Abstract

We propose a design tool for dielectric optical resonator-based biochemical refractometry sensors. Analogous to the widely accepted photodetector figure of merit, the detectivity D*, we introduce a new sensor system figure of merit, the time-normalized sensitivity S*, to permit quantitative, cross-technology-platform comparison between resonator sensors with distinctive device designs and interrogation configurations. The functional dependence of S* on device parameters, such as resonant cavity quality factor (Q), extinction ratio, system noise, and light source spectral bandwidth, is evaluated by using a Lorentzian peak fitting algorithm and Monte Carlo simulations to provide theoretical insights and useful design guidelines for optical resonator sensors. Importantly, we find that S* critically depends on the cavity Q factor, and we develop a method of optimizing sensor resolution and sensitivity to noise as a function of cavity Q factor. Finally, we compare the simulation predictions of sensor wavelength resolution with experimental results obtained in Ge17Sb12S71 resonators, and good agreement is confirmed.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057-4059 (2002).
    [CrossRef]
  2. C. Chao and L. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527-1529 (2003).
    [CrossRef]
  3. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610-7615 (2007).
    [CrossRef] [PubMed]
  4. A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. Little, V. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. Unlu, and B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148-155 (2006).
    [CrossRef]
  5. S. Cho and N. Jokerst, “A polymer microdisk photonic sensor integrated onto silicon,” IEEE Photon. Technol. Lett. 18, 2096-2098 (2006).
    [CrossRef]
  6. A. Armani, R. Kulkarni, S. Fraser, R. Flagan, and K. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783-787 (2007).
    [CrossRef] [PubMed]
  7. I. White, H. Oveys, and X. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett. 31, 1319-1321 (2006).
    [CrossRef] [PubMed]
  8. Y. Sun, S. Shopova, G. Frye-Mason, and X. Fan, “Rapid chemical-vapor sensing using optofluidic ring resonators,” Opt. Lett. 33, 788-790 (2008).
    [CrossRef] [PubMed]
  9. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29, 1093-1095 (2004).
    [CrossRef] [PubMed]
  10. M. Lee and P. Fauchet, “Two-dimensional silicon photonic crystal based biosensing platform for protein detection,” Opt. Express 15, 4530-4535 (2007).
    [CrossRef] [PubMed]
  11. R. Boyd and J. Heebner, “Sensitive disk resonator photonic biosensor,” Appl. Opt. 40, 5742-5747 (2001).
    [CrossRef]
  12. I. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16, 1020-1028 (2008).
    [CrossRef] [PubMed]
  13. J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3-15 (1999).
    [CrossRef]
  14. C. Barrios, M. Bañuls, V. González-Pedro, K. Gylfason, B. Sánchez, A. Griol, A. Maquieira, H. Sohlström, M. Holgado, and R. Casquel, “Label-free optical biosensing with slot-waveguides,” Opt. Lett. 33, 708-710 (2008).
    [CrossRef] [PubMed]
  15. B. Liedberg, C. Nylander, and I. Lundstrom, “Biosensing with surface plasmon resonance--how it all started,” Biosens. Bioelectron. 10, 1-9 (1995).
    [CrossRef]
  16. D.R.Linde, ed., The CRC Handbook of Chemistry and Physics (CRC Press,2005).
  17. Y. Kokubun, M. Takizawa, and S. Taga, “Three-dimensional athermal waveguides for temperature independent lightwave devices,” Electron. Lett. 30, 1223-1224 (1994).
    [CrossRef]
  18. See, for example, T. Clark, M. Currie, and P. Matthews, “Digitally linearized wide-band photonic link,” J. Lightwave Technol. 19, 172-179 (2001). In practical applications, it is necessary to specify the measurement bandwidth at which the SNR is attained to obtain the S* value and an accurate description of the sensor system.
    [CrossRef]
  19. M. Gorodetsky, A. Savchenkov, and V. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453-455 (1996).
    [CrossRef] [PubMed]
  20. D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925-929 (2003).
    [CrossRef] [PubMed]
  21. J. Hu, N. Carlie, N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing,” Opt. Lett. 33, 2500-2502 (2008).
    [CrossRef] [PubMed]
  22. H. Zhu, I. White, J. Suter, P. Dale, and X. Fan, “Analysis of biomolecule detection with optofluidic ring resonator sensors,” Opt. Express 15, 9139-9146 (2007).
    [CrossRef] [PubMed]
  23. Understandably, sensors with small sensing area are advantageous in achieving a low molecular mass LOD. Nevertheless, a small sensing area (e.g., <10 μm2) often leads to inefficient molecular capturing and large statistical variations of measurement results, design trade-offs that need to be taken into account.
  24. J. Hu, V. Tarasov, N. Carlie, N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides,” Opt. Express 15, 11798-11807 (2007).
    [CrossRef] [PubMed]
  25. J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Demonstration of chalcogenide glass racetrack microresonators,” Opt. Lett. 33, 761-763 (2008).
    [CrossRef] [PubMed]
  26. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321-322 (2000).
    [CrossRef]
  27. B. Little, J. Laine, and S. Chu, “Surface-roughness-induced contradirectional coupling in ring and disk resonators,” Opt. Lett. 22, 4-6 (1997).
    [CrossRef] [PubMed]
  28. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866-1878 (1961).
    [CrossRef]
  29. R. Orta, P. Savi, R. Tascone, and D. Trinchero, “Synthesis of multiple-ring-resonator filters for optical systems,” IEEE Photon. Technol. Lett. 7, 1447-1449 (1995).
    [CrossRef]
  30. B. Little, S. Chu, J. Hryniewicz, and P. Absil, “Filter synthesis for periodically coupled microring resonators,” Opt. Lett. 25, 344-346 (2000).
    [CrossRef]

