Abstract

Electromagnetic beams are subject to spatial spreading as they propagate. I have investigated the light propagation passing through a finite-aperture, which is obtained by two-dimensional square-lattice photonic crystals (PCs). It is found that the beam that is coupled to the free-space by exiting the axicon-shape PC resists considerably against the diffraction. The inspection of the beam profile in the transverse to the propagation direction reveals the appearance of the side-lobes, and I have attributed the limited-diffraction beam propagation to these artificially created lobes. I optimize the length of the aperture while keeping the width constant and show that an order of magnitude improvement for beating the diffraction length is achievable. The advantages of the presented PC-based axicon over the bulk refractive axicons are the compactness and integrated nature of the former one, in addition to the flexibility of engineering individual unit cells of PC structure.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription