]

T. Sasaki, H. Ono, N. Kawatsuki, and M. Kuwabara, “Diffraction properties of nematic phase gratings with photoregulated liquid crystal cells,” Jpn. J. Appl. Phys. 46, 698-702 (2007).
[CrossRef]

T. Sasaki, H. Ono, N. Kawatsuki, and M. Kuwabara, “Liquid-crystal phase gratings using photoregulated photocrosslinkable polymer liquid crystal,” Appl. Phys. Lett. 87, 161112 (2005).
[CrossRef]

H. Ono, A. Emoto, F. Takahashi, N. Kawatsuki, and T. Hasegawa, “Highly stable polarization gratings in photocrosslinkable polymer liquid crystals,” J. Appl. Phys. 94, 1298-1303 (2003).
[CrossRef]

N. Kawatsuki, T. Hasegawa, H. Ono, and T. Tamoto, “Formation of polarization gratings and surface relief gratings in photocrosslinkable polymer liquid crystals by polarization holography,” Adv. Mater. 15, 991-994 (2003).
[CrossRef]

N. Kawatsuki, N. Furuso, E. Uchida, and T. Yamamoto, “Control of in-plane and out-of-plane reorientation in photo-cross-linkable copolymer liquid crystal films by irradiation with linearly polarized ultraviolet light and annealing,” Macromol. Chem. Phys. 203, 2438-2445 (2002).
[CrossRef]

N. Kawatsuki, K. Goto, T. Kawakami, and T. Yamamoto, “Reversion of alignment direction in the thermally enhanced photoorientation of photocrosslinkable polymer liquid crystal films,” Macromolecules 35, 706-713 (2002).
[CrossRef]

Kazakevitch, A.

V. Kapoustine, A. Kazakevitch, V. So, and R. Tam, “Simple method of formation of switchable liquid crystal gratings by introducing periodic photoalignment pattern into liquid crystal cell,” Opt. Commun. 266, 1-5 (2006).
[CrossRef]

Ke, S.-W.

Kim, D.-W.

Kim, H.-R.

E. Jang, H.-R. Kim, Y.-J. Na, and S.-D. Lee, “Multistage optical memory of a liquid crystal diffraction grating in a single beam rewriting scheme,” Appl. Phys. Lett. 91, 071109 (2007).
[CrossRef]

Kim, J.

C.-J. Yu, D.-W. Kim, J. Kim, and S.-D. Lee, “Polarization-invariant grating based on a photoaligned liquid crystal in an oppositely twisted binary configuration,” Opt. Lett. 30, 1995-1997 (2005).
[CrossRef] [PubMed]

C.-J. Yu, J.-H. Park, J. Kim, M.-S. Jung, and S.-D. Lee, “Diffraction patterns of binary liquid crystal gratings in homeotropic and hybrid geometries,” Mater. Sci. Eng. C 24, 247-250 (2004).
[CrossRef]

C.-J. Yu, J.-H. Park, J. Kim, M.-S. Jung, and S.-D. Lee, “Design of binary diffraction gratings of liquid crystals in a linearly graded phase model,” Appl. Opt. 43, 1783-1788 (2004).
[CrossRef] [PubMed]

J.-H. Park, C.-J. Yu, J. Kim, S.-Y. Chung, and S.-D. Lee, “Concept of a liquid-crystal polarization beam splitter based on binary phase gratings,” Appl. Phys. Lett. 83, 1918-1920 (2003).
[CrossRef]

Komanduri, R. K.

R. K. Komanduri and M. J. Escuti, “Elastic continuum analysis of the liquid crystal polarization grating,” Phys. Rev. E 76, 021701 (2007).
[CrossRef]

Kuwabara, M.

T. Sasaki, H. Ono, N. Kawatsuki, and M. Kuwabara, “Diffraction properties of nematic phase gratings with photoregulated liquid crystal cells,” Jpn. J. Appl. Phys. 46, 698-702 (2007).
[CrossRef]

T. Sasaki, H. Ono, N. Kawatsuki, and M. Kuwabara, “Liquid-crystal phase gratings using photoregulated photocrosslinkable polymer liquid crystal,” Appl. Phys. Lett. 87, 161112 (2005).
[CrossRef]

Lee, C.-R.

K.-C. Lo, J.-D. Wang, C.-R. Lee, and T.-S. Mo, “Electrically controllable and polarization-independent Fresnel zone plate in a circularly symmetric hybrid-aligned liquid crystal film with a photoconductive polymer layer,” Appl. Phys. Lett. 91, 181104 (2007).
[CrossRef]

Lee, S.-D.

E. Jang, H.-R. Kim, Y.-J. Na, and S.-D. Lee, “Multistage optical memory of a liquid crystal diffraction grating in a single beam rewriting scheme,” Appl. Phys. Lett. 91, 071109 (2007).
[CrossRef]

C.-J. Yu, D.-W. Kim, J. Kim, and S.-D. Lee, “Polarization-invariant grating based on a photoaligned liquid crystal in an oppositely twisted binary configuration,” Opt. Lett. 30, 1995-1997 (2005).
[CrossRef] [PubMed]

C.-J. Yu, J.-H. Park, J. Kim, M.-S. Jung, and S.-D. Lee, “Diffraction patterns of binary liquid crystal gratings in homeotropic and hybrid geometries,” Mater. Sci. Eng. C 24, 247-250 (2004).
[CrossRef]

C.-J. Yu, J.-H. Park, J. Kim, M.-S. Jung, and S.-D. Lee, “Design of binary diffraction gratings of liquid crystals in a linearly graded phase model,” Appl. Opt. 43, 1783-1788 (2004).
[CrossRef] [PubMed]

J.-H. Park, C.-J. Yu, J. Kim, S.-Y. Chung, and S.-D. Lee, “Concept of a liquid-crystal polarization beam splitter based on binary phase gratings,” Appl. Phys. Lett. 83, 1918-1920 (2003).
[CrossRef]

Li, M. S.

W. Y. Wu, M. S. Li, H. C. Lin, and A. Y.-G. Fuh, “Two-dimensional holographic polarization grating formed on azo-dye-doped polyvinyl alcohol films,” J. Appl. Phys. 103, 083119 (2008).
[CrossRef]

Lin, H. C.

W. Y. Wu, M. S. Li, H. C. Lin, and A. Y.-G. Fuh, “Two-dimensional holographic polarization grating formed on azo-dye-doped polyvinyl alcohol films,” J. Appl. Phys. 103, 083119 (2008).
[CrossRef]

Lin, T.-H.

Lo, K.-C.

K.-C. Lo, J.-D. Wang, C.-R. Lee, and T.-S. Mo, “Electrically controllable and polarization-independent Fresnel zone plate in a circularly symmetric hybrid-aligned liquid crystal film with a photoconductive polymer layer,” Appl. Phys. Lett. 91, 181104 (2007).
[CrossRef]

Martin, S.

K. Pavani, I. Naydenova, S. Martin, J. Raghavendra, R. Howard, and V. Toal, “Electro-optical switching of liquid crystal diffraction gratings by using surface relief effect in the photopolymer,” Opt. Commun. 273, 367-369 (2007).
[CrossRef]

Mazzulla, A.

L. M. Blinov, G. Cipparrone, A. Mazzulla, C. Provenzano, S. P. Palto, M. I. Barnik, A. V. Arbuzov, and B. A. Umanskii, “Electric field controlled polarization grating based on a hybrid structure 'photosensitive polymer-liquid crysta'l”, Appl. Phys. Lett. 87, 061105 (2005).
[CrossRef]

Mo, T.-S.

K.-C. Lo, J.-D. Wang, C.-R. Lee, and T.-S. Mo, “Electrically controllable and polarization-independent Fresnel zone plate in a circularly symmetric hybrid-aligned liquid crystal film with a photoconductive polymer layer,” Appl. Phys. Lett. 91, 181104 (2007).
[CrossRef]

W.-Y. Wu, T.-S. Mo, and A. Y.-G. Fuh, “Polarization characteristics of diffracted beams from twisted nematic gratings fabricated by the photoalignment effect in dye-doped liquid-crystal films,” J. Opt. Soc. Am. B 23, 1737-1742 (2006).
[CrossRef]

Na, Y.-J.

E. Jang, H.-R. Kim, Y.-J. Na, and S.-D. Lee, “Multistage optical memory of a liquid crystal diffraction grating in a single beam rewriting scheme,” Appl. Phys. Lett. 91, 071109 (2007).
[CrossRef]

Naydenova, I.

K. Pavani, I. Naydenova, S. Martin, J. Raghavendra, R. Howard, and V. Toal, “Electro-optical switching of liquid crystal diffraction gratings by using surface relief effect in the photopolymer,” Opt. Commun. 273, 367-369 (2007).
[CrossRef]

Oikawa, S.

H. Ono, S. Oikawa, and N. Kawatsuki, “Effects of anchoring strength on diffraction properties of liquid crystal phase gratings formed on photoalignment polymer films,” J. Appl. Phys. 101, 123523 (2007).
[CrossRef]

Ono, H.

H. Ono, S. Oikawa, and N. Kawatsuki, “Effects of anchoring strength on diffraction properties of liquid crystal phase gratings formed on photoalignment polymer films,” J. Appl. Phys. 101, 123523 (2007).
[CrossRef]

T. Sasaki, H. Ono, N. Kawatsuki, and M. Kuwabara, “Diffraction properties of nematic phase gratings with photoregulated liquid crystal cells,” Jpn. J. Appl. Phys. 46, 698-702 (2007).
[CrossRef]

T. Sasaki, H. Ono, N. Kawatsuki, and M. Kuwabara, “Liquid-crystal phase gratings using photoregulated photocrosslinkable polymer liquid crystal,” Appl. Phys. Lett. 87, 161112 (2005).
[CrossRef]

H. Ono, A. Emoto, F. Takahashi, N. Kawatsuki, and T. Hasegawa, “Highly stable polarization gratings in photocrosslinkable polymer liquid crystals,” J. Appl. Phys. 94, 1298-1303 (2003).
[CrossRef]

N. Kawatsuki, T. Hasegawa, H. Ono, and T. Tamoto, “Formation of polarization gratings and surface relief gratings in photocrosslinkable polymer liquid crystals by polarization holography,” Adv. Mater. 15, 991-994 (2003).
[CrossRef]

Pagliusi, P.

Palto, S. P.

L. M. Blinov, G. Cipparrone, A. Mazzulla, C. Provenzano, S. P. Palto, M. I. Barnik, A. V. Arbuzov, and B. A. Umanskii, “Electric field controlled polarization grating based on a hybrid structure 'photosensitive polymer-liquid crysta'l”, Appl. Phys. Lett. 87, 061105 (2005).
[CrossRef]

Park, J.-H.

C.-J. Yu, J.-H. Park, J. Kim, M.-S. Jung, and S.-D. Lee, “Design of binary diffraction gratings of liquid crystals in a linearly graded phase model,” Appl. Opt. 43, 1783-1788 (2004).
[CrossRef] [PubMed]

C.-J. Yu, J.-H. Park, J. Kim, M.-S. Jung, and S.-D. Lee, “Diffraction patterns of binary liquid crystal gratings in homeotropic and hybrid geometries,” Mater. Sci. Eng. C 24, 247-250 (2004).
[CrossRef]

J.-H. Park, C.-J. Yu, J. Kim, S.-Y. Chung, and S.-D. Lee, “Concept of a liquid-crystal polarization beam splitter based on binary phase gratings,” Appl. Phys. Lett. 83, 1918-1920 (2003).
[CrossRef]

Pavani, K.

K. Pavani, I. Naydenova, S. Martin, J. Raghavendra, R. Howard, and V. Toal, “Electro-optical switching of liquid crystal diffraction gratings by using surface relief effect in the photopolymer,” Opt. Commun. 273, 367-369 (2007).
[CrossRef]

Pelcovits, R. A.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98, 123102 (2005).
[CrossRef]

J. N. Eakin, Y. Xie, R. A. Pelcovits, M. D. Radcliffe, and G. P. Crawford, “Zero voltage Fréedericksz transition in periodically aligned liquid crystals,” Appl. Phys. Lett. 85, 1671-1673 (2004).
[CrossRef]

Presnyakov, V.

Provenzano, C.

C. Provenzano, P. Pagliusi, and G. Cipparrone, “Electrically tunable two-dimensional liquid crystals gratings induced by polarization holography,” Opt. Express 15, 5872-5878 (2007).
[CrossRef] [PubMed]

L. M. Blinov, G. Cipparrone, A. Mazzulla, C. Provenzano, S. P. Palto, M. I. Barnik, A. V. Arbuzov, and B. A. Umanskii, “Electric field controlled polarization grating based on a hybrid structure 'photosensitive polymer-liquid crysta'l”, Appl. Phys. Lett. 87, 061105 (2005).
[CrossRef]

Radcliffe, M. D.

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98, 123102 (2005).
[CrossRef]

J. N. Eakin, Y. Xie, R. A. Pelcovits, M. D. Radcliffe, and G. P. Crawford, “Zero voltage Fréedericksz transition in periodically aligned liquid crystals,” Appl. Phys. Lett. 85, 1671-1673 (2004).
[CrossRef]

Raghavendra, J.

K. Pavani, I. Naydenova, S. Martin, J. Raghavendra, R. Howard, and V. Toal, “Electro-optical switching of liquid crystal diffraction gratings by using surface relief effect in the photopolymer,” Opt. Commun. 273, 367-369 (2007).
[CrossRef]

Rotar, V.

Sarkissian, H.

Sasaki, T.

T. Sasaki, H. Ono, N. Kawatsuki, and M. Kuwabara, “Diffraction properties of nematic phase gratings with photoregulated liquid crystal cells,” Jpn. J. Appl. Phys. 46, 698-702 (2007).
[CrossRef]

T. Sasaki, H. Ono, N. Kawatsuki, and M. Kuwabara, “Liquid-crystal phase gratings using photoregulated photocrosslinkable polymer liquid crystal,” Appl. Phys. Lett. 87, 161112 (2005).
[CrossRef]

Serak, S. V.

Smith, P. G. R.

Snow, B. D.

So, V.

V. Kapoustine, A. Kazakevitch, V. So, and R. Tam, “Simple method of formation of switchable liquid crystal gratings by introducing periodic photoalignment pattern into liquid crystal cell,” Opt. Commun. 266, 1-5 (2006).
[CrossRef]

Tabiryan, N. V.

Takahashi, F.

H. Ono, A. Emoto, F. Takahashi, N. Kawatsuki, and T. Hasegawa, “Highly stable polarization gratings in photocrosslinkable polymer liquid crystals,” J. Appl. Phys. 94, 1298-1303 (2003).
[CrossRef]

Tam, R.

V. Kapoustine, A. Kazakevitch, V. So, and R. Tam, “Simple method of formation of switchable liquid crystal gratings by introducing periodic photoalignment pattern into liquid crystal cell,” Opt. Commun. 266, 1-5 (2006).
[CrossRef]

Tamoto, T.

N. Kawatsuki, T. Hasegawa, H. Ono, and T. Tamoto, “Formation of polarization gratings and surface relief gratings in photocrosslinkable polymer liquid crystals by polarization holography,” Adv. Mater. 15, 991-994 (2003).
[CrossRef]

Toal, V.

K. Pavani, I. Naydenova, S. Martin, J. Raghavendra, R. Howard, and V. Toal, “Electro-optical switching of liquid crystal diffraction gratings by using surface relief effect in the photopolymer,” Opt. Commun. 273, 367-369 (2007).
[CrossRef]

Uchida, E.

