Abstract

We have investigated an ytterbium-doped distributed-feedback fiber master oscillator power amplifier system emitting 1W and its suitability for the space-borne interferometric gravitational-wave detector Laser Interferometer Space Antenna (LISA). For this purpose we measured the laser system’s free-running frequency noise, characterized its frequency actuator, and implemented a robust frequency stabilization. Up to 100Hz Fourier frequency the free-running frequency, noise was comparable to that of a nonplanar ring oscillator. The first resonance of the actuator was at 32kHz with a quality factor of 26 and a delay of 20μs. The frequency lock to a thermally shielded Fabry–Perot cavity was stable over many hours and fulfilled the LISA requirements.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription