Abstract

We propose and investigate ultrafast logic AND gate for carrier-suppressed return-to-zero (CSRZ) signals by exploiting two kinds of cascaded second-order nonlinearities in a periodically poled lithium niobate (PPLN) waveguide. The analytical solutions are derived under the nondepletion approximation clearly describing the principle of operation. First, based on cascaded second-harmonic generation and difference-frequency generation (cSHG/DFG) in a PPLN, an all-optical 40Gbits CSRZ logic AND gate is successfully implemented in the experiment and verified by numerical simulations. It is found that the converted idler, taking the AND result, keeps the CSRZ modulation format unchanged. Second, by using cascaded sum- and difference-frequency generation (cSFG/DFG) in a PPLN, we report simultaneous CSRZ logic AND operation and format conversion from CSRZ to return-to-zero (RZ). Single PPLN-based all-optical 40Gbits tunable (fixed-in variable-out) and flexible (variable-in variable-out) simultaneous CSRZ logic AND gate and CSRZ-to-RZ format conversion are successfully demonstrated in the experiment and confirmed via theoretical analyses. The obtained simulation and theoretical results, including optical spectra, temporal waveforms, eye diagrams, and phase diagrams, conform to the experimental results, thereby indicating the successful implementation of PPLN-based all-optical logic AND gate for CSRZ signals.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523-1528 (1999).
    [CrossRef] [PubMed]
  2. M. Saruwatari, “All-optical signal processing for terabit/second optical transmission,” IEEE J. Sel. Top. Quantum Electron. 6, 1363-1374 (2000).
    [CrossRef]
  3. K. Vlachos, N. Pleros, C. Bintjas, G. Theophilopoulos, and H. Avramopoulos, “Ultrafast time-domain technology and its application in all-optical signal processing,” J. Lightwave Technol. 21, 1857-1868 (2003).
    [CrossRef]
  4. J. Y. Kim, J. M. Kang, T. Y. Kim, and S. K. Han, “All-optical multiple logic gates with XOR, NOR, OR, and NAND functions using parallel SOA-MZI structures: theory and experiment,” J. Lightwave Technol. 24, 3392-3399 (2006).
    [CrossRef]
  5. K. Mishina, S. M. Nissanka, A. Maruta, S. Mitani, K. Ishida, K. Shimizu, T. Hatta, and K. Kitayama, “All-optical modulation format conversion from NRZ-OOK to RZ-QPSK using parallel SOA-MZI OOK/BPSK converters,” Opt. Express 15, 7774-7785 (2007).
    [CrossRef] [PubMed]
  6. D. M. F. Lai, C. H. Kwok, and K. K. Y. Wong, “All-optical picoseconds logic gates based on a fiber optical parametric amplifier,” Opt. Express 16, 18362-18370 (2008).
    [CrossRef] [PubMed]
  7. H. N. Tan, M. Matsuura, and N. Kishi, “Transmission performance of a wavelength and NRZ-to-RZ format conversion with pulsewidth tunability by combination of SOA- and fiber-based switches,” Opt. Express 16, 19063-19071 (2008).
    [CrossRef]
  8. C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightwave Technol. 24, 2579-2592 (2006).
    [CrossRef]
  9. M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photonics Technol. Lett. 11, 653-655 (1999).
    [CrossRef]
  10. Y. H. Min, J. H. Lee, Y. L. Lee, W. Grundköter, V. Quiring, and W. Sohler, “Tunable all-optical control of wavelength conversion of 5-ps pulses by cascaded sum- and difference frequency generation (cSFG/DFG) in a Ti:PPLN waveguide,” in Optical Fiber Communications Conference (OFC '03), Technical Digest (Optical Society of America, 2003), paper FP4.
  11. J. Wang, J. Sun, C. Luo, and Q. Sun, “Experimental demonstration of wavelength conversion between ps-pulses based on cascaded sum- and difference frequency generation (SFG+DFG) in LiNbO3 waveguides,” Opt. Express 13, 7405-7414 (2005).
    [CrossRef] [PubMed]
  12. J. Wang, J. Sun, J. R. Kurz, and M. M. Fejer, “Tunable wavelength conversion of ps-pulses exploiting cascaded sum- and difference frequency generation in a PPLN-fiber ring laser,” IEEE Photonics Technol. Lett. 18, 2093-2095 (2006).
    [CrossRef]
  13. H. Furukawa, A. Nirmalathas, N. Wada, S. Shinada, H. Tsuboya, and T. Miyazaki, “Tunable all-optical wavelength conversion of 160-Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photonics Technol. Lett. 19, 384-386 (2007).
    [CrossRef]
  14. Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photonics Technol. Lett. 19, 861-863 (2007).
    [CrossRef]
  15. X. Wu, L. Christen, O. F. Yilmaz, S. R. Nuccio, and A. E. Willner, “Optical 10-20 and 20-40 Gbit/s pseudorandom bit sequence data multiplexing utilizing conversion-dispersion-based tunable optical delays,” Opt. Lett. 33, 1518-1520 (2008).
    [CrossRef] [PubMed]
  16. J. Wang, J. Sun, and Q. Sun, “Experimental observation of a 1.5 μm band wavelength conversion and logic NOT gate at 40 Gbit/s based on sum-frequency generation,” Opt. Lett. 31, 1711-1713 (2006).
    [CrossRef] [PubMed]
  17. J. Wang, J. Sun, Q. Sun, D. Wang, X. Zhang, D. Huang, and M. M. Fejer, “PPLN-based flexible optical logic AND gate,” IEEE Photonics Technol. Lett. 20, 211-213 (2008).
    [CrossRef]
  18. J. Wang, J. Sun, and Q. Sun, “Single-PPLN-based simultaneous half-adder, half-subtracter, and OR logic gate: proposal and simulation,” Opt. Express 15, 1690-1699 (2007).
    [CrossRef] [PubMed]
  19. J. Wang, J. Q. Sun, X. L. Zhang, D. X. Huang, and M. M. Fejer, “Ultrafast all-optical three-input Boolean XOR operation for differential phase-shift keying signals using periodically poled lithium niobate,” Opt. Lett. 33, 1419-1421 (2008).
    [CrossRef] [PubMed]
  20. Y. L. Lee, B.-A. Yu, T. J. Eom, W. Shin, C. Jung, Y.-C. Noh, J. Lee, D.-K. Ko, and K. Oh, “All-optical AND and NAND gates based on cascaded second-order nonlinear processes in a Ti-diffused periodically poled LiNbO3 waveguide,” Opt. Express 14, 2776-2782 (2006).
    [CrossRef] [PubMed]
  21. S. Kumar, A. E. Willner, D. Gurkan, K. Parameswaran, and M. M. Fejer, “All-optical half adder using an SOA and a PPLN waveguide for signal processing in optical networks,” Opt. Express 14, 10255-10260 (2006).
    [CrossRef] [PubMed]
  22. J. E. McGeehan, S. Kumar, and A. E. Willner, “Simultaneous optical digital half-subtraction and -addition using SOAs and a PPLN waveguide,” Opt. Express 15, 5543-5549 (2007).
    [CrossRef] [PubMed]
  23. J. E. McGeehan, M. Giltrelli, and A. E. Willner, “All-optical digital 3-input AND gate using sum- and difference-frequency generation in a PPLN waveguide,” Electron. Lett. 43, 409-410 (2007).
    [CrossRef]
  24. J. Wang, J. Sun, Q. Sun, D. Wang, and D. Huang, “Proposal and simulation of all-optical NRZ-to-RZ format conversion using cascaded sum- and difference-frequency generation,” Opt. Express 15, 583-588 (2007).
    [CrossRef] [PubMed]
  25. J. Wang, J. Sun, and Q. Sun, “Proposal for all-optical format conversion based on a periodically poled lithium niobate loop mirror,” Opt. Lett. 32, 1477-1479 (2007).
    [CrossRef] [PubMed]
  26. J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, “All-optical format conversion using a periodically poled lithium niobate waveguide and a reflective semiconductor optical amplifier,” Appl. Phys. Lett. 91, 051107 (2007).
    [CrossRef]
  27. J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, “Experimental observation of all-optical non-return-to-zero-to-return-to-zero format conversion based on cascaded second-order nonlinearity assisted by active mode-locking,” Opt. Lett. 32, 2462-2464 (2007).
    [CrossRef] [PubMed]
  28. J. Wang, J. Sun, X. Zhang, D. Huang, and M. M. Fejer, “Optical phase erasure and its application to format conversion through cascaded second-order processes in periodically poled lithium niobate,” Opt. Lett. 33, 1804-1806 (2008).
    [CrossRef] [PubMed]
  29. H. Sotobayashi, W. Chujo, A. Konishi, and T. Ozeki, “Wavelength-band generation and transmission of 3.24-Tbit/s (81-channel WDM×40-Gbit/s) carrier-suppressed return-to-zero format by use of a single supercontinuum source for frequency standardization,” J. Opt. Soc. Am. B 19, 2803-2809 (2002).
    [CrossRef]
  30. A. Chowdhury, G. Raybon, and R.-J. Essiambre, “Optical phase conjugation for intra-channel nonlinearity compensation in 40 Gbit/s CSRZ pseudo-linear systems,” Electron. Lett. 40, 1442-1443 (2004).
    [CrossRef]
  31. A. Chowdhury, G. Raybon, R.-J. Essiambre, and C. R. Doerr, “WDM CSRZ 40 Gbit/s pseudo-linear transmission over 4800 km using optical phase conjugation,” Electron. Lett. 41, 151-152 (2005).
    [CrossRef]
  32. T. Silveira, A. Ferreira, A. Teixeira, and P. Monteiro, “40-Gb/s multichannel NRZ to CSRZ format conversion using an SOA,” IEEE Photonics Technol. Lett. 20, 1597-1599 (2008).
    [CrossRef]
  33. P. J. Winzer and R.-J. Essiambre, “Advanced modulation formats for high-capacity optical transport networks,” J. Lightwave Technol. 24, 4711-4728 (2006).
    [CrossRef]

2008 (7)

D. M. F. Lai, C. H. Kwok, and K. K. Y. Wong, “All-optical picoseconds logic gates based on a fiber optical parametric amplifier,” Opt. Express 16, 18362-18370 (2008).
[CrossRef] [PubMed]

H. N. Tan, M. Matsuura, and N. Kishi, “Transmission performance of a wavelength and NRZ-to-RZ format conversion with pulsewidth tunability by combination of SOA- and fiber-based switches,” Opt. Express 16, 19063-19071 (2008).
[CrossRef]

X. Wu, L. Christen, O. F. Yilmaz, S. R. Nuccio, and A. E. Willner, “Optical 10-20 and 20-40 Gbit/s pseudorandom bit sequence data multiplexing utilizing conversion-dispersion-based tunable optical delays,” Opt. Lett. 33, 1518-1520 (2008).
[CrossRef] [PubMed]

J. Wang, J. Sun, Q. Sun, D. Wang, X. Zhang, D. Huang, and M. M. Fejer, “PPLN-based flexible optical logic AND gate,” IEEE Photonics Technol. Lett. 20, 211-213 (2008).
[CrossRef]

J. Wang, J. Q. Sun, X. L. Zhang, D. X. Huang, and M. M. Fejer, “Ultrafast all-optical three-input Boolean XOR operation for differential phase-shift keying signals using periodically poled lithium niobate,” Opt. Lett. 33, 1419-1421 (2008).
[CrossRef] [PubMed]

J. Wang, J. Sun, X. Zhang, D. Huang, and M. M. Fejer, “Optical phase erasure and its application to format conversion through cascaded second-order processes in periodically poled lithium niobate,” Opt. Lett. 33, 1804-1806 (2008).
[CrossRef] [PubMed]

T. Silveira, A. Ferreira, A. Teixeira, and P. Monteiro, “40-Gb/s multichannel NRZ to CSRZ format conversion using an SOA,” IEEE Photonics Technol. Lett. 20, 1597-1599 (2008).
[CrossRef]

2007 (10)

J. E. McGeehan, S. Kumar, and A. E. Willner, “Simultaneous optical digital half-subtraction and -addition using SOAs and a PPLN waveguide,” Opt. Express 15, 5543-5549 (2007).
[CrossRef] [PubMed]

J. E. McGeehan, M. Giltrelli, and A. E. Willner, “All-optical digital 3-input AND gate using sum- and difference-frequency generation in a PPLN waveguide,” Electron. Lett. 43, 409-410 (2007).
[CrossRef]

J. Wang, J. Sun, Q. Sun, D. Wang, and D. Huang, “Proposal and simulation of all-optical NRZ-to-RZ format conversion using cascaded sum- and difference-frequency generation,” Opt. Express 15, 583-588 (2007).
[CrossRef] [PubMed]

J. Wang, J. Sun, and Q. Sun, “Proposal for all-optical format conversion based on a periodically poled lithium niobate loop mirror,” Opt. Lett. 32, 1477-1479 (2007).
[CrossRef] [PubMed]

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, “All-optical format conversion using a periodically poled lithium niobate waveguide and a reflective semiconductor optical amplifier,” Appl. Phys. Lett. 91, 051107 (2007).
[CrossRef]

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, “Experimental observation of all-optical non-return-to-zero-to-return-to-zero format conversion based on cascaded second-order nonlinearity assisted by active mode-locking,” Opt. Lett. 32, 2462-2464 (2007).
[CrossRef] [PubMed]

J. Wang, J. Sun, and Q. Sun, “Single-PPLN-based simultaneous half-adder, half-subtracter, and OR logic gate: proposal and simulation,” Opt. Express 15, 1690-1699 (2007).
[CrossRef] [PubMed]

K. Mishina, S. M. Nissanka, A. Maruta, S. Mitani, K. Ishida, K. Shimizu, T. Hatta, and K. Kitayama, “All-optical modulation format conversion from NRZ-OOK to RZ-QPSK using parallel SOA-MZI OOK/BPSK converters,” Opt. Express 15, 7774-7785 (2007).
[CrossRef] [PubMed]

H. Furukawa, A. Nirmalathas, N. Wada, S. Shinada, H. Tsuboya, and T. Miyazaki, “Tunable all-optical wavelength conversion of 160-Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photonics Technol. Lett. 19, 384-386 (2007).
[CrossRef]

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photonics Technol. Lett. 19, 861-863 (2007).
[CrossRef]

2006 (7)

J. Wang, J. Sun, and Q. Sun, “Experimental observation of a 1.5 μm band wavelength conversion and logic NOT gate at 40 Gbit/s based on sum-frequency generation,” Opt. Lett. 31, 1711-1713 (2006).
[CrossRef] [PubMed]

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightwave Technol. 24, 2579-2592 (2006).
[CrossRef]

J. Y. Kim, J. M. Kang, T. Y. Kim, and S. K. Han, “All-optical multiple logic gates with XOR, NOR, OR, and NAND functions using parallel SOA-MZI structures: theory and experiment,” J. Lightwave Technol. 24, 3392-3399 (2006).
[CrossRef]

Y. L. Lee, B.-A. Yu, T. J. Eom, W. Shin, C. Jung, Y.-C. Noh, J. Lee, D.-K. Ko, and K. Oh, “All-optical AND and NAND gates based on cascaded second-order nonlinear processes in a Ti-diffused periodically poled LiNbO3 waveguide,” Opt. Express 14, 2776-2782 (2006).
[CrossRef] [PubMed]

S. Kumar, A. E. Willner, D. Gurkan, K. Parameswaran, and M. M. Fejer, “All-optical half adder using an SOA and a PPLN waveguide for signal processing in optical networks,” Opt. Express 14, 10255-10260 (2006).
[CrossRef] [PubMed]

P. J. Winzer and R.-J. Essiambre, “Advanced modulation formats for high-capacity optical transport networks,” J. Lightwave Technol. 24, 4711-4728 (2006).
[CrossRef]

J. Wang, J. Sun, J. R. Kurz, and M. M. Fejer, “Tunable wavelength conversion of ps-pulses exploiting cascaded sum- and difference frequency generation in a PPLN-fiber ring laser,” IEEE Photonics Technol. Lett. 18, 2093-2095 (2006).
[CrossRef]

2005 (2)

A. Chowdhury, G. Raybon, R.-J. Essiambre, and C. R. Doerr, “WDM CSRZ 40 Gbit/s pseudo-linear transmission over 4800 km using optical phase conjugation,” Electron. Lett. 41, 151-152 (2005).
[CrossRef]

J. Wang, J. Sun, C. Luo, and Q. Sun, “Experimental demonstration of wavelength conversion between ps-pulses based on cascaded sum- and difference frequency generation (SFG+DFG) in LiNbO3 waveguides,” Opt. Express 13, 7405-7414 (2005).
[CrossRef] [PubMed]

2004 (1)

A. Chowdhury, G. Raybon, and R.-J. Essiambre, “Optical phase conjugation for intra-channel nonlinearity compensation in 40 Gbit/s CSRZ pseudo-linear systems,” Electron. Lett. 40, 1442-1443 (2004).
[CrossRef]

2003 (1)

2002 (1)

2000 (1)

M. Saruwatari, “All-optical signal processing for terabit/second optical transmission,” IEEE J. Sel. Top. Quantum Electron. 6, 1363-1374 (2000).
[CrossRef]

1999 (2)

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523-1528 (1999).
[CrossRef] [PubMed]

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photonics Technol. Lett. 11, 653-655 (1999).
[CrossRef]

Avramopoulos, H.

Bintjas, C.

Blow, K. J.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523-1528 (1999).
[CrossRef] [PubMed]

Brener, I.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photonics Technol. Lett. 11, 653-655 (1999).
[CrossRef]

Chaban, E. E.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photonics Technol. Lett. 11, 653-655 (1999).
[CrossRef]

Chou, M. H.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photonics Technol. Lett. 11, 653-655 (1999).
[CrossRef]

Chowdhury, A.

A. Chowdhury, G. Raybon, R.-J. Essiambre, and C. R. Doerr, “WDM CSRZ 40 Gbit/s pseudo-linear transmission over 4800 km using optical phase conjugation,” Electron. Lett. 41, 151-152 (2005).
[CrossRef]

A. Chowdhury, G. Raybon, and R.-J. Essiambre, “Optical phase conjugation for intra-channel nonlinearity compensation in 40 Gbit/s CSRZ pseudo-linear systems,” Electron. Lett. 40, 1442-1443 (2004).
[CrossRef]

Christen, L.

Christman, S. B.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photonics Technol. Lett. 11, 653-655 (1999).
[CrossRef]

Chujo, W.

Cotter, D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523-1528 (1999).
[CrossRef] [PubMed]

Doerr, C. R.

A. Chowdhury, G. Raybon, R.-J. Essiambre, and C. R. Doerr, “WDM CSRZ 40 Gbit/s pseudo-linear transmission over 4800 km using optical phase conjugation,” Electron. Lett. 41, 151-152 (2005).
[CrossRef]

Ellis, A. D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523-1528 (1999).
[CrossRef] [PubMed]

Eom, T. J.

Essiambre, R.-J.

P. J. Winzer and R.-J. Essiambre, “Advanced modulation formats for high-capacity optical transport networks,” J. Lightwave Technol. 24, 4711-4728 (2006).
[CrossRef]

A. Chowdhury, G. Raybon, R.-J. Essiambre, and C. R. Doerr, “WDM CSRZ 40 Gbit/s pseudo-linear transmission over 4800 km using optical phase conjugation,” Electron. Lett. 41, 151-152 (2005).
[CrossRef]

A. Chowdhury, G. Raybon, and R.-J. Essiambre, “Optical phase conjugation for intra-channel nonlinearity compensation in 40 Gbit/s CSRZ pseudo-linear systems,” Electron. Lett. 40, 1442-1443 (2004).
[CrossRef]

Fejer, M. M.

J. Wang, J. Sun, Q. Sun, D. Wang, X. Zhang, D. Huang, and M. M. Fejer, “PPLN-based flexible optical logic AND gate,” IEEE Photonics Technol. Lett. 20, 211-213 (2008).
[CrossRef]

J. Wang, J. Q. Sun, X. L. Zhang, D. X. Huang, and M. M. Fejer, “Ultrafast all-optical three-input Boolean XOR operation for differential phase-shift keying signals using periodically poled lithium niobate,” Opt. Lett. 33, 1419-1421 (2008).
[CrossRef] [PubMed]

J. Wang, J. Sun, X. Zhang, D. Huang, and M. M. Fejer, “Optical phase erasure and its application to format conversion through cascaded second-order processes in periodically poled lithium niobate,” Opt. Lett. 33, 1804-1806 (2008).
[CrossRef] [PubMed]

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, “Experimental observation of all-optical non-return-to-zero-to-return-to-zero format conversion based on cascaded second-order nonlinearity assisted by active mode-locking,” Opt. Lett. 32, 2462-2464 (2007).
[CrossRef] [PubMed]

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, “All-optical format conversion using a periodically poled lithium niobate waveguide and a reflective semiconductor optical amplifier,” Appl. Phys. Lett. 91, 051107 (2007).
[CrossRef]

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photonics Technol. Lett. 19, 861-863 (2007).
[CrossRef]

J. Wang, J. Sun, J. R. Kurz, and M. M. Fejer, “Tunable wavelength conversion of ps-pulses exploiting cascaded sum- and difference frequency generation in a PPLN-fiber ring laser,” IEEE Photonics Technol. Lett. 18, 2093-2095 (2006).
[CrossRef]

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightwave Technol. 24, 2579-2592 (2006).
[CrossRef]

S. Kumar, A. E. Willner, D. Gurkan, K. Parameswaran, and M. M. Fejer, “All-optical half adder using an SOA and a PPLN waveguide for signal processing in optical networks,” Opt. Express 14, 10255-10260 (2006).
[CrossRef] [PubMed]

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photonics Technol. Lett. 11, 653-655 (1999).
[CrossRef]

Ferreira, A.

T. Silveira, A. Ferreira, A. Teixeira, and P. Monteiro, “40-Gb/s multichannel NRZ to CSRZ format conversion using an SOA,” IEEE Photonics Technol. Lett. 20, 1597-1599 (2008).
[CrossRef]

Furukawa, H.

H. Furukawa, A. Nirmalathas, N. Wada, S. Shinada, H. Tsuboya, and T. Miyazaki, “Tunable all-optical wavelength conversion of 160-Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photonics Technol. Lett. 19, 384-386 (2007).
[CrossRef]

Gaeta, A. L.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photonics Technol. Lett. 19, 861-863 (2007).
[CrossRef]

Giltrelli, M.

J. E. McGeehan, M. Giltrelli, and A. E. Willner, “All-optical digital 3-input AND gate using sum- and difference-frequency generation in a PPLN waveguide,” Electron. Lett. 43, 409-410 (2007).
[CrossRef]

Grundköter, W.

Y. H. Min, J. H. Lee, Y. L. Lee, W. Grundköter, V. Quiring, and W. Sohler, “Tunable all-optical control of wavelength conversion of 5-ps pulses by cascaded sum- and difference frequency generation (cSFG/DFG) in a Ti:PPLN waveguide,” in Optical Fiber Communications Conference (OFC '03), Technical Digest (Optical Society of America, 2003), paper FP4.

Gurkan, D.

Han, S. K.

Hatta, T.

Huang, D.

Huang, D. X.

Ishida, K.

Jung, C.

Kang, J. M.

Kelly, A. E.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523-1528 (1999).
[CrossRef] [PubMed]

Kim, J. Y.

Kim, T. Y.

Kishi, N.

Kitayama, K.

Ko, D.-K.

Konishi, A.

Kumar, S.

Kurz, J. R.

J. Wang, J. Sun, J. R. Kurz, and M. M. Fejer, “Tunable wavelength conversion of ps-pulses exploiting cascaded sum- and difference frequency generation in a PPLN-fiber ring laser,” IEEE Photonics Technol. Lett. 18, 2093-2095 (2006).
[CrossRef]

Kwok, C. H.

Lai, D. M. F.

Langrock, C.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photonics Technol. Lett. 19, 861-863 (2007).
[CrossRef]

C. Langrock, S. Kumar, J. E. McGeehan, A. E. Willner, and M. M. Fejer, “All-optical signal processing using χ(2) nonlinearities in guided-wave devices,” J. Lightwave Technol. 24, 2579-2592 (2006).
[CrossRef]

Lee, J.

Lee, J. H.

Y. H. Min, J. H. Lee, Y. L. Lee, W. Grundköter, V. Quiring, and W. Sohler, “Tunable all-optical control of wavelength conversion of 5-ps pulses by cascaded sum- and difference frequency generation (cSFG/DFG) in a Ti:PPLN waveguide,” in Optical Fiber Communications Conference (OFC '03), Technical Digest (Optical Society of America, 2003), paper FP4.

Lee, Y. L.

Y. L. Lee, B.-A. Yu, T. J. Eom, W. Shin, C. Jung, Y.-C. Noh, J. Lee, D.-K. Ko, and K. Oh, “All-optical AND and NAND gates based on cascaded second-order nonlinear processes in a Ti-diffused periodically poled LiNbO3 waveguide,” Opt. Express 14, 2776-2782 (2006).
[CrossRef] [PubMed]

Y. H. Min, J. H. Lee, Y. L. Lee, W. Grundköter, V. Quiring, and W. Sohler, “Tunable all-optical control of wavelength conversion of 5-ps pulses by cascaded sum- and difference frequency generation (cSFG/DFG) in a Ti:PPLN waveguide,” in Optical Fiber Communications Conference (OFC '03), Technical Digest (Optical Society of America, 2003), paper FP4.

Luo, C.

Manning, R. J.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523-1528 (1999).
[CrossRef] [PubMed]

Maruta, A.

Matsuura, M.

McGeehan, J. E.

Min, Y. H.

Y. H. Min, J. H. Lee, Y. L. Lee, W. Grundköter, V. Quiring, and W. Sohler, “Tunable all-optical control of wavelength conversion of 5-ps pulses by cascaded sum- and difference frequency generation (cSFG/DFG) in a Ti:PPLN waveguide,” in Optical Fiber Communications Conference (OFC '03), Technical Digest (Optical Society of America, 2003), paper FP4.

Mishina, K.

Mitani, S.

Miyazaki, T.

H. Furukawa, A. Nirmalathas, N. Wada, S. Shinada, H. Tsuboya, and T. Miyazaki, “Tunable all-optical wavelength conversion of 160-Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photonics Technol. Lett. 19, 384-386 (2007).
[CrossRef]

Monteiro, P.

T. Silveira, A. Ferreira, A. Teixeira, and P. Monteiro, “40-Gb/s multichannel NRZ to CSRZ format conversion using an SOA,” IEEE Photonics Technol. Lett. 20, 1597-1599 (2008).
[CrossRef]

Nesset, D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523-1528 (1999).
[CrossRef] [PubMed]

Nirmalathas, A.

H. Furukawa, A. Nirmalathas, N. Wada, S. Shinada, H. Tsuboya, and T. Miyazaki, “Tunable all-optical wavelength conversion of 160-Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photonics Technol. Lett. 19, 384-386 (2007).
[CrossRef]

Nissanka, S. M.

Noh, Y.-C.

Nuccio, S. R.

Oh, K.

Ozeki, T.

Parameswaran, K.

Phillips, I. D.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523-1528 (1999).
[CrossRef] [PubMed]

Pleros, N.

Poustie, A. J.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523-1528 (1999).
[CrossRef] [PubMed]

Quiring, V.

Y. H. Min, J. H. Lee, Y. L. Lee, W. Grundköter, V. Quiring, and W. Sohler, “Tunable all-optical control of wavelength conversion of 5-ps pulses by cascaded sum- and difference frequency generation (cSFG/DFG) in a Ti:PPLN waveguide,” in Optical Fiber Communications Conference (OFC '03), Technical Digest (Optical Society of America, 2003), paper FP4.

Raybon, G.

A. Chowdhury, G. Raybon, R.-J. Essiambre, and C. R. Doerr, “WDM CSRZ 40 Gbit/s pseudo-linear transmission over 4800 km using optical phase conjugation,” Electron. Lett. 41, 151-152 (2005).
[CrossRef]

A. Chowdhury, G. Raybon, and R.-J. Essiambre, “Optical phase conjugation for intra-channel nonlinearity compensation in 40 Gbit/s CSRZ pseudo-linear systems,” Electron. Lett. 40, 1442-1443 (2004).
[CrossRef]

Rogers, D. C.

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523-1528 (1999).
[CrossRef] [PubMed]

Roussev, R.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photonics Technol. Lett. 19, 861-863 (2007).
[CrossRef]

Saruwatari, M.

M. Saruwatari, “All-optical signal processing for terabit/second optical transmission,” IEEE J. Sel. Top. Quantum Electron. 6, 1363-1374 (2000).
[CrossRef]

Sharping, J. E.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photonics Technol. Lett. 19, 861-863 (2007).
[CrossRef]

Shimizu, K.

Shin, W.

Shinada, S.

H. Furukawa, A. Nirmalathas, N. Wada, S. Shinada, H. Tsuboya, and T. Miyazaki, “Tunable all-optical wavelength conversion of 160-Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photonics Technol. Lett. 19, 384-386 (2007).
[CrossRef]

Silveira, T.

T. Silveira, A. Ferreira, A. Teixeira, and P. Monteiro, “40-Gb/s multichannel NRZ to CSRZ format conversion using an SOA,” IEEE Photonics Technol. Lett. 20, 1597-1599 (2008).
[CrossRef]

Sohler, W.

Y. H. Min, J. H. Lee, Y. L. Lee, W. Grundköter, V. Quiring, and W. Sohler, “Tunable all-optical control of wavelength conversion of 5-ps pulses by cascaded sum- and difference frequency generation (cSFG/DFG) in a Ti:PPLN waveguide,” in Optical Fiber Communications Conference (OFC '03), Technical Digest (Optical Society of America, 2003), paper FP4.

Sotobayashi, H.

Sun, J.

J. Wang, J. Sun, Q. Sun, D. Wang, X. Zhang, D. Huang, and M. M. Fejer, “PPLN-based flexible optical logic AND gate,” IEEE Photonics Technol. Lett. 20, 211-213 (2008).
[CrossRef]

J. Wang, J. Sun, X. Zhang, D. Huang, and M. M. Fejer, “Optical phase erasure and its application to format conversion through cascaded second-order processes in periodically poled lithium niobate,” Opt. Lett. 33, 1804-1806 (2008).
[CrossRef] [PubMed]

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, “All-optical format conversion using a periodically poled lithium niobate waveguide and a reflective semiconductor optical amplifier,” Appl. Phys. Lett. 91, 051107 (2007).
[CrossRef]

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, “Experimental observation of all-optical non-return-to-zero-to-return-to-zero format conversion based on cascaded second-order nonlinearity assisted by active mode-locking,” Opt. Lett. 32, 2462-2464 (2007).
[CrossRef] [PubMed]

J. Wang, J. Sun, and Q. Sun, “Proposal for all-optical format conversion based on a periodically poled lithium niobate loop mirror,” Opt. Lett. 32, 1477-1479 (2007).
[CrossRef] [PubMed]

J. Wang, J. Sun, Q. Sun, D. Wang, and D. Huang, “Proposal and simulation of all-optical NRZ-to-RZ format conversion using cascaded sum- and difference-frequency generation,” Opt. Express 15, 583-588 (2007).
[CrossRef] [PubMed]

J. Wang, J. Sun, and Q. Sun, “Single-PPLN-based simultaneous half-adder, half-subtracter, and OR logic gate: proposal and simulation,” Opt. Express 15, 1690-1699 (2007).
[CrossRef] [PubMed]

J. Wang, J. Sun, and Q. Sun, “Experimental observation of a 1.5 μm band wavelength conversion and logic NOT gate at 40 Gbit/s based on sum-frequency generation,” Opt. Lett. 31, 1711-1713 (2006).
[CrossRef] [PubMed]

J. Wang, J. Sun, J. R. Kurz, and M. M. Fejer, “Tunable wavelength conversion of ps-pulses exploiting cascaded sum- and difference frequency generation in a PPLN-fiber ring laser,” IEEE Photonics Technol. Lett. 18, 2093-2095 (2006).
[CrossRef]

J. Wang, J. Sun, C. Luo, and Q. Sun, “Experimental demonstration of wavelength conversion between ps-pulses based on cascaded sum- and difference frequency generation (SFG+DFG) in LiNbO3 waveguides,” Opt. Express 13, 7405-7414 (2005).
[CrossRef] [PubMed]

Sun, J. Q.

Sun, Q.

J. Wang, J. Sun, Q. Sun, D. Wang, X. Zhang, D. Huang, and M. M. Fejer, “PPLN-based flexible optical logic AND gate,” IEEE Photonics Technol. Lett. 20, 211-213 (2008).
[CrossRef]

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, “All-optical format conversion using a periodically poled lithium niobate waveguide and a reflective semiconductor optical amplifier,” Appl. Phys. Lett. 91, 051107 (2007).
[CrossRef]

J. Wang, J. Sun, and Q. Sun, “Single-PPLN-based simultaneous half-adder, half-subtracter, and OR logic gate: proposal and simulation,” Opt. Express 15, 1690-1699 (2007).
[CrossRef] [PubMed]

J. Wang, J. Sun, Q. Sun, D. Wang, and D. Huang, “Proposal and simulation of all-optical NRZ-to-RZ format conversion using cascaded sum- and difference-frequency generation,” Opt. Express 15, 583-588 (2007).
[CrossRef] [PubMed]

J. Wang, J. Sun, and Q. Sun, “Proposal for all-optical format conversion based on a periodically poled lithium niobate loop mirror,” Opt. Lett. 32, 1477-1479 (2007).
[CrossRef] [PubMed]

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, “Experimental observation of all-optical non-return-to-zero-to-return-to-zero format conversion based on cascaded second-order nonlinearity assisted by active mode-locking,” Opt. Lett. 32, 2462-2464 (2007).
[CrossRef] [PubMed]

J. Wang, J. Sun, and Q. Sun, “Experimental observation of a 1.5 μm band wavelength conversion and logic NOT gate at 40 Gbit/s based on sum-frequency generation,” Opt. Lett. 31, 1711-1713 (2006).
[CrossRef] [PubMed]

J. Wang, J. Sun, C. Luo, and Q. Sun, “Experimental demonstration of wavelength conversion between ps-pulses based on cascaded sum- and difference frequency generation (SFG+DFG) in LiNbO3 waveguides,” Opt. Express 13, 7405-7414 (2005).
[CrossRef] [PubMed]

Tan, H. N.

Teixeira, A.

T. Silveira, A. Ferreira, A. Teixeira, and P. Monteiro, “40-Gb/s multichannel NRZ to CSRZ format conversion using an SOA,” IEEE Photonics Technol. Lett. 20, 1597-1599 (2008).
[CrossRef]

Theophilopoulos, G.

Tsuboya, H.

H. Furukawa, A. Nirmalathas, N. Wada, S. Shinada, H. Tsuboya, and T. Miyazaki, “Tunable all-optical wavelength conversion of 160-Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photonics Technol. Lett. 19, 384-386 (2007).
[CrossRef]

Vlachos, K.

Wada, N.

H. Furukawa, A. Nirmalathas, N. Wada, S. Shinada, H. Tsuboya, and T. Miyazaki, “Tunable all-optical wavelength conversion of 160-Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photonics Technol. Lett. 19, 384-386 (2007).
[CrossRef]

Wang, D.

J. Wang, J. Sun, Q. Sun, D. Wang, X. Zhang, D. Huang, and M. M. Fejer, “PPLN-based flexible optical logic AND gate,” IEEE Photonics Technol. Lett. 20, 211-213 (2008).
[CrossRef]

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, “All-optical format conversion using a periodically poled lithium niobate waveguide and a reflective semiconductor optical amplifier,” Appl. Phys. Lett. 91, 051107 (2007).
[CrossRef]

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, “Experimental observation of all-optical non-return-to-zero-to-return-to-zero format conversion based on cascaded second-order nonlinearity assisted by active mode-locking,” Opt. Lett. 32, 2462-2464 (2007).
[CrossRef] [PubMed]

J. Wang, J. Sun, Q. Sun, D. Wang, and D. Huang, “Proposal and simulation of all-optical NRZ-to-RZ format conversion using cascaded sum- and difference-frequency generation,” Opt. Express 15, 583-588 (2007).
[CrossRef] [PubMed]

Wang, J.

J. Wang, J. Sun, Q. Sun, D. Wang, X. Zhang, D. Huang, and M. M. Fejer, “PPLN-based flexible optical logic AND gate,” IEEE Photonics Technol. Lett. 20, 211-213 (2008).
[CrossRef]

J. Wang, J. Q. Sun, X. L. Zhang, D. X. Huang, and M. M. Fejer, “Ultrafast all-optical three-input Boolean XOR operation for differential phase-shift keying signals using periodically poled lithium niobate,” Opt. Lett. 33, 1419-1421 (2008).
[CrossRef] [PubMed]

J. Wang, J. Sun, X. Zhang, D. Huang, and M. M. Fejer, “Optical phase erasure and its application to format conversion through cascaded second-order processes in periodically poled lithium niobate,” Opt. Lett. 33, 1804-1806 (2008).
[CrossRef] [PubMed]

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, “All-optical format conversion using a periodically poled lithium niobate waveguide and a reflective semiconductor optical amplifier,” Appl. Phys. Lett. 91, 051107 (2007).
[CrossRef]

J. Wang, J. Sun, Q. Sun, D. Wang, and D. Huang, “Proposal and simulation of all-optical NRZ-to-RZ format conversion using cascaded sum- and difference-frequency generation,” Opt. Express 15, 583-588 (2007).
[CrossRef] [PubMed]

J. Wang, J. Sun, and Q. Sun, “Single-PPLN-based simultaneous half-adder, half-subtracter, and OR logic gate: proposal and simulation,” Opt. Express 15, 1690-1699 (2007).
[CrossRef] [PubMed]

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, “Experimental observation of all-optical non-return-to-zero-to-return-to-zero format conversion based on cascaded second-order nonlinearity assisted by active mode-locking,” Opt. Lett. 32, 2462-2464 (2007).
[CrossRef] [PubMed]

J. Wang, J. Sun, and Q. Sun, “Proposal for all-optical format conversion based on a periodically poled lithium niobate loop mirror,” Opt. Lett. 32, 1477-1479 (2007).
[CrossRef] [PubMed]

J. Wang, J. Sun, and Q. Sun, “Experimental observation of a 1.5 μm band wavelength conversion and logic NOT gate at 40 Gbit/s based on sum-frequency generation,” Opt. Lett. 31, 1711-1713 (2006).
[CrossRef] [PubMed]

J. Wang, J. Sun, J. R. Kurz, and M. M. Fejer, “Tunable wavelength conversion of ps-pulses exploiting cascaded sum- and difference frequency generation in a PPLN-fiber ring laser,” IEEE Photonics Technol. Lett. 18, 2093-2095 (2006).
[CrossRef]

J. Wang, J. Sun, C. Luo, and Q. Sun, “Experimental demonstration of wavelength conversion between ps-pulses based on cascaded sum- and difference frequency generation (SFG+DFG) in LiNbO3 waveguides,” Opt. Express 13, 7405-7414 (2005).
[CrossRef] [PubMed]

Wang, Y.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photonics Technol. Lett. 19, 861-863 (2007).
[CrossRef]

Willner, A. E.

Winzer, P. J.

Wong, K. K. Y.

Wu, X.

Yan, L.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photonics Technol. Lett. 19, 861-863 (2007).
[CrossRef]

Yilmaz, O. F.

Yu, B.-A.

Yu, C.

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photonics Technol. Lett. 19, 861-863 (2007).
[CrossRef]

Zhang, X.

J. Wang, J. Sun, Q. Sun, D. Wang, X. Zhang, D. Huang, and M. M. Fejer, “PPLN-based flexible optical logic AND gate,” IEEE Photonics Technol. Lett. 20, 211-213 (2008).
[CrossRef]

J. Wang, J. Sun, X. Zhang, D. Huang, and M. M. Fejer, “Optical phase erasure and its application to format conversion through cascaded second-order processes in periodically poled lithium niobate,” Opt. Lett. 33, 1804-1806 (2008).
[CrossRef] [PubMed]

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, “Experimental observation of all-optical non-return-to-zero-to-return-to-zero format conversion based on cascaded second-order nonlinearity assisted by active mode-locking,” Opt. Lett. 32, 2462-2464 (2007).
[CrossRef] [PubMed]

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, “All-optical format conversion using a periodically poled lithium niobate waveguide and a reflective semiconductor optical amplifier,” Appl. Phys. Lett. 91, 051107 (2007).
[CrossRef]

Zhang, X. L.

Zhou, M.

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, “All-optical format conversion using a periodically poled lithium niobate waveguide and a reflective semiconductor optical amplifier,” Appl. Phys. Lett. 91, 051107 (2007).
[CrossRef]

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, “Experimental observation of all-optical non-return-to-zero-to-return-to-zero format conversion based on cascaded second-order nonlinearity assisted by active mode-locking,” Opt. Lett. 32, 2462-2464 (2007).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, “All-optical format conversion using a periodically poled lithium niobate waveguide and a reflective semiconductor optical amplifier,” Appl. Phys. Lett. 91, 051107 (2007).
[CrossRef]

Electron. Lett. (3)

J. E. McGeehan, M. Giltrelli, and A. E. Willner, “All-optical digital 3-input AND gate using sum- and difference-frequency generation in a PPLN waveguide,” Electron. Lett. 43, 409-410 (2007).
[CrossRef]

A. Chowdhury, G. Raybon, and R.-J. Essiambre, “Optical phase conjugation for intra-channel nonlinearity compensation in 40 Gbit/s CSRZ pseudo-linear systems,” Electron. Lett. 40, 1442-1443 (2004).
[CrossRef]

A. Chowdhury, G. Raybon, R.-J. Essiambre, and C. R. Doerr, “WDM CSRZ 40 Gbit/s pseudo-linear transmission over 4800 km using optical phase conjugation,” Electron. Lett. 41, 151-152 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Saruwatari, “All-optical signal processing for terabit/second optical transmission,” IEEE J. Sel. Top. Quantum Electron. 6, 1363-1374 (2000).
[CrossRef]

IEEE Photonics Technol. Lett. (6)

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photonics Technol. Lett. 11, 653-655 (1999).
[CrossRef]

J. Wang, J. Sun, J. R. Kurz, and M. M. Fejer, “Tunable wavelength conversion of ps-pulses exploiting cascaded sum- and difference frequency generation in a PPLN-fiber ring laser,” IEEE Photonics Technol. Lett. 18, 2093-2095 (2006).
[CrossRef]

H. Furukawa, A. Nirmalathas, N. Wada, S. Shinada, H. Tsuboya, and T. Miyazaki, “Tunable all-optical wavelength conversion of 160-Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide,” IEEE Photonics Technol. Lett. 19, 384-386 (2007).
[CrossRef]

Y. Wang, C. Yu, L. Yan, A. E. Willner, R. Roussev, C. Langrock, M. M. Fejer, J. E. Sharping, and A. L. Gaeta, “44-ns continuously tunable dispersionless optical delay element using a PPLN waveguide with two-pump configuration, DCF, and a dispersion compensator,” IEEE Photonics Technol. Lett. 19, 861-863 (2007).
[CrossRef]

J. Wang, J. Sun, Q. Sun, D. Wang, X. Zhang, D. Huang, and M. M. Fejer, “PPLN-based flexible optical logic AND gate,” IEEE Photonics Technol. Lett. 20, 211-213 (2008).
[CrossRef]

T. Silveira, A. Ferreira, A. Teixeira, and P. Monteiro, “40-Gb/s multichannel NRZ to CSRZ format conversion using an SOA,” IEEE Photonics Technol. Lett. 20, 1597-1599 (2008).
[CrossRef]

J. Lightwave Technol. (4)

J. Opt. Soc. Am. B (1)

Opt. Express (9)

J. Wang, J. Sun, C. Luo, and Q. Sun, “Experimental demonstration of wavelength conversion between ps-pulses based on cascaded sum- and difference frequency generation (SFG+DFG) in LiNbO3 waveguides,” Opt. Express 13, 7405-7414 (2005).
[CrossRef] [PubMed]

J. Wang, J. Sun, Q. Sun, D. Wang, and D. Huang, “Proposal and simulation of all-optical NRZ-to-RZ format conversion using cascaded sum- and difference-frequency generation,” Opt. Express 15, 583-588 (2007).
[CrossRef] [PubMed]

K. Mishina, S. M. Nissanka, A. Maruta, S. Mitani, K. Ishida, K. Shimizu, T. Hatta, and K. Kitayama, “All-optical modulation format conversion from NRZ-OOK to RZ-QPSK using parallel SOA-MZI OOK/BPSK converters,” Opt. Express 15, 7774-7785 (2007).
[CrossRef] [PubMed]

D. M. F. Lai, C. H. Kwok, and K. K. Y. Wong, “All-optical picoseconds logic gates based on a fiber optical parametric amplifier,” Opt. Express 16, 18362-18370 (2008).
[CrossRef] [PubMed]

H. N. Tan, M. Matsuura, and N. Kishi, “Transmission performance of a wavelength and NRZ-to-RZ format conversion with pulsewidth tunability by combination of SOA- and fiber-based switches,” Opt. Express 16, 19063-19071 (2008).
[CrossRef]

J. Wang, J. Sun, and Q. Sun, “Single-PPLN-based simultaneous half-adder, half-subtracter, and OR logic gate: proposal and simulation,” Opt. Express 15, 1690-1699 (2007).
[CrossRef] [PubMed]

Y. L. Lee, B.-A. Yu, T. J. Eom, W. Shin, C. Jung, Y.-C. Noh, J. Lee, D.-K. Ko, and K. Oh, “All-optical AND and NAND gates based on cascaded second-order nonlinear processes in a Ti-diffused periodically poled LiNbO3 waveguide,” Opt. Express 14, 2776-2782 (2006).
[CrossRef] [PubMed]

S. Kumar, A. E. Willner, D. Gurkan, K. Parameswaran, and M. M. Fejer, “All-optical half adder using an SOA and a PPLN waveguide for signal processing in optical networks,” Opt. Express 14, 10255-10260 (2006).
[CrossRef] [PubMed]

J. E. McGeehan, S. Kumar, and A. E. Willner, “Simultaneous optical digital half-subtraction and -addition using SOAs and a PPLN waveguide,” Opt. Express 15, 5543-5549 (2007).
[CrossRef] [PubMed]

Opt. Lett. (6)

J. Wang, J. Q. Sun, X. L. Zhang, D. X. Huang, and M. M. Fejer, “Ultrafast all-optical three-input Boolean XOR operation for differential phase-shift keying signals using periodically poled lithium niobate,” Opt. Lett. 33, 1419-1421 (2008).
[CrossRef] [PubMed]

X. Wu, L. Christen, O. F. Yilmaz, S. R. Nuccio, and A. E. Willner, “Optical 10-20 and 20-40 Gbit/s pseudorandom bit sequence data multiplexing utilizing conversion-dispersion-based tunable optical delays,” Opt. Lett. 33, 1518-1520 (2008).
[CrossRef] [PubMed]

J. Wang, J. Sun, and Q. Sun, “Experimental observation of a 1.5 μm band wavelength conversion and logic NOT gate at 40 Gbit/s based on sum-frequency generation,” Opt. Lett. 31, 1711-1713 (2006).
[CrossRef] [PubMed]

J. Wang, J. Sun, and Q. Sun, “Proposal for all-optical format conversion based on a periodically poled lithium niobate loop mirror,” Opt. Lett. 32, 1477-1479 (2007).
[CrossRef] [PubMed]

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, “Experimental observation of all-optical non-return-to-zero-to-return-to-zero format conversion based on cascaded second-order nonlinearity assisted by active mode-locking,” Opt. Lett. 32, 2462-2464 (2007).
[CrossRef] [PubMed]

