Abstract

We propose a promising scheme to guide buffer-gas cooled arbitrary neutral molecules in a hollow-core photonic bandgap (HC-PBG) fiber by using a red-detuned Gaussian mode and calculate the optical coupling efficiency of the Gaussian mode in the HC-PBG and its optical potential for I2 molecules. Also, we calculate both the straight guiding efficiency and bend guiding one by using a classical model and the dynamic process of the laser guiding of cold molecules in the HC-PBG by Monte Carlo simulation, by which we obtain the transverse and longitudinal velocity distributions of the output guided molecular beam. Our study shows that when the input laser power is 2 kW, the straight guiding efficiency is 24.6% and when the input laser power is 200 W and R=0.2  cm, the bent guiding efficiency is 1.2%. We also find from the simulated results that our laser bent guiding scheme is a simple and desirable method to generate a CW cold arbitrary molecular beam.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Loesch and B. Scheel, “Molecules on Kepler orbits: an experimental study,” Phys. Rev. Lett. 85, 2709-2712 (2000).
    [CrossRef] [PubMed]
  2. J. Schmiedmayer, “Guiding and trapping a neutral atom on a wire,” Phys. Rev. A 52, R13-R16 (1995).
    [CrossRef] [PubMed]
  3. S. A. Rangwala, T. Junglen, T. Rieger, P. W. H. Pinkse, and G. Rempe, “Continuous source of translationally cold dipolar molecules,” Phys. Rev. A 67, 043406 (2003).
    [CrossRef]
  4. T. Junglen, T. Rieger, S. A. Rangwala, P. W. H. Pinkse, and G. Rempe, “Two-dimensional trapping of dipolar molecules in time-varying electric fields,” Phys. Rev. Lett. 92, 223001 (2004).
    [CrossRef] [PubMed]
  5. T. Junglen, T. Rieger, S. A. Rangwala, P. W. H. Pinksea, and G. Rempe, “Slow ammonia molecules in an electrostatic quadrupole guide,” Eur. Phys. J. D 31, 365-373 (2004).
    [CrossRef]
  6. S. E. Maxwell, N. Brahms, R. deCarvalho, D. R. Glenn, J. S. Helton, S. V. Nguyen, D. Patterson, J. Petricka, D. DeMille, and J. M. Doyle, “High-flux beam source for cold, slow atoms or molecules,” Phys. Rev. Lett. 95, 173201 (2005).
    [CrossRef] [PubMed]
  7. D. Patterson and J. M. Doyle, “Bright, guided molecular beam with hydrodynamic enhancement,” J. Chem. Phys. 126, 154307 (2007).
    [CrossRef] [PubMed]
  8. Y. Xia, L. Z. Deng, and J. P. Yin, “Electrostatic guiding of cold polar molecules on a chip,” Appl. Phys. B 81, 459-464 (2005).
    [CrossRef]
  9. L. Z. Deng, Y. Xia, and J. P. Yin, “A novel electrostatic guiding scheme for cold polar molecules in weak-field-seeking states,” Chin. Phys. Lett. 22, 1887-1890 (2005).
    [CrossRef]
  10. M. Sun and J. Yin, “Controllable electrostatic guiding for cold polar molecules on the surface of a chip,” Phys. Rev. A 78, 033426 (2008).
    [CrossRef]
  11. Y. Xia, Y. Yin, H. Chen, L. Deng, and J. Yin, “Electrostatic surface guiding for cold polar molecules: experimental demonstration,” Phys. Rev. Lett. 100, 043003 (2008).
    [CrossRef] [PubMed]
  12. J. Arlt, K. Dholakia, J. Soneson, and E. M. Wright, “Optical dipole traps and atomic waveguides based on Bessel light beams,” Phys. Rev. A 63, 063602 (2001).
    [CrossRef]
  13. H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76, 4500 (1996).
    [CrossRef] [PubMed]
  14. M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, “Evanescent-wave guiding of atoms in hollow optical fibers,” Phys. Rev. A 53, R648-R651 (1996).
    [CrossRef] [PubMed]
  15. M. J. Renn, A. A. Zozulya, E. A. Donley, E. A. Cornell, and D. Z. Anderson, “Optical-dipole-force fiber guiding and heating of atoms,” Phys. Rev. A 55, 3684-3696 (1997).
    [CrossRef]
  16. R. Dumke, T. Muther, M. Volk, W. Ertmer, and G. Birkl, “Interferometer-type structures for guided atoms,” Phys. Rev. Lett. 89, 220402 (2002).
    [CrossRef] [PubMed]
  17. J. Tauer, F. Orban, H. Kofler, A. B. Fedotov, I. V. Fedotov, V. P. Mitrokhin, A. M. Zheltikov, and E. Wintner, “High-throughput of single high-power laser pulses by hollow photonic bandgap fibers,” Laser Phys. Lett. 4, 444-448 (2007).
    [CrossRef]
  18. J. B. West, J. C. Fajardo, M. T. Gallagher, K. W. Koch, N. F. Borrelli, and D. C. Allan, “Demonstration of an IR-optimized air-core photonic band-gap fiber,” in European Conference on Optical Communication (IEEE, 2000), pp. 41-42.
  19. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783-1809 (1964).
  20. F. Benabid, J. C. Knight, and P. St. J. Russell, “Particle levitation and guidance in hollow-core photonic crystal fiber,” Opt. Express 10, 1195-1203 (2002).
    [PubMed]
  21. M. Saito, S. Sato, and M. Miyagi, “Loss characteristics of infrared hollow waveguides in multimode transmission,” J. Opt. Soc. Am. A 10, 277-282 (1993).
    [CrossRef]
  22. H. Stapelfeldt, H. Sakai, E. Constant, and P. B. Corkum, “Deflection of neutral molecules using the nonresonant dipole force,” Phys. Rev. Lett. 79, 2787-2790 (1997).
    [CrossRef]
  23. H. Sakai, A. Tarasevitch, J. Danilov, H. Stapelfeldt, R. W. Yip, C. Ellert, E. Constant, and P. B. Corkum, “Optical deflection of molecules,” Phys. Rev. A 57, 2794-2801 (1998).
    [CrossRef]
  24. P. F. Barker and M. N. Shneider, “Slowing molecules by optical microlinear deceleration,” Phys. Rev. A 66, 065402 (2002).
    [CrossRef]
  25. V. Gapontsev, D. Gaponsev, N. Platonov, O. Shkurikhin, V. Fomin, A. Mashkin, M. Abramov, and S. Ferin, “2 kW CW ytterbium fiber laser with record diffraction-limited brightness,” in Conference on Lasers and Electro-Optics (IEEE, 2008), p. 508.
  26. H. Tsuji, Y. Okuda, T. Sekiguchi, and H. Kanamori, “Velocity distribution of the pulsed ND3 molecular beam selected by a quadrupole Stark velocity filter,” Chem. Phys. Lett. 436, 331-334 (2007).
    [CrossRef]
  27. L. Michaille, D. M. Taylor, C. R. Bennett, T. J. Shepherd, C. Jacobsen, and T. P. Hansen, “Damage threshold and bending properties of photonic crystal and photonic band-gap optical fibres,” Proc. SPIE 5618, 30-38 (2004).
    [CrossRef]
  28. Y. L. Yin, Y. Xia, and J. Yin, “Deceleration of a continuous-wave (CW) molecular beam with a single quasi-CW semi-Gaussian laser beam,” Chin. Phys. B 17, 3672-3677 (2008).
    [CrossRef]
  29. H. L. Bethlem, M. Kajita, B. Sartakow, G. Meijer, and W. Ubachs, “Prospects for precision measurements on ammonia molecules in a fountain,” Eur. Phys. J. ST 163, 55-69 (2008).
  30. S. Willitsch, M. T. Bell, A. D. Gingell, S. R. Procter, and T. P. Softley, “Cold reactive collisions between laser-cooled ions and velocity-selected neutral molecules,” Phys. Rev. Lett. 100, 043203 (2008).
    [CrossRef] [PubMed]

2008

M. Sun and J. Yin, “Controllable electrostatic guiding for cold polar molecules on the surface of a chip,” Phys. Rev. A 78, 033426 (2008).
[CrossRef]

Y. Xia, Y. Yin, H. Chen, L. Deng, and J. Yin, “Electrostatic surface guiding for cold polar molecules: experimental demonstration,” Phys. Rev. Lett. 100, 043003 (2008).
[CrossRef] [PubMed]

Y. L. Yin, Y. Xia, and J. Yin, “Deceleration of a continuous-wave (CW) molecular beam with a single quasi-CW semi-Gaussian laser beam,” Chin. Phys. B 17, 3672-3677 (2008).
[CrossRef]

H. L. Bethlem, M. Kajita, B. Sartakow, G. Meijer, and W. Ubachs, “Prospects for precision measurements on ammonia molecules in a fountain,” Eur. Phys. J. ST 163, 55-69 (2008).

S. Willitsch, M. T. Bell, A. D. Gingell, S. R. Procter, and T. P. Softley, “Cold reactive collisions between laser-cooled ions and velocity-selected neutral molecules,” Phys. Rev. Lett. 100, 043203 (2008).
[CrossRef] [PubMed]

2007

H. Tsuji, Y. Okuda, T. Sekiguchi, and H. Kanamori, “Velocity distribution of the pulsed ND3 molecular beam selected by a quadrupole Stark velocity filter,” Chem. Phys. Lett. 436, 331-334 (2007).
[CrossRef]

J. Tauer, F. Orban, H. Kofler, A. B. Fedotov, I. V. Fedotov, V. P. Mitrokhin, A. M. Zheltikov, and E. Wintner, “High-throughput of single high-power laser pulses by hollow photonic bandgap fibers,” Laser Phys. Lett. 4, 444-448 (2007).
[CrossRef]

D. Patterson and J. M. Doyle, “Bright, guided molecular beam with hydrodynamic enhancement,” J. Chem. Phys. 126, 154307 (2007).
[CrossRef] [PubMed]

2005

Y. Xia, L. Z. Deng, and J. P. Yin, “Electrostatic guiding of cold polar molecules on a chip,” Appl. Phys. B 81, 459-464 (2005).
[CrossRef]

L. Z. Deng, Y. Xia, and J. P. Yin, “A novel electrostatic guiding scheme for cold polar molecules in weak-field-seeking states,” Chin. Phys. Lett. 22, 1887-1890 (2005).
[CrossRef]

S. E. Maxwell, N. Brahms, R. deCarvalho, D. R. Glenn, J. S. Helton, S. V. Nguyen, D. Patterson, J. Petricka, D. DeMille, and J. M. Doyle, “High-flux beam source for cold, slow atoms or molecules,” Phys. Rev. Lett. 95, 173201 (2005).
[CrossRef] [PubMed]

2004

T. Junglen, T. Rieger, S. A. Rangwala, P. W. H. Pinkse, and G. Rempe, “Two-dimensional trapping of dipolar molecules in time-varying electric fields,” Phys. Rev. Lett. 92, 223001 (2004).
[CrossRef] [PubMed]

T. Junglen, T. Rieger, S. A. Rangwala, P. W. H. Pinksea, and G. Rempe, “Slow ammonia molecules in an electrostatic quadrupole guide,” Eur. Phys. J. D 31, 365-373 (2004).
[CrossRef]

L. Michaille, D. M. Taylor, C. R. Bennett, T. J. Shepherd, C. Jacobsen, and T. P. Hansen, “Damage threshold and bending properties of photonic crystal and photonic band-gap optical fibres,” Proc. SPIE 5618, 30-38 (2004).
[CrossRef]

2003

S. A. Rangwala, T. Junglen, T. Rieger, P. W. H. Pinkse, and G. Rempe, “Continuous source of translationally cold dipolar molecules,” Phys. Rev. A 67, 043406 (2003).
[CrossRef]

2002

R. Dumke, T. Muther, M. Volk, W. Ertmer, and G. Birkl, “Interferometer-type structures for guided atoms,” Phys. Rev. Lett. 89, 220402 (2002).
[CrossRef] [PubMed]

P. F. Barker and M. N. Shneider, “Slowing molecules by optical microlinear deceleration,” Phys. Rev. A 66, 065402 (2002).
[CrossRef]

F. Benabid, J. C. Knight, and P. St. J. Russell, “Particle levitation and guidance in hollow-core photonic crystal fiber,” Opt. Express 10, 1195-1203 (2002).
[PubMed]

2001

J. Arlt, K. Dholakia, J. Soneson, and E. M. Wright, “Optical dipole traps and atomic waveguides based on Bessel light beams,” Phys. Rev. A 63, 063602 (2001).
[CrossRef]

2000

H. J. Loesch and B. Scheel, “Molecules on Kepler orbits: an experimental study,” Phys. Rev. Lett. 85, 2709-2712 (2000).
[CrossRef] [PubMed]

1998

H. Sakai, A. Tarasevitch, J. Danilov, H. Stapelfeldt, R. W. Yip, C. Ellert, E. Constant, and P. B. Corkum, “Optical deflection of molecules,” Phys. Rev. A 57, 2794-2801 (1998).
[CrossRef]

1997

H. Stapelfeldt, H. Sakai, E. Constant, and P. B. Corkum, “Deflection of neutral molecules using the nonresonant dipole force,” Phys. Rev. Lett. 79, 2787-2790 (1997).
[CrossRef]

M. J. Renn, A. A. Zozulya, E. A. Donley, E. A. Cornell, and D. Z. Anderson, “Optical-dipole-force fiber guiding and heating of atoms,” Phys. Rev. A 55, 3684-3696 (1997).
[CrossRef]

1996

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76, 4500 (1996).
[CrossRef] [PubMed]

M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, “Evanescent-wave guiding of atoms in hollow optical fibers,” Phys. Rev. A 53, R648-R651 (1996).
[CrossRef] [PubMed]

1995

J. Schmiedmayer, “Guiding and trapping a neutral atom on a wire,” Phys. Rev. A 52, R13-R16 (1995).
[CrossRef] [PubMed]

1993

1964

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783-1809 (1964).

Abramov, M.

V. Gapontsev, D. Gaponsev, N. Platonov, O. Shkurikhin, V. Fomin, A. Mashkin, M. Abramov, and S. Ferin, “2 kW CW ytterbium fiber laser with record diffraction-limited brightness,” in Conference on Lasers and Electro-Optics (IEEE, 2008), p. 508.

Allan, D. C.

J. B. West, J. C. Fajardo, M. T. Gallagher, K. W. Koch, N. F. Borrelli, and D. C. Allan, “Demonstration of an IR-optimized air-core photonic band-gap fiber,” in European Conference on Optical Communication (IEEE, 2000), pp. 41-42.

Anderson, D. Z.

M. J. Renn, A. A. Zozulya, E. A. Donley, E. A. Cornell, and D. Z. Anderson, “Optical-dipole-force fiber guiding and heating of atoms,” Phys. Rev. A 55, 3684-3696 (1997).
[CrossRef]

M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, “Evanescent-wave guiding of atoms in hollow optical fibers,” Phys. Rev. A 53, R648-R651 (1996).
[CrossRef] [PubMed]

Arlt, J.

J. Arlt, K. Dholakia, J. Soneson, and E. M. Wright, “Optical dipole traps and atomic waveguides based on Bessel light beams,” Phys. Rev. A 63, 063602 (2001).
[CrossRef]

Barker, P. F.

P. F. Barker and M. N. Shneider, “Slowing molecules by optical microlinear deceleration,” Phys. Rev. A 66, 065402 (2002).
[CrossRef]

Bell, M. T.

S. Willitsch, M. T. Bell, A. D. Gingell, S. R. Procter, and T. P. Softley, “Cold reactive collisions between laser-cooled ions and velocity-selected neutral molecules,” Phys. Rev. Lett. 100, 043203 (2008).
[CrossRef] [PubMed]

Benabid, F.

Bennett, C. R.

L. Michaille, D. M. Taylor, C. R. Bennett, T. J. Shepherd, C. Jacobsen, and T. P. Hansen, “Damage threshold and bending properties of photonic crystal and photonic band-gap optical fibres,” Proc. SPIE 5618, 30-38 (2004).
[CrossRef]

Bethlem, H. L.

H. L. Bethlem, M. Kajita, B. Sartakow, G. Meijer, and W. Ubachs, “Prospects for precision measurements on ammonia molecules in a fountain,” Eur. Phys. J. ST 163, 55-69 (2008).

Birkl, G.

R. Dumke, T. Muther, M. Volk, W. Ertmer, and G. Birkl, “Interferometer-type structures for guided atoms,” Phys. Rev. Lett. 89, 220402 (2002).
[CrossRef] [PubMed]

Borrelli, N. F.

J. B. West, J. C. Fajardo, M. T. Gallagher, K. W. Koch, N. F. Borrelli, and D. C. Allan, “Demonstration of an IR-optimized air-core photonic band-gap fiber,” in European Conference on Optical Communication (IEEE, 2000), pp. 41-42.

Brahms, N.

S. E. Maxwell, N. Brahms, R. deCarvalho, D. R. Glenn, J. S. Helton, S. V. Nguyen, D. Patterson, J. Petricka, D. DeMille, and J. M. Doyle, “High-flux beam source for cold, slow atoms or molecules,” Phys. Rev. Lett. 95, 173201 (2005).
[CrossRef] [PubMed]

Chen, H.

Y. Xia, Y. Yin, H. Chen, L. Deng, and J. Yin, “Electrostatic surface guiding for cold polar molecules: experimental demonstration,” Phys. Rev. Lett. 100, 043003 (2008).
[CrossRef] [PubMed]

Constant, E.

H. Sakai, A. Tarasevitch, J. Danilov, H. Stapelfeldt, R. W. Yip, C. Ellert, E. Constant, and P. B. Corkum, “Optical deflection of molecules,” Phys. Rev. A 57, 2794-2801 (1998).
[CrossRef]

H. Stapelfeldt, H. Sakai, E. Constant, and P. B. Corkum, “Deflection of neutral molecules using the nonresonant dipole force,” Phys. Rev. Lett. 79, 2787-2790 (1997).
[CrossRef]

Corkum, P. B.

H. Sakai, A. Tarasevitch, J. Danilov, H. Stapelfeldt, R. W. Yip, C. Ellert, E. Constant, and P. B. Corkum, “Optical deflection of molecules,” Phys. Rev. A 57, 2794-2801 (1998).
[CrossRef]

H. Stapelfeldt, H. Sakai, E. Constant, and P. B. Corkum, “Deflection of neutral molecules using the nonresonant dipole force,” Phys. Rev. Lett. 79, 2787-2790 (1997).
[CrossRef]

Cornell, E. A.

M. J. Renn, A. A. Zozulya, E. A. Donley, E. A. Cornell, and D. Z. Anderson, “Optical-dipole-force fiber guiding and heating of atoms,” Phys. Rev. A 55, 3684-3696 (1997).
[CrossRef]

M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, “Evanescent-wave guiding of atoms in hollow optical fibers,” Phys. Rev. A 53, R648-R651 (1996).
[CrossRef] [PubMed]

Danilov, J.

H. Sakai, A. Tarasevitch, J. Danilov, H. Stapelfeldt, R. W. Yip, C. Ellert, E. Constant, and P. B. Corkum, “Optical deflection of molecules,” Phys. Rev. A 57, 2794-2801 (1998).
[CrossRef]

deCarvalho, R.

S. E. Maxwell, N. Brahms, R. deCarvalho, D. R. Glenn, J. S. Helton, S. V. Nguyen, D. Patterson, J. Petricka, D. DeMille, and J. M. Doyle, “High-flux beam source for cold, slow atoms or molecules,” Phys. Rev. Lett. 95, 173201 (2005).
[CrossRef] [PubMed]

DeMille, D.

S. E. Maxwell, N. Brahms, R. deCarvalho, D. R. Glenn, J. S. Helton, S. V. Nguyen, D. Patterson, J. Petricka, D. DeMille, and J. M. Doyle, “High-flux beam source for cold, slow atoms or molecules,” Phys. Rev. Lett. 95, 173201 (2005).
[CrossRef] [PubMed]

Deng, L.

Y. Xia, Y. Yin, H. Chen, L. Deng, and J. Yin, “Electrostatic surface guiding for cold polar molecules: experimental demonstration,” Phys. Rev. Lett. 100, 043003 (2008).
[CrossRef] [PubMed]

Deng, L. Z.

L. Z. Deng, Y. Xia, and J. P. Yin, “A novel electrostatic guiding scheme for cold polar molecules in weak-field-seeking states,” Chin. Phys. Lett. 22, 1887-1890 (2005).
[CrossRef]

Y. Xia, L. Z. Deng, and J. P. Yin, “Electrostatic guiding of cold polar molecules on a chip,” Appl. Phys. B 81, 459-464 (2005).
[CrossRef]

Dholakia, K.

J. Arlt, K. Dholakia, J. Soneson, and E. M. Wright, “Optical dipole traps and atomic waveguides based on Bessel light beams,” Phys. Rev. A 63, 063602 (2001).
[CrossRef]

Donley, E. A.

M. J. Renn, A. A. Zozulya, E. A. Donley, E. A. Cornell, and D. Z. Anderson, “Optical-dipole-force fiber guiding and heating of atoms,” Phys. Rev. A 55, 3684-3696 (1997).
[CrossRef]

M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, “Evanescent-wave guiding of atoms in hollow optical fibers,” Phys. Rev. A 53, R648-R651 (1996).
[CrossRef] [PubMed]

Doyle, J. M.

D. Patterson and J. M. Doyle, “Bright, guided molecular beam with hydrodynamic enhancement,” J. Chem. Phys. 126, 154307 (2007).
[CrossRef] [PubMed]

S. E. Maxwell, N. Brahms, R. deCarvalho, D. R. Glenn, J. S. Helton, S. V. Nguyen, D. Patterson, J. Petricka, D. DeMille, and J. M. Doyle, “High-flux beam source for cold, slow atoms or molecules,” Phys. Rev. Lett. 95, 173201 (2005).
[CrossRef] [PubMed]

Dumke, R.

R. Dumke, T. Muther, M. Volk, W. Ertmer, and G. Birkl, “Interferometer-type structures for guided atoms,” Phys. Rev. Lett. 89, 220402 (2002).
[CrossRef] [PubMed]

Ellert, C.

H. Sakai, A. Tarasevitch, J. Danilov, H. Stapelfeldt, R. W. Yip, C. Ellert, E. Constant, and P. B. Corkum, “Optical deflection of molecules,” Phys. Rev. A 57, 2794-2801 (1998).
[CrossRef]

Ertmer, W.

R. Dumke, T. Muther, M. Volk, W. Ertmer, and G. Birkl, “Interferometer-type structures for guided atoms,” Phys. Rev. Lett. 89, 220402 (2002).
[CrossRef] [PubMed]

Fajardo, J. C.

