Abstract

A T-shaped all-optical switch based on nonlinear photonic crystal microring resonator has been analyzed by the finite difference time domain method. Photonic crystal microring resonators are used because they can enhance the nonlinearity due to the localization of light and slow group velocity. By cascading two of these switches we have shown the performance of a NOR gate. The simulations show that in the OFF state the transmission of the proposed NOR gate is only about 2% while in the ON state it is about 81%.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Li and G. Li, “Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 18, 1341-1343 (2006).
    [CrossRef]
  2. T. J. Xia, Y. Liang, and K. H. Ahn, “All-optical packet-drop demonstration using 100 Gb/s words by integrating fiber-based components,” IEEE Photon. Technol. Lett. 10, 153-155 (1998).
    [CrossRef]
  3. A. Bogoni, L. Poti, R. Proietti, G. Meloni, F. Ponzini, and P. Ghelfi, “Regenerative and reconfigurable all-optical logic gates for ultra-fast applications,” Electron. Lett. 41, 435-436 (2005).
    [CrossRef]
  4. J. Kim, Y. Kim, Y. T. Byun, Y. M. John, S. Lee, S. H. Kim, and D. H. Woo, “All-optical logic gates using semiconductor optical-amplifier-based devices and their applications,” J. Korean Phys. Soc. 45, 1158-1161 (2004).
  5. Q. Xu and M. Lipson, “All-optical logic based on silicon micro-ring resonators,” Opt. Express 15, 924-929 (2007).
    [CrossRef] [PubMed]
  6. Z. H. Zhu, W. M. Ye, J. R. Ji, X. Yuan, and C. Zen, “High-contrast light-by-light switching and AND gate based on nonlinear photonic crystals,” Opt. Express 14, 1783-1788 (2006).
    [CrossRef] [PubMed]
  7. K. Ogusu, J. Yamasaki, S. Maeda, M. Kitao, and M. Minakata, “Linear and nonlinear optical properties of Ag-As-Se chalcogenide glasses for all-optical switching,” Opt. Lett. 29, 265-269 (2004).
    [CrossRef] [PubMed]
  8. V. D. Kumar, T. Srinivas, and A. Selvarajan, “Investigation of ring resonators in photonic crystal circuits,” Photonics Nanostruct. Fundam. Appl. 2, 199-206 (2004).
    [CrossRef]
  9. T. A. Ibrahim, K. Amarnath, L. C. Kuo, R. Grover, V. Van, and P. T. Ho, “Photonic logic NOR gate based on two symmetric microring resonators,” Opt. Lett. 29, 2779-2781 (2004).
    [CrossRef] [PubMed]
  10. P. Andalib and N. Granpayeh, “All-optical ultracompact photonic crystal AND gate based on nonlinear ring resonators,” J. Opt. Soc. Am. B 26, 10-16 (2009).
    [CrossRef]

2009 (1)

2007 (1)

2006 (2)

Z. H. Zhu, W. M. Ye, J. R. Ji, X. Yuan, and C. Zen, “High-contrast light-by-light switching and AND gate based on nonlinear photonic crystals,” Opt. Express 14, 1783-1788 (2006).
[CrossRef] [PubMed]

Z. Li and G. Li, “Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 18, 1341-1343 (2006).
[CrossRef]

2005 (1)

A. Bogoni, L. Poti, R. Proietti, G. Meloni, F. Ponzini, and P. Ghelfi, “Regenerative and reconfigurable all-optical logic gates for ultra-fast applications,” Electron. Lett. 41, 435-436 (2005).
[CrossRef]

2004 (4)

J. Kim, Y. Kim, Y. T. Byun, Y. M. John, S. Lee, S. H. Kim, and D. H. Woo, “All-optical logic gates using semiconductor optical-amplifier-based devices and their applications,” J. Korean Phys. Soc. 45, 1158-1161 (2004).

V. D. Kumar, T. Srinivas, and A. Selvarajan, “Investigation of ring resonators in photonic crystal circuits,” Photonics Nanostruct. Fundam. Appl. 2, 199-206 (2004).
[CrossRef]

K. Ogusu, J. Yamasaki, S. Maeda, M. Kitao, and M. Minakata, “Linear and nonlinear optical properties of Ag-As-Se chalcogenide glasses for all-optical switching,” Opt. Lett. 29, 265-269 (2004).
[CrossRef] [PubMed]

T. A. Ibrahim, K. Amarnath, L. C. Kuo, R. Grover, V. Van, and P. T. Ho, “Photonic logic NOR gate based on two symmetric microring resonators,” Opt. Lett. 29, 2779-2781 (2004).
[CrossRef] [PubMed]

1998 (1)

T. J. Xia, Y. Liang, and K. H. Ahn, “All-optical packet-drop demonstration using 100 Gb/s words by integrating fiber-based components,” IEEE Photon. Technol. Lett. 10, 153-155 (1998).
[CrossRef]

Ahn, K. H.