N. Kawatsuki, N. Furuso, E. Uchida, and T. Yamamoto, “Control of in-plane and out-of-plane reorientation in photo-cross-linkable copolymer liquid crystal films by irradiation with linearly polarized ultraviolet light and annealing,” Macromol. Chem. Phys. 203, 2438-2445 (2002).
[CrossRef]

Umanskii, B. A.

L. M. Blinov, G. Cipparrone, A. Mazzulla, C. Provenzano, S. P. Palto, M. I. Barnik, A. V. Arbuzov, and B. A. Umanskii, “Electric field controlled polarization grating based on a hybrid structure 'photosensitive polymer-liquid crysta'l”, Appl. Phys. Lett. 87, 061105 (2005).
[CrossRef]

Wang, J.-D.

K.-C. Lo, J.-D. Wang, C.-R. Lee, and T.-S. Mo, “Electrically controllable and polarization-independent Fresnel zone plate in a circularly symmetric hybrid-aligned liquid crystal film with a photoconductive polymer layer,” Appl. Phys. Lett. 91, 181104 (2007).
[CrossRef]

Wu, W. Y.

W. Y. Wu, M. S. Li, H. C. Lin, and A. Y.-G. Fuh, “Two-dimensional holographic polarization grating formed on azo-dye-doped polyvinyl alcohol films,” J. Appl. Phys. 103, 083119 (2008).
[CrossRef]

Wu, W.-Y.

Xie, Y.

J. N. Eakin, Y. Xie, R. A. Pelcovits, M. D. Radcliffe, and G. P. Crawford, “Zero voltage Fréedericksz transition in periodically aligned liquid crystals,” Appl. Phys. Lett. 85, 1671-1673 (2004).
[CrossRef]

Yamamoto, T.

N. Kawatsuki, N. Furuso, E. Uchida, and T. Yamamoto, “Control of in-plane and out-of-plane reorientation in photo-cross-linkable copolymer liquid crystal films by irradiation with linearly polarized ultraviolet light and annealing,” Macromol. Chem. Phys. 203, 2438-2445 (2002).
[CrossRef]

N. Kawatsuki, K. Goto, T. Kawakami, and T. Yamamoto, “Reversion of alignment direction in the thermally enhanced photoorientation of photocrosslinkable polymer liquid crystal films,” Macromolecules 35, 706-713 (2002).
[CrossRef]

Yu, C.-J.

C.-J. Yu, D.-W. Kim, J. Kim, and S.-D. Lee, “Polarization-invariant grating based on a photoaligned liquid crystal in an oppositely twisted binary configuration,” Opt. Lett. 30, 1995-1997 (2005).
[CrossRef] [PubMed]

C.-J. Yu, J.-H. Park, J. Kim, M.-S. Jung, and S.-D. Lee, “Diffraction patterns of binary liquid crystal gratings in homeotropic and hybrid geometries,” Mater. Sci. Eng. C 24, 247-250 (2004).
[CrossRef]

C.-J. Yu, J.-H. Park, J. Kim, M.-S. Jung, and S.-D. Lee, “Design of binary diffraction gratings of liquid crystals in a linearly graded phase model,” Appl. Opt. 43, 1783-1788 (2004).
[CrossRef] [PubMed]

J.-H. Park, C.-J. Yu, J. Kim, S.-Y. Chung, and S.-D. Lee, “Concept of a liquid-crystal polarization beam splitter based on binary phase gratings,” Appl. Phys. Lett. 83, 1918-1920 (2003).
[CrossRef]

Zeldovich, B. Y.

Adv. Mater. (1)

N. Kawatsuki, T. Hasegawa, H. Ono, and T. Tamoto, “Formation of polarization gratings and surface relief gratings in photocrosslinkable polymer liquid crystals by polarization holography,” Adv. Mater. 15, 991-994 (2003).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (7)

K.-C. Lo, J.-D. Wang, C.-R. Lee, and T.-S. Mo, “Electrically controllable and polarization-independent Fresnel zone plate in a circularly symmetric hybrid-aligned liquid crystal film with a photoconductive polymer layer,” Appl. Phys. Lett. 91, 181104 (2007).
[CrossRef]

T. Sasaki, H. Ono, N. Kawatsuki, and M. Kuwabara, “Liquid-crystal phase gratings using photoregulated photocrosslinkable polymer liquid crystal,” Appl. Phys. Lett. 87, 161112 (2005).
[CrossRef]

J.-H. Park, C.-J. Yu, J. Kim, S.-Y. Chung, and S.-D. Lee, “Concept of a liquid-crystal polarization beam splitter based on binary phase gratings,” Appl. Phys. Lett. 83, 1918-1920 (2003).
[CrossRef]

J. N. Eakin, Y. Xie, R. A. Pelcovits, M. D. Radcliffe, and G. P. Crawford, “Zero voltage Fréedericksz transition in periodically aligned liquid crystals,” Appl. Phys. Lett. 85, 1671-1673 (2004).
[CrossRef]

S. P. Gorkhali, S. G. Cloutier, and G. P. Crawford, “Stable polarization gratings recorded in azo-dye-doped liquid crystals,” Appl. Phys. Lett. 88, 251113 (2006).
[CrossRef]

L. M. Blinov, G. Cipparrone, A. Mazzulla, C. Provenzano, S. P. Palto, M. I. Barnik, A. V. Arbuzov, and B. A. Umanskii, “Electric field controlled polarization grating based on a hybrid structure 'photosensitive polymer-liquid crysta'l”, Appl. Phys. Lett. 87, 061105 (2005).
[CrossRef]

E. Jang, H.-R. Kim, Y.-J. Na, and S.-D. Lee, “Multistage optical memory of a liquid crystal diffraction grating in a single beam rewriting scheme,” Appl. Phys. Lett. 91, 071109 (2007).
[CrossRef]

J. Appl. Phys. (4)

G. P. Crawford, J. N. Eakin, M. D. Radcliffe, A. Callan-Jones, and R. A. Pelcovits, “Liquid-crystal diffraction gratings using polarization holography alignment techniques,” J. Appl. Phys. 98, 123102 (2005).
[CrossRef]

H. Ono, S. Oikawa, and N. Kawatsuki, “Effects of anchoring strength on diffraction properties of liquid crystal phase gratings formed on photoalignment polymer films,” J. Appl. Phys. 101, 123523 (2007).
[CrossRef]

W. Y. Wu, M. S. Li, H. C. Lin, and A. Y.-G. Fuh, “Two-dimensional holographic polarization grating formed on azo-dye-doped polyvinyl alcohol films,” J. Appl. Phys. 103, 083119 (2008).
[CrossRef]

H. Ono, A. Emoto, F. Takahashi, N. Kawatsuki, and T. Hasegawa, “Highly stable polarization gratings in photocrosslinkable polymer liquid crystals,” J. Appl. Phys. 94, 1298-1303 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

T. Sasaki, H. Ono, N. Kawatsuki, and M. Kuwabara, “Diffraction properties of nematic phase gratings with photoregulated liquid crystal cells,” Jpn. J. Appl. Phys. 46, 698-702 (2007).
[CrossRef]

Macromol. Chem. Phys. (1)

N. Kawatsuki, N. Furuso, E. Uchida, and T. Yamamoto, “Control of in-plane and out-of-plane reorientation in photo-cross-linkable copolymer liquid crystal films by irradiation with linearly polarized ultraviolet light and annealing,” Macromol. Chem. Phys. 203, 2438-2445 (2002).
[CrossRef]

Macromolecules (1)

N. Kawatsuki, K. Goto, T. Kawakami, and T. Yamamoto, “Reversion of alignment direction in the thermally enhanced photoorientation of photocrosslinkable polymer liquid crystal films,” Macromolecules 35, 706-713 (2002).
[CrossRef]

Mater. Sci. Eng. C (1)