2008 (5)

2007 (5)

2006 (3)

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. Little, V. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. Unlu, and B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148-155 (2006).
[CrossRef]

S. Cho and N. Jokerst, “A polymer microdisk photonic sensor integrated onto silicon,” IEEE Photon. Technol. Lett. 18, 2096-2098 (2006).
[CrossRef]

I. White, H. Oveys, and X. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett. 31, 1319-1321 (2006).
[CrossRef] [PubMed]

2004 (1)

2003 (2)

C. Chao and L. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527-1529 (2003).
[CrossRef]

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925-929 (2003).
[CrossRef] [PubMed]

2002 (1)

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057-4059 (2002).
[CrossRef]

2001 (2)

2000 (2)

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321-322 (2000).
[CrossRef]

B. Little, S. Chu, J. Hryniewicz, and P. Absil, “Filter synthesis for periodically coupled microring resonators,” Opt. Lett. 25, 344-346 (2000).
[CrossRef]

1999 (1)

J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

1997 (1)

1996 (1)

1995 (2)

B. Liedberg, C. Nylander, and I. Lundstrom, “Biosensing with surface plasmon resonance--how it all started,” Biosens. Bioelectron. 10, 1-9 (1995).
[CrossRef]

R. Orta, P. Savi, R. Tascone, and D. Trinchero, “Synthesis of multiple-ring-resonator filters for optical systems,” IEEE Photon. Technol. Lett. 7, 1447-1449 (1995).
[CrossRef]

1994 (1)

Y. Kokubun, M. Takizawa, and S. Taga, “Three-dimensional athermal waveguides for temperature independent lightwave devices,” Electron. Lett. 30, 1223-1224 (1994).
[CrossRef]

1961 (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866-1878 (1961).
[CrossRef]

Absil, P.

Agarwal, A.

Aldridge, J.

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. Little, V. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. Unlu, and B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148-155 (2006).
[CrossRef]

Anthes-Washburn, M.

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. Little, V. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. Unlu, and B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148-155 (2006).
[CrossRef]

Armani, A.

A. Armani, R. Kulkarni, S. Fraser, R. Flagan, and K. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783-787 (2007).
[CrossRef] [PubMed]

Armani, D.

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925-929 (2003).
[CrossRef] [PubMed]

Arnold, S.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057-4059 (2002).
[CrossRef]

Baets, R.

Bañuls, M.

Barrios, C.

Bartolozzi, I.

Bienstman, P.

Boyd, R.

Braun, D.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057-4059 (2002).
[CrossRef]

Carlie, N.

Casquel, R.