T. J. Xia, Y. Liang, and K. H. Ahn, “All-optical packet-drop demonstration using 100 Gb/s words by integrating fiber-based components,” IEEE Photon. Technol. Lett. 10, 153-155 (1998).
[CrossRef]

Amarnath, K.

Andalib, P.

Bogoni, A.

A. Bogoni, L. Poti, R. Proietti, G. Meloni, F. Ponzini, and P. Ghelfi, “Regenerative and reconfigurable all-optical logic gates for ultra-fast applications,” Electron. Lett. 41, 435-436 (2005).
[CrossRef]

Byun, Y. T.

J. Kim, Y. Kim, Y. T. Byun, Y. M. John, S. Lee, S. H. Kim, and D. H. Woo, “All-optical logic gates using semiconductor optical-amplifier-based devices and their applications,” J. Korean Phys. Soc. 45, 1158-1161 (2004).

Ghelfi, P.

A. Bogoni, L. Poti, R. Proietti, G. Meloni, F. Ponzini, and P. Ghelfi, “Regenerative and reconfigurable all-optical logic gates for ultra-fast applications,” Electron. Lett. 41, 435-436 (2005).
[CrossRef]

Granpayeh, N.

Grover, R.

Ho, P. T.

Ibrahim, T. A.

Ji, J. R.

John, Y. M.

J. Kim, Y. Kim, Y. T. Byun, Y. M. John, S. Lee, S. H. Kim, and D. H. Woo, “All-optical logic gates using semiconductor optical-amplifier-based devices and their applications,” J. Korean Phys. Soc. 45, 1158-1161 (2004).

Kim, J.

J. Kim, Y. Kim, Y. T. Byun, Y. M. John, S. Lee, S. H. Kim, and D. H. Woo, “All-optical logic gates using semiconductor optical-amplifier-based devices and their applications,” J. Korean Phys. Soc. 45, 1158-1161 (2004).

Kim, S. H.

J. Kim, Y. Kim, Y. T. Byun, Y. M. John, S. Lee, S. H. Kim, and D. H. Woo, “All-optical logic gates using semiconductor optical-amplifier-based devices and their applications,” J. Korean Phys. Soc. 45, 1158-1161 (2004).

Kim, Y.

J. Kim, Y. Kim, Y. T. Byun, Y. M. John, S. Lee, S. H. Kim, and D. H. Woo, “All-optical logic gates using semiconductor optical-amplifier-based devices and their applications,” J. Korean Phys. Soc. 45, 1158-1161 (2004).

Kitao, M.

Kumar, V. D.

V. D. Kumar, T. Srinivas, and A. Selvarajan, “Investigation of ring resonators in photonic crystal circuits,” Photonics Nanostruct. Fundam. Appl. 2, 199-206 (2004).
[CrossRef]

Kuo, L. C.

Lee, S.

J. Kim, Y. Kim, Y. T. Byun, Y. M. John, S. Lee, S. H. Kim, and D. H. Woo, “All-optical logic gates using semiconductor optical-amplifier-based devices and their applications,” J. Korean Phys. Soc. 45, 1158-1161 (2004).

Li, G.

Z. Li and G. Li, “Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 18, 1341-1343 (2006).
[CrossRef]

Li, Z.

Z. Li and G. Li, “Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 18, 1341-1343 (2006).
[CrossRef]

Liang, Y.

T. J. Xia, Y. Liang, and K. H. Ahn, “All-optical packet-drop demonstration using 100 Gb/s words by integrating fiber-based components,” IEEE Photon. Technol. Lett. 10, 153-155 (1998).
[CrossRef]

Lipson, M.

Maeda, S.

Meloni, G.

A. Bogoni, L. Poti, R. Proietti, G. Meloni, F. Ponzini, and P. Ghelfi, “Regenerative and reconfigurable all-optical logic gates for ultra-fast applications,” Electron. Lett. 41, 435-436 (2005).
[CrossRef]

Minakata, M.

Ogusu, K.

Ponzini, F.

A. Bogoni, L. Poti, R. Proietti, G. Meloni, F. Ponzini, and P. Ghelfi, “Regenerative and reconfigurable all-optical logic gates for ultra-fast applications,” Electron. Lett. 41, 435-436 (2005).
[CrossRef]

Poti, L.