J. B. West, J. C. Fajardo, M. T. Gallagher, K. W. Koch, N. F. Borrelli, and D. C. Allan, “Demonstration of an IR-optimized air-core photonic band-gap fiber,” in European Conference on Optical Communication (IEEE, 2000), pp. 41-42.

Fedotov, A. B.

J. Tauer, F. Orban, H. Kofler, A. B. Fedotov, I. V. Fedotov, V. P. Mitrokhin, A. M. Zheltikov, and E. Wintner, “High-throughput of single high-power laser pulses by hollow photonic bandgap fibers,” Laser Phys. Lett. 4, 444-448 (2007).
[CrossRef]

Fedotov, I. V.

J. Tauer, F. Orban, H. Kofler, A. B. Fedotov, I. V. Fedotov, V. P. Mitrokhin, A. M. Zheltikov, and E. Wintner, “High-throughput of single high-power laser pulses by hollow photonic bandgap fibers,” Laser Phys. Lett. 4, 444-448 (2007).
[CrossRef]

Ferin, S.

V. Gapontsev, D. Gaponsev, N. Platonov, O. Shkurikhin, V. Fomin, A. Mashkin, M. Abramov, and S. Ferin, “2 kW CW ytterbium fiber laser with record diffraction-limited brightness,” in Conference on Lasers and Electro-Optics (IEEE, 2008), p. 508.

Fomin, V.

V. Gapontsev, D. Gaponsev, N. Platonov, O. Shkurikhin, V. Fomin, A. Mashkin, M. Abramov, and S. Ferin, “2 kW CW ytterbium fiber laser with record diffraction-limited brightness,” in Conference on Lasers and Electro-Optics (IEEE, 2008), p. 508.

Gallagher, M. T.

J. B. West, J. C. Fajardo, M. T. Gallagher, K. W. Koch, N. F. Borrelli, and D. C. Allan, “Demonstration of an IR-optimized air-core photonic band-gap fiber,” in European Conference on Optical Communication (IEEE, 2000), pp. 41-42.

Gaponsev, D.

V. Gapontsev, D. Gaponsev, N. Platonov, O. Shkurikhin, V. Fomin, A. Mashkin, M. Abramov, and S. Ferin, “2 kW CW ytterbium fiber laser with record diffraction-limited brightness,” in Conference on Lasers and Electro-Optics (IEEE, 2008), p. 508.

Gapontsev, V.

V. Gapontsev, D. Gaponsev, N. Platonov, O. Shkurikhin, V. Fomin, A. Mashkin, M. Abramov, and S. Ferin, “2 kW CW ytterbium fiber laser with record diffraction-limited brightness,” in Conference on Lasers and Electro-Optics (IEEE, 2008), p. 508.

Gingell, A. D.

S. Willitsch, M. T. Bell, A. D. Gingell, S. R. Procter, and T. P. Softley, “Cold reactive collisions between laser-cooled ions and velocity-selected neutral molecules,” Phys. Rev. Lett. 100, 043203 (2008).
[CrossRef] [PubMed]

Glenn, D. R.

S. E. Maxwell, N. Brahms, R. deCarvalho, D. R. Glenn, J. S. Helton, S. V. Nguyen, D. Patterson, J. Petricka, D. DeMille, and J. M. Doyle, “High-flux beam source for cold, slow atoms or molecules,” Phys. Rev. Lett. 95, 173201 (2005).
[CrossRef] [PubMed]

Hansen, T. P.

L. Michaille, D. M. Taylor, C. R. Bennett, T. J. Shepherd, C. Jacobsen, and T. P. Hansen, “Damage threshold and bending properties of photonic crystal and photonic band-gap optical fibres,” Proc. SPIE 5618, 30-38 (2004).
[CrossRef]

Helton, J. S.

S. E. Maxwell, N. Brahms, R. deCarvalho, D. R. Glenn, J. S. Helton, S. V. Nguyen, D. Patterson, J. Petricka, D. DeMille, and J. M. Doyle, “High-flux beam source for cold, slow atoms or molecules,” Phys. Rev. Lett. 95, 173201 (2005).
[CrossRef] [PubMed]

Ito, H.

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76, 4500 (1996).
[CrossRef] [PubMed]

Jacobsen, C.

L. Michaille, D. M. Taylor, C. R. Bennett, T. J. Shepherd, C. Jacobsen, and T. P. Hansen, “Damage threshold and bending properties of photonic crystal and photonic band-gap optical fibres,” Proc. SPIE 5618, 30-38 (2004).
[CrossRef]

Jhe, W.

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76, 4500 (1996).
[CrossRef] [PubMed]

Junglen, T.

T. Junglen, T. Rieger, S. A. Rangwala, P. W. H. Pinksea, and G. Rempe, “Slow ammonia molecules in an electrostatic quadrupole guide,” Eur. Phys. J. D 31, 365-373 (2004).
[CrossRef]

T. Junglen, T. Rieger, S. A. Rangwala, P. W. H. Pinkse, and G. Rempe, “Two-dimensional trapping of dipolar molecules in time-varying electric fields,” Phys. Rev. Lett. 92, 223001 (2004).
[CrossRef] [PubMed]

S. A. Rangwala, T. Junglen, T. Rieger, P. W. H. Pinkse, and G. Rempe, “Continuous source of translationally cold dipolar molecules,” Phys. Rev. A 67, 043406 (2003).
[CrossRef]

Kajita, M.

H. L. Bethlem, M. Kajita, B. Sartakow, G. Meijer, and W. Ubachs, “Prospects for precision measurements on ammonia molecules in a fountain,” Eur. Phys. J. ST 163, 55-69 (2008).

Kanamori, H.

H. Tsuji, Y. Okuda, T. Sekiguchi, and H. Kanamori, “Velocity distribution of the pulsed ND3 molecular beam selected by a quadrupole Stark velocity filter,” Chem. Phys. Lett. 436, 331-334 (2007).
[CrossRef]

Knight, J. C.

Koch, K. W.

J. B. West, J. C. Fajardo, M. T. Gallagher, K. W. Koch, N. F. Borrelli, and D. C. Allan, “Demonstration of an IR-optimized air-core photonic band-gap fiber,” in European Conference on Optical Communication (IEEE, 2000), pp. 41-42.

Kofler, H.

J. Tauer, F. Orban, H. Kofler, A. B. Fedotov, I. V. Fedotov, V. P. Mitrokhin, A. M. Zheltikov, and E. Wintner, “High-throughput of single high-power laser pulses by hollow photonic bandgap fibers,” Laser Phys. Lett. 4, 444-448 (2007).
[CrossRef]

Lee, K. I.

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76, 4500 (1996).
[CrossRef] [PubMed]

Loesch, H. J.

H. J. Loesch and B. Scheel, “Molecules on Kepler orbits: an experimental study,” Phys. Rev. Lett. 85, 2709-2712 (2000).
[CrossRef] [PubMed]

Marcatili, E. A. J.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783-1809 (1964).

Mashkin, A.

V. Gapontsev, D. Gaponsev, N. Platonov, O. Shkurikhin, V. Fomin, A. Mashkin, M. Abramov, and S. Ferin, “2 kW CW ytterbium fiber laser with record diffraction-limited brightness,” in Conference on Lasers and Electro-Optics (IEEE, 2008), p. 508.

Maxwell, S. E.

S. E. Maxwell, N. Brahms, R. deCarvalho, D. R. Glenn, J. S. Helton, S. V. Nguyen, D. Patterson, J. Petricka, D. DeMille, and J. M. Doyle, “High-flux beam source for cold, slow atoms or molecules,” Phys. Rev. Lett. 95, 173201 (2005).
[CrossRef] [PubMed]

Meijer, G.

H. L. Bethlem, M. Kajita, B. Sartakow, G. Meijer, and W. Ubachs, “Prospects for precision measurements on ammonia molecules in a fountain,” Eur. Phys. J. ST 163, 55-69 (2008).

Michaille, L.

L. Michaille, D. M. Taylor, C. R. Bennett, T. J. Shepherd, C. Jacobsen, and T. P. Hansen, “Damage threshold and bending properties of photonic crystal and photonic band-gap optical fibres,” Proc. SPIE 5618, 30-38 (2004).
[CrossRef]

Mitrokhin, V. P.

J. Tauer, F. Orban, H. Kofler, A. B. Fedotov, I. V. Fedotov, V. P. Mitrokhin, A. M. Zheltikov, and E. Wintner, “High-throughput of single high-power laser pulses by hollow photonic bandgap fibers,” Laser Phys. Lett. 4, 444-448 (2007).
[CrossRef]

Miyagi, M.

Muther, T.

R. Dumke, T. Muther, M. Volk, W. Ertmer, and G. Birkl, “Interferometer-type structures for guided atoms,” Phys. Rev. Lett. 89, 220402 (2002).
[CrossRef] [PubMed]

Nakata, T.

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76, 4500 (1996).
[CrossRef] [PubMed]

Nguyen, S. V.

S. E. Maxwell, N. Brahms, R. deCarvalho, D. R. Glenn, J. S. Helton, S. V. Nguyen, D. Patterson, J. Petricka, D. DeMille, and J. M. Doyle, “High-flux beam source for cold, slow atoms or molecules,” Phys. Rev. Lett. 95, 173201 (2005).
[CrossRef] [PubMed]

Ohtsu, M.

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76, 4500 (1996).
[CrossRef] [PubMed]

Okuda, Y.

H. Tsuji, Y. Okuda, T. Sekiguchi, and H. Kanamori, “Velocity distribution of the pulsed ND3 molecular beam selected by a quadrupole Stark velocity filter,” Chem. Phys. Lett. 436, 331-334 (2007).
[CrossRef]

Orban, F.

J. Tauer, F. Orban, H. Kofler, A. B. Fedotov, I. V. Fedotov, V. P. Mitrokhin, A. M. Zheltikov, and E. Wintner, “High-throughput of single high-power laser pulses by hollow photonic bandgap fibers,” Laser Phys. Lett. 4, 444-448 (2007).
[CrossRef]

Patterson, D.

D. Patterson and J. M. Doyle, “Bright, guided molecular beam with hydrodynamic enhancement,” J. Chem. Phys. 126, 154307 (2007).
[CrossRef] [PubMed]

S. E. Maxwell, N. Brahms, R. deCarvalho, D. R. Glenn, J. S. Helton, S. V. Nguyen, D. Patterson, J. Petricka, D. DeMille, and J. M. Doyle, “High-flux beam source for cold, slow atoms or molecules,” Phys. Rev. Lett. 95, 173201 (2005).
[CrossRef] [PubMed]

Petricka, J.

S. E. Maxwell, N. Brahms, R. deCarvalho, D. R. Glenn, J. S. Helton, S. V. Nguyen, D. Patterson, J. Petricka, D. DeMille, and J. M. Doyle, “High-flux beam source for cold, slow atoms or molecules,” Phys. Rev. Lett. 95, 173201 (2005).
[CrossRef] [PubMed]

Pinkse, P. W. H.

T. Junglen, T. Rieger, S. A. Rangwala, P. W. H. Pinkse, and G. Rempe, “Two-dimensional trapping of dipolar molecules in time-varying electric fields,” Phys. Rev. Lett. 92, 223001 (2004).
[CrossRef] [PubMed]

S. A. Rangwala, T. Junglen, T. Rieger, P. W. H. Pinkse, and G. Rempe, “Continuous source of translationally cold dipolar molecules,” Phys. Rev. A 67, 043406 (2003).
[CrossRef]

Pinksea, P. W. H.

T. Junglen, T. Rieger, S. A. Rangwala, P. W. H. Pinksea, and G. Rempe, “Slow ammonia molecules in an electrostatic quadrupole guide,” Eur. Phys. J. D 31, 365-373 (2004).
[CrossRef]

Platonov, N.

V. Gapontsev, D. Gaponsev, N. Platonov, O. Shkurikhin, V. Fomin, A. Mashkin, M. Abramov, and S. Ferin, “2 kW CW ytterbium fiber laser with record diffraction-limited brightness,” in Conference on Lasers and Electro-Optics (IEEE, 2008), p. 508.

Procter, S. R.

S. Willitsch, M. T. Bell, A. D. Gingell, S. R. Procter, and T. P. Softley, “Cold reactive collisions between laser-cooled ions and velocity-selected neutral molecules,” Phys. Rev. Lett. 100, 043203 (2008).
[CrossRef] [PubMed]

Rangwala, S. A.

T. Junglen, T. Rieger, S. A. Rangwala, P. W. H. Pinkse, and G. Rempe, “Two-dimensional trapping of dipolar molecules in time-varying electric fields,” Phys. Rev. Lett. 92, 223001 (2004).
[CrossRef] [PubMed]

T. Junglen, T. Rieger, S. A. Rangwala, P. W. H. Pinksea, and G. Rempe, “Slow ammonia molecules in an electrostatic quadrupole guide,” Eur. Phys. J. D 31, 365-373 (2004).
[CrossRef]

S. A. Rangwala, T. Junglen, T. Rieger, P. W. H. Pinkse, and G. Rempe, “Continuous source of translationally cold dipolar molecules,” Phys. Rev. A 67, 043406 (2003).
[CrossRef]

Rempe, G.

T. Junglen, T. Rieger, S. A. Rangwala, P. W. H. Pinksea, and G. Rempe, “Slow ammonia molecules in an electrostatic quadrupole guide,” Eur. Phys. J. D 31, 365-373 (2004).
[CrossRef]

T. Junglen, T. Rieger, S. A. Rangwala, P. W. H. Pinkse, and G. Rempe, “Two-dimensional trapping of dipolar molecules in time-varying electric fields,” Phys. Rev. Lett. 92, 223001 (2004).
[CrossRef] [PubMed]

S. A. Rangwala, T. Junglen, T. Rieger, P. W. H. Pinkse, and G. Rempe, “Continuous source of translationally cold dipolar molecules,” Phys. Rev. A 67, 043406 (2003).
[CrossRef]

Renn, M. J.

M. J. Renn, A. A. Zozulya, E. A. Donley, E. A. Cornell, and D. Z. Anderson, “Optical-dipole-force fiber guiding and heating of atoms,” Phys. Rev. A 55, 3684-3696 (1997).
[CrossRef]

M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, “Evanescent-wave guiding of atoms in hollow optical fibers,” Phys. Rev. A 53, R648-R651 (1996).
[CrossRef] [PubMed]

Rieger, T.

T. Junglen, T. Rieger, S. A. Rangwala, P. W. H. Pinksea, and G. Rempe, “Slow ammonia molecules in an electrostatic quadrupole guide,” Eur. Phys. J. D 31, 365-373 (2004).
[CrossRef]

T. Junglen, T. Rieger, S. A. Rangwala, P. W. H. Pinkse, and G. Rempe, “Two-dimensional trapping of dipolar molecules in time-varying electric fields,” Phys. Rev. Lett. 92, 223001 (2004).
[CrossRef] [PubMed]

S. A. Rangwala, T. Junglen, T. Rieger, P. W. H. Pinkse, and G. Rempe, “Continuous source of translationally cold dipolar molecules,” Phys. Rev. A 67, 043406 (2003).
[CrossRef]

Russell, P. St. J.

Saito, M.

Sakai, H.

H. Sakai, A. Tarasevitch, J. Danilov, H. Stapelfeldt, R. W. Yip, C. Ellert, E. Constant, and P. B. Corkum, “Optical deflection of molecules,” Phys. Rev. A 57, 2794-2801 (1998).
[CrossRef]

H. Stapelfeldt, H. Sakai, E. Constant, and P. B. Corkum, “Deflection of neutral molecules using the nonresonant dipole force,” Phys. Rev. Lett. 79, 2787-2790 (1997).
[CrossRef]

Sakaki, K.

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76, 4500 (1996).
[CrossRef] [PubMed]

Sartakow, B.

H. L. Bethlem, M. Kajita, B. Sartakow, G. Meijer, and W. Ubachs, “Prospects for precision measurements on ammonia molecules in a fountain,” Eur. Phys. J. ST 163, 55-69 (2008).

Sato, S.

Scheel, B.

H. J. Loesch and B. Scheel, “Molecules on Kepler orbits: an experimental study,” Phys. Rev. Lett. 85, 2709-2712 (2000).
[CrossRef] [PubMed]

Schmeltzer, R. A.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783-1809 (1964).

Schmiedmayer, J.

J. Schmiedmayer, “Guiding and trapping a neutral atom on a wire,” Phys. Rev. A 52, R13-R16 (1995).
[CrossRef] [PubMed]

Sekiguchi, T.

H. Tsuji, Y. Okuda, T. Sekiguchi, and H. Kanamori, “Velocity distribution of the pulsed ND3 molecular beam selected by a quadrupole Stark velocity filter,” Chem. Phys. Lett. 436, 331-334 (2007).
[CrossRef]

Shepherd, T. J.

L. Michaille, D. M. Taylor, C. R. Bennett, T. J. Shepherd, C. Jacobsen, and T. P. Hansen, “Damage threshold and bending properties of photonic crystal and photonic band-gap optical fibres,” Proc. SPIE 5618, 30-38 (2004).
[CrossRef]

Shkurikhin, O.

V. Gapontsev, D. Gaponsev, N. Platonov, O. Shkurikhin, V. Fomin, A. Mashkin, M. Abramov, and S. Ferin, “2 kW CW ytterbium fiber laser with record diffraction-limited brightness,” in Conference on Lasers and Electro-Optics (IEEE, 2008), p. 508.

Shneider, M. N.

P. F. Barker and M. N. Shneider, “Slowing molecules by optical microlinear deceleration,” Phys. Rev. A 66, 065402 (2002).
[CrossRef]

Softley, T. P.

S. Willitsch, M. T. Bell, A. D. Gingell, S. R. Procter, and T. P. Softley, “Cold reactive collisions between laser-cooled ions and velocity-selected neutral molecules,” Phys. Rev. Lett. 100, 043203 (2008).
[CrossRef] [PubMed]

Soneson, J.

J. Arlt, K. Dholakia, J. Soneson, and E. M. Wright, “Optical dipole traps and atomic waveguides based on Bessel light beams,” Phys. Rev. A 63, 063602 (2001).
[CrossRef]

Stapelfeldt, H.

H. Sakai, A. Tarasevitch, J. Danilov, H. Stapelfeldt, R. W. Yip, C. Ellert, E. Constant, and P. B. Corkum, “Optical deflection of molecules,” Phys. Rev. A 57, 2794-2801 (1998).
[CrossRef]

H. Stapelfeldt, H. Sakai, E. Constant, and P. B. Corkum, “Deflection of neutral molecules using the nonresonant dipole force,” Phys. Rev. Lett. 79, 2787-2790 (1997).
[CrossRef]

Sun, M.

M. Sun and J. Yin, “Controllable electrostatic guiding for cold polar molecules on the surface of a chip,” Phys. Rev. A 78, 033426 (2008).
[CrossRef]

Tarasevitch, A.

H. Sakai, A. Tarasevitch, J. Danilov, H. Stapelfeldt, R. W. Yip, C. Ellert, E. Constant, and P. B. Corkum, “Optical deflection of molecules,” Phys. Rev. A 57, 2794-2801 (1998).
[CrossRef]

Tauer, J.

J. Tauer, F. Orban, H. Kofler, A. B. Fedotov, I. V. Fedotov, V. P. Mitrokhin, A. M. Zheltikov, and E. Wintner, “High-throughput of single high-power laser pulses by hollow photonic bandgap fibers,” Laser Phys. Lett. 4, 444-448 (2007).
[CrossRef]

Taylor, D. M.

L. Michaille, D. M. Taylor, C. R. Bennett, T. J. Shepherd, C. Jacobsen, and T. P. Hansen, “Damage threshold and bending properties of photonic crystal and photonic band-gap optical fibres,” Proc. SPIE 5618, 30-38 (2004).
[CrossRef]

Tsuji, H.

H. Tsuji, Y. Okuda, T. Sekiguchi, and H. Kanamori, “Velocity distribution of the pulsed ND3 molecular beam selected by a quadrupole Stark velocity filter,” Chem. Phys. Lett. 436, 331-334 (2007).
[CrossRef]

Ubachs, W.

H. L. Bethlem, M. Kajita, B. Sartakow, G. Meijer, and W. Ubachs, “Prospects for precision measurements on ammonia molecules in a fountain,” Eur. Phys. J. ST 163, 55-69 (2008).

Volk, M.

R. Dumke, T. Muther, M. Volk, W. Ertmer, and G. Birkl, “Interferometer-type structures for guided atoms,” Phys. Rev. Lett. 89, 220402 (2002).
[CrossRef] [PubMed]

West, J. B.

J. B. West, J. C. Fajardo, M. T. Gallagher, K. W. Koch, N. F. Borrelli, and D. C. Allan, “Demonstration of an IR-optimized air-core photonic band-gap fiber,” in European Conference on Optical Communication (IEEE, 2000), pp. 41-42.

Wieman, C. E.

M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, “Evanescent-wave guiding of atoms in hollow optical fibers,” Phys. Rev. A 53, R648-R651 (1996).
[CrossRef] [PubMed]

Willitsch, S.

S. Willitsch, M. T. Bell, A. D. Gingell, S. R. Procter, and T. P. Softley, “Cold reactive collisions between laser-cooled ions and velocity-selected neutral molecules,” Phys. Rev. Lett. 100, 043203 (2008).
[CrossRef] [PubMed]

Wintner, E.

J. Tauer, F. Orban, H. Kofler, A. B. Fedotov, I. V. Fedotov, V. P. Mitrokhin, A. M. Zheltikov, and E. Wintner, “High-throughput of single high-power laser pulses by hollow photonic bandgap fibers,” Laser Phys. Lett. 4, 444-448 (2007).
[CrossRef]

Wright, E. M.

J. Arlt, K. Dholakia, J. Soneson, and E. M. Wright, “Optical dipole traps and atomic waveguides based on Bessel light beams,” Phys. Rev. A 63, 063602 (2001).
[CrossRef]

Xia, Y.

Y. L. Yin, Y. Xia, and J. Yin, “Deceleration of a continuous-wave (CW) molecular beam with a single quasi-CW semi-Gaussian laser beam,” Chin. Phys. B 17, 3672-3677 (2008).
[CrossRef]

Y. Xia, Y. Yin, H. Chen, L. Deng, and J. Yin, “Electrostatic surface guiding for cold polar molecules: experimental demonstration,” Phys. Rev. Lett. 100, 043003 (2008).
[CrossRef] [PubMed]

L. Z. Deng, Y. Xia, and J. P. Yin, “A novel electrostatic guiding scheme for cold polar molecules in weak-field-seeking states,” Chin. Phys. Lett. 22, 1887-1890 (2005).
[CrossRef]

Y. Xia, L. Z. Deng, and J. P. Yin, “Electrostatic guiding of cold polar molecules on a chip,” Appl. Phys. B 81, 459-464 (2005).
[CrossRef]

Yin, J.