J. Wang, J. Sun, X. Zhang, D. Huang, and M. M. Fejer, “Optical phase erasure and its application to format conversion through cascaded second-order processes in periodically poled lithium niobate,” Opt. Lett. 33, 1804-1806 (2008).
[CrossRef] [PubMed]

Science (1)

D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high-speed digital information processing,” Science 286, 1523-1528 (1999).
[CrossRef] [PubMed]

Other (1)

Y. H. Min, J. H. Lee, Y. L. Lee, W. Grundköter, V. Quiring, and W. Sohler, “Tunable all-optical control of wavelength conversion of 5-ps pulses by cascaded sum- and difference frequency generation (cSFG/DFG) in a Ti:PPLN waveguide,” in Optical Fiber Communications Conference (OFC '03), Technical Digest (Optical Society of America, 2003), paper FP4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental setup and operation principle for PPLN-based ultrafast CSRZ logic AND gate. (a) Experimental setup. (b) Photograph of PPLN. (c) Principle of cSHG/DFG-based CSRZ logic AND gate; (d) Principle of cSFG/DFG-based tunable (fixed-in variable-out) and flexible (variable-in variable-out) simultaneous CSRZ logic AND gate and CSRZ-to-RZ format conversion.

Fig. 2
Fig. 2

Measured optical spectra for cSHG/DFG-based 40 Gbit s CSRZ logic AND gate. Insets show enlarged optical spectra of (a) signal A, (b) signal B and (c) idler (AND result).

Fig. 3
Fig. 3

Measured temporal waveforms and eye diagrams for cSHG/DFG-based 40 Gbit s CSRZ logic AND gate.

Fig. 4
Fig. 4

Simulation results for cSHG/DFG-based 40 Gbit s CSRZ logic AND gate. (a)–(c) Optical spectra. (d)–(f) Temporal waveforms. (g)–(i) Eye diagrams. (j)–(l) Phase diagrams. (a) (d) (g) (j) Input CSRZ signal A. (b) (e) (h) (k) Input CSRZ signal B. (c) (f) (i) (l) Converted CSRZ idler (AND result).

Fig. 5
Fig. 5

Measured optical spectra for cSFG/DFG-based 40 Gbit s tunable (fixed-in variable-out) simultaneous CSRZ logic AND gate and CSRZ-to-RZ format conversion (scheme 1).

Fig. 6
Fig. 6

Measured temporal waveforms and eye diagrams for cSFG/DFG-based 40 Gbits s tunable (fixed-in variable-out) simultaneous CSRZ logic AND gate and CSRZ-to-RZ format conversion (scheme 1). R1-R6 respectively correspond to idler 1-idler 6 shown in Fig. 5.

Fig. 7
Fig. 7

Measured optical spectra for cSFG/DFG-based 40 Gbit s flexible (variable-in variable-out) simultaneous CSRZ logic AND gate and CSRZ-to-RZ format conversion (scheme 2).

Fig. 8
Fig. 8

Measured temporal waveforms and eye diagrams for cSFG/DFG-based 40 Gbit s flexible (variable-in variable-out) simultaneous CSRZ logic AND gate and CSRZ-to-RZ format conversion (scheme 2). R7-R9 respectively correspond to idler 1-idler 3 shown in Fig. 7.

Fig. 9
Fig. 9

Theoretical results for cSFG/DFG-based 40 Gbit s simultaneous CSRZ logic AND gate and CSRZ-to-RZ format conversion. (a)–(c) Optical spectra. (d)–(g) Temporal waveforms. (h)–(j) Eye diagrams. (k)–(m) Phase diagrams. (a) (h) (k) Input CSRZ signal A/B. (d) Signal A. (e) Signal B. (b) (f) (i) (l) RZ idler generated by scheme 1 (AND). (c) (g) (j) (m) RZ idler produced by scheme 2 (AND).

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

A SA z + β 1 SA A SA t + i 2 β 2 SA 2 A SA t 2 + 1 2 α SA A SA = i ω SA κ SHG A SA * A SH exp ( i Δ k SHG z ) ,
A SH z + β 1 SH A SH t + i 2 β 2 SH 2 A SH t 2 + 1 2 α SH A SH = i 2 ω SH κ SHG A SA A SA exp ( i Δ k SHG z ) + i ω SH κ DFG A SB A i exp ( i Δ k DFG z ) ,
A SB z + β 1 SB A SB t + i 2 β 2 SB 2 A SB t 2 + 1 2 α SB A SB = i ω SB κ DFG A i * A SH exp ( i Δ k DFG z ) ,
A i z + β 1 i A i t + i 2 β 2 i 2 A i t 2 + 1 2 α i A i = i ω i κ DFG A SB * A SH exp ( i Δ k DFG z ) ,
A i 1 2 ω i ω SH κ SHG κ DFG A SA 2 A SB * { [ L Δ sin ( Δ L ) + cos ( Δ L ) 1 Δ 2 ] + i [ sin ( Δ L ) Δ 2 L Δ cos ( Δ L ) ] } ,
A i A SA 0 2 A SB 0 * ,
φ i = 2 φ SA 0 φ SB 0 ,
P i P SA 0 2 P SB 0 ,
A SA z + β 1 SA A SA t + i 2 β 2 SA 2 A SA t 2 + 1 2 α SA A SA = i ω SA κ SFG A SB * A SF exp ( i Δ k SFG z ) ,
A SB z + β 1 SB A SB t + i 2 β 2 SB 2 A SB t 2 + 1 2 α SB A SB = i ω SB κ SFG A SA * A SF exp ( i Δ k SFG z ) ,
A SF z + β 1 SF A SF t + i 2 β 2 SF 2 A SF t 2 + 1 2 α SF A SF = i ω SF κ SFG A SA A SB exp ( i Δ k SFG z ) + i ω SF κ DFG A P A i exp ( i Δ k DFG z ) ,
A P z + β 1 P A P t + i 2 β 2 P 2 A P t 2 + 1 2 α P A P = i ω P κ DFG A i * A SF exp ( i Δ k DFG z ) ,
A i z + β 1 i A i t + i 2 β 2 i 2 A i t 2 + 1 2 α i A i = i ω i κ DFG A P * A SF exp ( i Δ k DFG z ) ,
A i ω i ω SF κ SFG κ DFG A SA A SB A P * { [ L Δ sin ( Δ L ) + cos ( Δ L ) 1 Δ 2 ] + i [ sin ( Δ L ) Δ 2 L Δ cos ( Δ L ) ] } ,
A i ω i ω SF κ SFG κ DFG A SA A P A SB * { [ L Δ sin ( Δ L ) + cos ( Δ L ) 1 Δ 2 ] + i [ sin ( Δ L ) Δ 2 L Δ cos ( Δ L ) ] } ,
A i A SA 0 A SB 0 A P 0 * ,
φ i = φ SA 0 + φ SB 0 φ P 0 ,
P i P SA 0 P SB 0 P P 0 ,
A i A SA 0 A P 0 A SB 0 * ,
φ i = φ SA 0 + φ P 0 φ SB 0 ,
P i P SA 0 P P 0 P SB 0 ,

Metrics