C.-J. Yu, J.-H. Park, J. Kim, M.-S. Jung, and S.-D. Lee, “Diffraction patterns of binary liquid crystal gratings in homeotropic and hybrid geometries,” Mater. Sci. Eng. C 24, 247-250 (2004).
[CrossRef]

Opt. Commun. (2)

K. Pavani, I. Naydenova, S. Martin, J. Raghavendra, R. Howard, and V. Toal, “Electro-optical switching of liquid crystal diffraction gratings by using surface relief effect in the photopolymer,” Opt. Commun. 273, 367-369 (2007).
[CrossRef]

V. Kapoustine, A. Kazakevitch, V. So, and R. Tam, “Simple method of formation of switchable liquid crystal gratings by introducing periodic photoalignment pattern into liquid crystal cell,” Opt. Commun. 266, 1-5 (2006).
[CrossRef]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. E (1)

R. K. Komanduri and M. J. Escuti, “Elastic continuum analysis of the liquid crystal polarization grating,” Phys. Rev. E 76, 021701 (2007).
[CrossRef]

Other (1)

S. Chandrasekhar, Liquid Crystals (Cambridge U. Press, 1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Experimental setup for preparing the planar periodic modulated substrates, which are written using two orthogonal circular polarized UV beams. (b) Schematic illustration showing the LC grating cells by a pair of planer-periodic modulated substrates. The grating vectors (Κ) cross each other at crossing angles of θ.

Fig. 2
Fig. 2

Polarizing optical microscopy (POM) images for crossed LC gratings using PCLC [(a)–(c)] and PVCi [(d)–(f)] photo-alignment layers on varying the crossing angles ( θ ) ; (a) and (d), 90 ° ; (b) and (e), 60 ° ; (c) and (f); 30 ° .

Fig. 3
Fig. 3

Diffraction images for crossed LC gratings using PCLC [(a)–(c)] and PVCi [(d)–(f)] photo-alignment layers on varying the crossing angles ( θ ) ; (a) and (d), 90 ° ; (b) and (e), 60 ° ; (c) and (f), 30 ° .

Fig. 4
Fig. 4

Schematic view of (a) one periodic region for the crossed LC grating cell and (b) rotated axis for the periodic boundary condition in order to define the elements in the finite element calculation.

Fig. 5
Fig. 5

Three-dimensional spatial distribution of LC directors calculated using the elastic continuum theory. The crossing angle is set to be (a) 90°, (b) 60°, and (c) 30 ° .

Fig. 6
Fig. 6

Comparison of theoretical (left-hand side pictures) with experimental (right-hand side pictures) POM images. The crossing angle is set to be (a) 90°, (b) 60°, and (c) 30 ° .

Fig. 7
Fig. 7

Polar plots for the diffracted beams from LC grating cells with crossing angles of (a) 90°, (b) 60°, and (c) 30 ° . The polarization state of the probe beam was set to be s-linearly (SLP) or right-hand side circularly (RCP) polarized. Thick and fine curves represent the experimental data and theoretical calculations, respectively.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

f elas = 1 2 K 11 ( n ) 2 + 1 2 K 22 ( n ( × n ) ) 2 + 1 2 K 33 ( n × ( × n ) ) 2 ,
n = ( cos φ , sin φ , 0 ) ,
f elas = 1 2 ( K 11 sin 2 φ + K 33 cos 2 φ ) ( φ x ) 2 + 1 2 K 22 ( φ z ) 2 .
F = f elas d x d z .
F φ = 0 .
W m ( x ) = R ( θ m ) ( exp ( i π d m Δ n λ ) 0 0 exp ( i π d m Δ n λ ) ) R ( θ m ) ,
R ( θ m ) = ( cos θ m sin θ m sin θ m cos θ m ) .
J ( x ) = m = 1 M W m .
E out = J E in ( E x E y ) .
u x ( x ) = E x exp ( i 2 π z 0 λ ) exp ( i 2 π λ z 0 x x 0 ) d x 0 ,
u y ( x ) = E y exp ( i 2 π z 0 λ ) exp ( i 2 π λ z 0 x x 0 ) d x 0 ,

Metrics