Chao, C.

C. Chao and L. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527-1529 (2003).
[CrossRef]

Chbouki, N.

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. Little, V. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. Unlu, and B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148-155 (2006).
[CrossRef]

Cho, S.

S. Cho and N. Jokerst, “A polymer microdisk photonic sensor integrated onto silicon,” IEEE Photon. Technol. Lett. 18, 2096-2098 (2006).
[CrossRef]

Chow, E.

Chu, S.

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. Little, V. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. Unlu, and B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148-155 (2006).
[CrossRef]

B. Little, S. Chu, J. Hryniewicz, and P. Absil, “Filter synthesis for periodically coupled microring resonators,” Opt. Lett. 25, 344-346 (2000).
[CrossRef]

B. Little, J. Laine, and S. Chu, “Surface-roughness-induced contradirectional coupling in ring and disk resonators,” Opt. Lett. 22, 4-6 (1997).
[CrossRef] [PubMed]

Clark, T.

Currie, M.

Dale, P.

De Vos, K.

Desai, T.

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. Little, V. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. Unlu, and B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148-155 (2006).
[CrossRef]

Fan, X.

Fano, U.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866-1878 (1961).
[CrossRef]

Fauchet, P.

Feng, N.

Flagan, R.

A. Armani, R. Kulkarni, S. Fraser, R. Flagan, and K. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783-787 (2007).
[CrossRef] [PubMed]

Fraser, S.

A. Armani, R. Kulkarni, S. Fraser, R. Flagan, and K. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783-787 (2007).
[CrossRef] [PubMed]

Frye-Mason, G.

Gauglitz, G.

J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

Gill, D.

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. Little, V. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. Unlu, and B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148-155 (2006).
[CrossRef]

Girolami, G.

Goldberg, B.

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. Little, V. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. Unlu, and B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148-155 (2006).
[CrossRef]

González-Pedro, V.

Gorodetsky, M.

Griol, A.

Grot, A.

Guo, L.

C. Chao and L. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527-1529 (2003).
[CrossRef]

Gylfason, K.

Heebner, J.

Holgado, M.

Homola, J.

J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

Hryniewicz, J.

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. Little, V. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. Unlu, and B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148-155 (2006).
[CrossRef]

B. Little, S. Chu, J. Hryniewicz, and P. Absil, “Filter synthesis for periodically coupled microring resonators,” Opt. Lett. 25, 344-346 (2000).
[CrossRef]

Hu, J.

Ilchenko, V.

Jokerst, N.

S. Cho and N. Jokerst, “A polymer microdisk photonic sensor integrated onto silicon,” IEEE Photon. Technol. Lett. 18, 2096-2098 (2006).
[CrossRef]

Khoshsima, M.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057-4059 (2002).
[CrossRef]

Kimerling, L.

King, V.

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. Little, V. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. Unlu, and B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148-155 (2006).
[CrossRef]

Kippenberg, T.

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925-929 (2003).
[CrossRef] [PubMed]

Kokubun, Y.

Y. Kokubun, M. Takizawa, and S. Taga, “Three-dimensional athermal waveguides for temperature independent lightwave devices,” Electron. Lett. 30, 1223-1224 (1994).
[CrossRef]

Kulkarni, R.

A. Armani, R. Kulkarni, S. Fraser, R. Flagan, and K. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783-787 (2007).
[CrossRef] [PubMed]

Laine, J.

Lee, M.

Libchaber, A.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057-4059 (2002).
[CrossRef]

Liedberg, B.

B. Liedberg, C. Nylander, and I. Lundstrom, “Biosensing with surface plasmon resonance--how it all started,” Biosens. Bioelectron. 10, 1-9 (1995).
[CrossRef]

Little, B.

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. Little, V. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. Unlu, and B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148-155 (2006).
[CrossRef]

B. Little, S. Chu, J. Hryniewicz, and P. Absil, “Filter synthesis for periodically coupled microring resonators,” Opt. Lett. 25, 344-346 (2000).
[CrossRef]

B. Little, J. Laine, and S. Chu, “Surface-roughness-induced contradirectional coupling in ring and disk resonators,” Opt. Lett. 22, 4-6 (1997).
[CrossRef] [PubMed]

Lundstrom, I.