A. Bogoni, L. Poti, R. Proietti, G. Meloni, F. Ponzini, and P. Ghelfi, “Regenerative and reconfigurable all-optical logic gates for ultra-fast applications,” Electron. Lett. 41, 435-436 (2005).
[CrossRef]

Proietti, R.

A. Bogoni, L. Poti, R. Proietti, G. Meloni, F. Ponzini, and P. Ghelfi, “Regenerative and reconfigurable all-optical logic gates for ultra-fast applications,” Electron. Lett. 41, 435-436 (2005).
[CrossRef]

Selvarajan, A.

V. D. Kumar, T. Srinivas, and A. Selvarajan, “Investigation of ring resonators in photonic crystal circuits,” Photonics Nanostruct. Fundam. Appl. 2, 199-206 (2004).
[CrossRef]

Srinivas, T.

V. D. Kumar, T. Srinivas, and A. Selvarajan, “Investigation of ring resonators in photonic crystal circuits,” Photonics Nanostruct. Fundam. Appl. 2, 199-206 (2004).
[CrossRef]

Van, V.

Woo, D. H.

J. Kim, Y. Kim, Y. T. Byun, Y. M. John, S. Lee, S. H. Kim, and D. H. Woo, “All-optical logic gates using semiconductor optical-amplifier-based devices and their applications,” J. Korean Phys. Soc. 45, 1158-1161 (2004).

Xia, T. J.

T. J. Xia, Y. Liang, and K. H. Ahn, “All-optical packet-drop demonstration using 100 Gb/s words by integrating fiber-based components,” IEEE Photon. Technol. Lett. 10, 153-155 (1998).
[CrossRef]

Xu, Q.

Yamasaki, J.

Ye, W. M.

Yuan, X.

Zen, C.

Zhu, Z. H.

Electron. Lett. (1)

A. Bogoni, L. Poti, R. Proietti, G. Meloni, F. Ponzini, and P. Ghelfi, “Regenerative and reconfigurable all-optical logic gates for ultra-fast applications,” Electron. Lett. 41, 435-436 (2005).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

Z. Li and G. Li, “Ultrahigh-speed reconfigurable logic gates based on four-wave mixing in a semiconductor optical amplifier,” IEEE Photon. Technol. Lett. 18, 1341-1343 (2006).
[CrossRef]

T. J. Xia, Y. Liang, and K. H. Ahn, “All-optical packet-drop demonstration using 100 Gb/s words by integrating fiber-based components,” IEEE Photon. Technol. Lett. 10, 153-155 (1998).
[CrossRef]

J. Korean Phys. Soc. (1)

J. Kim, Y. Kim, Y. T. Byun, Y. M. John, S. Lee, S. H. Kim, and D. H. Woo, “All-optical logic gates using semiconductor optical-amplifier-based devices and their applications,” J. Korean Phys. Soc. 45, 1158-1161 (2004).

J. Opt. Soc. Am. B (1)

Opt. Express (2)

Opt. Lett. (2)

Photonics Nanostruct. Fundam. Appl. (1)

V. D. Kumar, T. Srinivas, and A. Selvarajan, “Investigation of ring resonators in photonic crystal circuits,” Photonics Nanostruct. Fundam. Appl. 2, 199-206 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

(a) 5 × 5 and (b) 6 × 6 photonic crystal microring resonators.

Fig. 2
Fig. 2

Modified photonic crystal microring resonator.

Fig. 3
Fig. 3

Normalized resonant frequency of the PC-MRR of Fig. 2.

Fig. 4
Fig. 4

Electric field distributions of four different modes at normalized resonant frequencies of (a) a / λ = 0.3632 , (b) a / λ = 0.3821 , (c) a / λ = 0.408 , and (d) a / λ = 0.4343 .

Fig. 5
Fig. 5

All-optical T-shaped switch.

Fig. 6
Fig. 6

Transmission spectra of the T-shaped structure of Fig. 5.

Fig. 7
Fig. 7

Transmission spectra of the T-shaped structure of Fig. 5 without four extra rods within the microring resonator.

Fig. 8
Fig. 8

The transmission spectrum (a) with no pump signal compared to (b) with high intensity pump signal.

Fig. 9
Fig. 9

The wavelength shift for different powers launched to port C.

Fig. 10
Fig. 10

Transmission in ports B and C for different powers launched to port C.

Fig. 11
Fig. 11

The electric field distribution when there is (a) high intensity pump signal (OFF) and (b) no pump signal (ON).

Fig. 12
Fig. 12

Temporal properties of the switch.

Fig. 13
Fig. 13

The NOR gate structure.

Fig. 14
Fig. 14

Four states of our proposed NOR gate.

Tables (1)

Tables Icon

Table 1 Truth Table of a NOR Gate

Metrics