Y. Xia, Y. Yin, H. Chen, L. Deng, and J. Yin, “Electrostatic surface guiding for cold polar molecules: experimental demonstration,” Phys. Rev. Lett. 100, 043003 (2008).
[CrossRef] [PubMed]

Y. L. Yin, Y. Xia, and J. Yin, “Deceleration of a continuous-wave (CW) molecular beam with a single quasi-CW semi-Gaussian laser beam,” Chin. Phys. B 17, 3672-3677 (2008).
[CrossRef]

M. Sun and J. Yin, “Controllable electrostatic guiding for cold polar molecules on the surface of a chip,” Phys. Rev. A 78, 033426 (2008).
[CrossRef]

Yin, J. P.

L. Z. Deng, Y. Xia, and J. P. Yin, “A novel electrostatic guiding scheme for cold polar molecules in weak-field-seeking states,” Chin. Phys. Lett. 22, 1887-1890 (2005).
[CrossRef]

Y. Xia, L. Z. Deng, and J. P. Yin, “Electrostatic guiding of cold polar molecules on a chip,” Appl. Phys. B 81, 459-464 (2005).
[CrossRef]

Yin, Y.

Y. Xia, Y. Yin, H. Chen, L. Deng, and J. Yin, “Electrostatic surface guiding for cold polar molecules: experimental demonstration,” Phys. Rev. Lett. 100, 043003 (2008).
[CrossRef] [PubMed]

Yin, Y. L.

Y. L. Yin, Y. Xia, and J. Yin, “Deceleration of a continuous-wave (CW) molecular beam with a single quasi-CW semi-Gaussian laser beam,” Chin. Phys. B 17, 3672-3677 (2008).
[CrossRef]

Yip, R. W.

H. Sakai, A. Tarasevitch, J. Danilov, H. Stapelfeldt, R. W. Yip, C. Ellert, E. Constant, and P. B. Corkum, “Optical deflection of molecules,” Phys. Rev. A 57, 2794-2801 (1998).
[CrossRef]

Zheltikov, A. M.

J. Tauer, F. Orban, H. Kofler, A. B. Fedotov, I. V. Fedotov, V. P. Mitrokhin, A. M. Zheltikov, and E. Wintner, “High-throughput of single high-power laser pulses by hollow photonic bandgap fibers,” Laser Phys. Lett. 4, 444-448 (2007).
[CrossRef]

Zozulya, A. A.

M. J. Renn, A. A. Zozulya, E. A. Donley, E. A. Cornell, and D. Z. Anderson, “Optical-dipole-force fiber guiding and heating of atoms,” Phys. Rev. A 55, 3684-3696 (1997).
[CrossRef]

Appl. Phys. B

Y. Xia, L. Z. Deng, and J. P. Yin, “Electrostatic guiding of cold polar molecules on a chip,” Appl. Phys. B 81, 459-464 (2005).
[CrossRef]

Bell Syst. Tech. J.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783-1809 (1964).

Chem. Phys. Lett.

H. Tsuji, Y. Okuda, T. Sekiguchi, and H. Kanamori, “Velocity distribution of the pulsed ND3 molecular beam selected by a quadrupole Stark velocity filter,” Chem. Phys. Lett. 436, 331-334 (2007).
[CrossRef]

Chin. Phys. B

Y. L. Yin, Y. Xia, and J. Yin, “Deceleration of a continuous-wave (CW) molecular beam with a single quasi-CW semi-Gaussian laser beam,” Chin. Phys. B 17, 3672-3677 (2008).
[CrossRef]

Chin. Phys. Lett.

L. Z. Deng, Y. Xia, and J. P. Yin, “A novel electrostatic guiding scheme for cold polar molecules in weak-field-seeking states,” Chin. Phys. Lett. 22, 1887-1890 (2005).
[CrossRef]

Eur. Phys. J. D

T. Junglen, T. Rieger, S. A. Rangwala, P. W. H. Pinksea, and G. Rempe, “Slow ammonia molecules in an electrostatic quadrupole guide,” Eur. Phys. J. D 31, 365-373 (2004).
[CrossRef]

Eur. Phys. J. ST

H. L. Bethlem, M. Kajita, B. Sartakow, G. Meijer, and W. Ubachs, “Prospects for precision measurements on ammonia molecules in a fountain,” Eur. Phys. J. ST 163, 55-69 (2008).

J. Chem. Phys.

D. Patterson and J. M. Doyle, “Bright, guided molecular beam with hydrodynamic enhancement,” J. Chem. Phys. 126, 154307 (2007).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

Laser Phys. Lett.

J. Tauer, F. Orban, H. Kofler, A. B. Fedotov, I. V. Fedotov, V. P. Mitrokhin, A. M. Zheltikov, and E. Wintner, “High-throughput of single high-power laser pulses by hollow photonic bandgap fibers,” Laser Phys. Lett. 4, 444-448 (2007).
[CrossRef]

Opt. Express

Phys. Rev. A

H. Sakai, A. Tarasevitch, J. Danilov, H. Stapelfeldt, R. W. Yip, C. Ellert, E. Constant, and P. B. Corkum, “Optical deflection of molecules,” Phys. Rev. A 57, 2794-2801 (1998).
[CrossRef]

P. F. Barker and M. N. Shneider, “Slowing molecules by optical microlinear deceleration,” Phys. Rev. A 66, 065402 (2002).
[CrossRef]

M. J. Renn, E. A. Donley, E. A. Cornell, C. E. Wieman, and D. Z. Anderson, “Evanescent-wave guiding of atoms in hollow optical fibers,” Phys. Rev. A 53, R648-R651 (1996).
[CrossRef] [PubMed]

M. J. Renn, A. A. Zozulya, E. A. Donley, E. A. Cornell, and D. Z. Anderson, “Optical-dipole-force fiber guiding and heating of atoms,” Phys. Rev. A 55, 3684-3696 (1997).
[CrossRef]

J. Arlt, K. Dholakia, J. Soneson, and E. M. Wright, “Optical dipole traps and atomic waveguides based on Bessel light beams,” Phys. Rev. A 63, 063602 (2001).
[CrossRef]

J. Schmiedmayer, “Guiding and trapping a neutral atom on a wire,” Phys. Rev. A 52, R13-R16 (1995).
[CrossRef] [PubMed]

S. A. Rangwala, T. Junglen, T. Rieger, P. W. H. Pinkse, and G. Rempe, “Continuous source of translationally cold dipolar molecules,” Phys. Rev. A 67, 043406 (2003).
[CrossRef]

M. Sun and J. Yin, “Controllable electrostatic guiding for cold polar molecules on the surface of a chip,” Phys. Rev. A 78, 033426 (2008).
[CrossRef]

Phys. Rev. Lett.