B. Liedberg, C. Nylander, and I. Lundstrom, “Biosensing with surface plasmon resonance--how it all started,” Biosens. Bioelectron. 10, 1-9 (1995).
[CrossRef]

Maquieira, A.

Matthews, P.

Mirkarimi, L. W.

Nylander, C.

B. Liedberg, C. Nylander, and I. Lundstrom, “Biosensing with surface plasmon resonance--how it all started,” Biosens. Bioelectron. 10, 1-9 (1995).
[CrossRef]

Orta, R.

R. Orta, P. Savi, R. Tascone, and D. Trinchero, “Synthesis of multiple-ring-resonator filters for optical systems,” IEEE Photon. Technol. Lett. 7, 1447-1449 (1995).
[CrossRef]

Oveys, H.

Petit, L.

Popat, K.

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. Little, V. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. Unlu, and B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148-155 (2006).
[CrossRef]

Richardson, K.

Sánchez, B.

Savchenkov, A.

Savi, P.

R. Orta, P. Savi, R. Tascone, and D. Trinchero, “Synthesis of multiple-ring-resonator filters for optical systems,” IEEE Photon. Technol. Lett. 7, 1447-1449 (1995).
[CrossRef]

Schacht, E.

Shopova, S.

Sigalas, M.

Sohlström, H.

Spillane, S.

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925-929 (2003).
[CrossRef] [PubMed]

Sun, Y.

Suter, J.

Taga, S.

Y. Kokubun, M. Takizawa, and S. Taga, “Three-dimensional athermal waveguides for temperature independent lightwave devices,” Electron. Lett. 30, 1223-1224 (1994).
[CrossRef]

Takizawa, M.

Y. Kokubun, M. Takizawa, and S. Taga, “Three-dimensional athermal waveguides for temperature independent lightwave devices,” Electron. Lett. 30, 1223-1224 (1994).
[CrossRef]

Tarasov, V.

Tascone, R.

R. Orta, P. Savi, R. Tascone, and D. Trinchero, “Synthesis of multiple-ring-resonator filters for optical systems,” IEEE Photon. Technol. Lett. 7, 1447-1449 (1995).
[CrossRef]

Teraoka, I.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057-4059 (2002).
[CrossRef]

Trinchero, D.

R. Orta, P. Savi, R. Tascone, and D. Trinchero, “Synthesis of multiple-ring-resonator filters for optical systems,” IEEE Photon. Technol. Lett. 7, 1447-1449 (1995).
[CrossRef]

Unlu, M.

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. Little, V. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. Unlu, and B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148-155 (2006).
[CrossRef]

Vahala, K.

A. Armani, R. Kulkarni, S. Fraser, R. Flagan, and K. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783-787 (2007).
[CrossRef] [PubMed]

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925-929 (2003).
[CrossRef] [PubMed]

Van, V.

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. Little, V. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. Unlu, and B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148-155 (2006).
[CrossRef]

Vollmer, F.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057-4059 (2002).
[CrossRef]

White, I.

Yalcin, A.

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. Little, V. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. Unlu, and B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148-155 (2006).
[CrossRef]

Yariv, A.

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321-322 (2000).
[CrossRef]

Yee, S.

J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

Zhu, H.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057-4059 (2002).
[CrossRef]

C. Chao and L. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527-1529 (2003).
[CrossRef]

Biosens. Bioelectron. (1)

B. Liedberg, C. Nylander, and I. Lundstrom, “Biosensing with surface plasmon resonance--how it all started,” Biosens. Bioelectron. 10, 1-9 (1995).
[CrossRef]

Electron. Lett. (2)

Y. Kokubun, M. Takizawa, and S. Taga, “Three-dimensional athermal waveguides for temperature independent lightwave devices,” Electron. Lett. 30, 1223-1224 (1994).
[CrossRef]

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321-322 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. Little, V. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. Unlu, and B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148-155 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

S. Cho and N. Jokerst, “A polymer microdisk photonic sensor integrated onto silicon,” IEEE Photon. Technol. Lett. 18, 2096-2098 (2006).
[CrossRef]