Y. Xia, Y. Yin, H. Chen, L. Deng, and J. Yin, “Electrostatic surface guiding for cold polar molecules: experimental demonstration,” Phys. Rev. Lett. 100, 043003 (2008).
[CrossRef] [PubMed]

T. Junglen, T. Rieger, S. A. Rangwala, P. W. H. Pinkse, and G. Rempe, “Two-dimensional trapping of dipolar molecules in time-varying electric fields,” Phys. Rev. Lett. 92, 223001 (2004).
[CrossRef] [PubMed]

S. E. Maxwell, N. Brahms, R. deCarvalho, D. R. Glenn, J. S. Helton, S. V. Nguyen, D. Patterson, J. Petricka, D. DeMille, and J. M. Doyle, “High-flux beam source for cold, slow atoms or molecules,” Phys. Rev. Lett. 95, 173201 (2005).
[CrossRef] [PubMed]

H. Ito, T. Nakata, K. Sakaki, M. Ohtsu, K. I. Lee, and W. Jhe, “Laser spectroscopy of atoms guided by evanescent waves in micron-sized hollow optical fibers,” Phys. Rev. Lett. 76, 4500 (1996).
[CrossRef] [PubMed]

H. J. Loesch and B. Scheel, “Molecules on Kepler orbits: an experimental study,” Phys. Rev. Lett. 85, 2709-2712 (2000).
[CrossRef] [PubMed]

R. Dumke, T. Muther, M. Volk, W. Ertmer, and G. Birkl, “Interferometer-type structures for guided atoms,” Phys. Rev. Lett. 89, 220402 (2002).
[CrossRef] [PubMed]

H. Stapelfeldt, H. Sakai, E. Constant, and P. B. Corkum, “Deflection of neutral molecules using the nonresonant dipole force,” Phys. Rev. Lett. 79, 2787-2790 (1997).
[CrossRef]

S. Willitsch, M. T. Bell, A. D. Gingell, S. R. Procter, and T. P. Softley, “Cold reactive collisions between laser-cooled ions and velocity-selected neutral molecules,” Phys. Rev. Lett. 100, 043203 (2008).
[CrossRef] [PubMed]

Proc. SPIE

L. Michaille, D. M. Taylor, C. R. Bennett, T. J. Shepherd, C. Jacobsen, and T. P. Hansen, “Damage threshold and bending properties of photonic crystal and photonic band-gap optical fibres,” Proc. SPIE 5618, 30-38 (2004).
[CrossRef]

Other

V. Gapontsev, D. Gaponsev, N. Platonov, O. Shkurikhin, V. Fomin, A. Mashkin, M. Abramov, and S. Ferin, “2 kW CW ytterbium fiber laser with record diffraction-limited brightness,” in Conference on Lasers and Electro-Optics (IEEE, 2008), p. 508.

J. B. West, J. C. Fajardo, M. T. Gallagher, K. W. Koch, N. F. Borrelli, and D. C. Allan, “Demonstration of an IR-optimized air-core photonic band-gap fiber,” in European Conference on Optical Communication (IEEE, 2000), pp. 41-42.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of laser guiding for cold arbitrary molecules in the (a) straight and (b) bend hollow-core photonic bandgap (HC-PBG) fiber.

Fig. 2
Fig. 2

Dependence of the coupling efficiency C for the Gaussian mode in the HC-PBG fiber with a hollow radius of a = 7.5 μ m on the beam waist w 0 of the incident Gaussian beam.

Fig. 3
Fig. 3

Radial distribution of the optical potential of red-detuned Gaussian mode in the HC-PBG fiber for I 2 molecules for P = 2   kW and a = 7.5 μ m .

Fig. 4
Fig. 4

Dependence of the (a) straight and (b) bent guiding efficiency on the laser power P for a = 7.5 μ m , L = 8   cm , T T m = 0.5   K , and T L m = 5   K . The data points with an error bar are the simulated results and the solid curve is the theoretically calculated results.

Fig. 5
Fig. 5

Velocity distributions of the straight guided molecular beam at the outlet of the straight HC-PBG fiber in the (a) transverse and (b) longitudinal directions for a = 7.5 μ m , L = 8   cm , T T m = 0.5   K , and T L m = 5   K . The data points with an error bar are the simulated results, the solid curves are the transverse and longitudinal velocity distributions of the input molecular beam, and the dotted curves (including the right inset) are the transverse and longitudinal velocity distributions of the guided output molecular beam.

Fig. 6
Fig. 6

Velocity distributions of the bent-guided molecular beam at the outlet of the bent HC-PBG fiber in the (a) transverse and (b) longitudinal directions for a = 7.5 μ m , L = 8   cm , T T m = 0.5   K , and T L m = 5   K . The data points with an error bar are the simulated results, the solid curves are the transverse and longitudinal velocity distributions of the input molecular beam, and the dotted curves (including the right inset) are the transverse and longitudinal velocity distributions of the guided output molecular beam.

Equations (31)

Equations on this page are rendered with MathJax. Learn more.

I = I 0 J 0 2 ( r a u 11 ) e α loss z ,
P = 0 a I × 2 π r d r .
I = e α loss z P J 0 2 ( r a u 11 ) π a 2 [ J 0 2 ( u 11 ) + J 1 2 ( u 11 ) ] .
C = | 0 a E GB ( r ) J 0 ( r a u 11 ) r   d r | 2 0 | E GB ( r ) | 2 r   d r 0 a J 0 2 ( r a u 11 ) r   d r ,
E GB ( r ) = 2 P in w 0 π exp ( r 2 w 0 2 ) ,
U = α 2 ε 0 c I ,
U = e α loss z P α J 0 2 ( r a u 11 ) 2 c π ε 0 a 2 [ J 0 2 ( u 11 ) + J 1 2 ( u 11 ) ] .
f ( x , y ) = 1 π w 2 e x 2 + y 2 / w 2 ,
f ( v x , y ) = 1 π v T m e v x , y 2 / v T m 2 ,
f ( v z ) = 2 v z v L m 2 e v z 2 / v L m 2 ,
J in = x 2 + y 2 a 2 f ( x , y ) d x d y v x 2 + v y 2 f ( v x , v y ) d v x d v y v z > 0 v z f ( v z ) d v z .
J out = x 2 + y 2 a 2 f ( x , y ) d x d y s ( r ) f ( v r , v θ ) d v r d v θ v z > 0 v z f ( v z ) d v z .
s ( r ) : 1 2 M v r 2 + 1 2 M v θ 2 + U ( r ) < 1 2 M r 2 a 2 v θ 2 + U ( a ) .
η J out J in = 1 π a 2 π a / 2 π a / 2 e x 2 / a 2 d x π a / 2 π a / 2 e y 2 / a 2 erf ( 1 v T m 2 ( U ( a ) U ( r ) ) M ) erf ( 1 v T m 2 ( U ( a ) U ( r ) ) M ( 1 r 2 a 2 ) ) d y ,
x = x ,
y = R [ 1 cos ( z / R ) ] + y   cos ( z / R ) ,
z = ( R y ) sin ( z / R ) ,
e x = e x ,
e y = e y   cos ( z / R ) + e z   sin ( z / R ) ,
e z = e y   sin ( z / R ) + e z   cos ( z / R ) .
a = a x e x + [ a y + v z 2 R ] e y + [ a z 2 v y v z R ] e z .
s ( v x , v y , v z ) : 1 2 M v x 2 + 1 2 M v y 2 + M v z 2 R y + U ( x , y , z ) = const ,
1 2 M v x 2 + U ( x , y , 0 ) U ( a , L ) ,
1 2 M v y 2 + M v z 2 R y + U ( x , y , 0 ) U ( a , L ) + M v z 2 R ( a ) ,
J out = x 2 + y 2 a 2 f ( x , y ) d x d y s ( v x , v y , v z ) f ( v x , v y ) v z f ( v z ) d v x d v y d v z .
η J out J in = 4 π 3 a 2 v L m 3 ( 1 1 e ) π a / 2 π a / 2 e x 2 / a 2 d x π a / 2 π a / 2 erf ( 1 v T m 2 ( U ( a , L ) U ( x , y , 0 ) ) M ) e y 2 / a 2 d y 0 R ( U ( a , L ) U ( x , y , 0 ) ) M ( y + a ) erf ( 1 v T m 2 ( U ( a , L ) U ( x , y , 0 ) ) M 2 ( a + y ) v z 2 R ) v z 2 e v z 2 / v L m 2 d v z .
F x = U x , F y = U y , F z = U z ,
a x = F x M , a y = F y M , a z = F z M .
a x = F x M ,
a y = F y M v z 2 R ,
a z = F z M + 2 v y v z R .

Metrics