R. Orta, P. Savi, R. Tascone, and D. Trinchero, “Synthesis of multiple-ring-resonator filters for optical systems,” IEEE Photon. Technol. Lett. 7, 1447-1449 (1995).
[CrossRef]

J. Lightwave Technol. (1)

Nature (1)

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925-929 (2003).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (9)

J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Demonstration of chalcogenide glass racetrack microresonators,” Opt. Lett. 33, 761-763 (2008).
[CrossRef] [PubMed]

B. Little, S. Chu, J. Hryniewicz, and P. Absil, “Filter synthesis for periodically coupled microring resonators,” Opt. Lett. 25, 344-346 (2000).
[CrossRef]

B. Little, J. Laine, and S. Chu, “Surface-roughness-induced contradirectional coupling in ring and disk resonators,” Opt. Lett. 22, 4-6 (1997).
[CrossRef] [PubMed]

I. White, H. Oveys, and X. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett. 31, 1319-1321 (2006).
[CrossRef] [PubMed]

Y. Sun, S. Shopova, G. Frye-Mason, and X. Fan, “Rapid chemical-vapor sensing using optofluidic ring resonators,” Opt. Lett. 33, 788-790 (2008).
[CrossRef] [PubMed]

E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29, 1093-1095 (2004).
[CrossRef] [PubMed]

C. Barrios, M. Bañuls, V. González-Pedro, K. Gylfason, B. Sánchez, A. Griol, A. Maquieira, H. Sohlström, M. Holgado, and R. Casquel, “Label-free optical biosensing with slot-waveguides,” Opt. Lett. 33, 708-710 (2008).
[CrossRef] [PubMed]

J. Hu, N. Carlie, N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing,” Opt. Lett. 33, 2500-2502 (2008).
[CrossRef] [PubMed]

M. Gorodetsky, A. Savchenkov, and V. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453-455 (1996).
[CrossRef] [PubMed]

Phys. Rev. (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866-1878 (1961).
[CrossRef]

Science (1)

A. Armani, R. Kulkarni, S. Fraser, R. Flagan, and K. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783-787 (2007).
[CrossRef] [PubMed]

Sens. Actuators B (1)

J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

Other (2)

D.R.Linde, ed., The CRC Handbook of Chemistry and Physics (CRC Press,2005).

Understandably, sensors with small sensing area are advantageous in achieving a low molecular mass LOD. Nevertheless, a small sensing area (e.g., <10 μm2) often leads to inefficient molecular capturing and large statistical variations of measurement results, design trade-offs that need to be taken into account.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic illustration of an optical resonator sensor system discussed in this paper, comprising a light source, a coupled optical resonator, and readout components; note that angular and wavelength interrogation schemes employ slightly different configurations. The top inset illustrates the operation principle of refractive index sensors (refractometry).

Fig. 2
Fig. 2

Exemplary transmission spectra of a resonator sensor. Black (upper) curve, analytically calculated spectra obtained using the coupling matrix method; open squares, spectral data points obtained after superimposing Gaussian-type intensity and wavelength noises by using a Monte Carlo method in the analytical calculation. Data points are spaced by a finite spectral width δ λ s . Red (lower) curve, Lorentzian peak fit based on the data points. Inset, analytical and fitted spectra near their minima: the ensemble average of Δ λ was taken as the minimum resolvable wavelength (wavelength resolution) Δ λ min of a sensor.

Fig. 3
Fig. 3

Resonant wavelength resolution Δ λ min of optical resonator sensors at (a) intensity noise amplitude of 0.1 dB and (b) wavelength noise amplitude of 0.1 pm . The wavelength resolution values can be read out from the isoresolution curves (unit, picometers).

Fig. 4
Fig. 4

Simulated resonator sensor wavelength resolution Δ λ min at different noise levels, showing linear dependence on noise amplitude for both wavelength and intensity noise: the resonator has a cavity Q = 10 5 , the light source spectral width δ λ s = 1 pm , and both types of noise are of white Gaussian nature.

Fig. 5
Fig. 5

Simulated resonant wavelength resolution ( Δ λ min ) in a Q = 10,000 resonator, which is proportional to the square root of light source spectral width δ λ s : the black dots correspond to Δ λ min , intensity at the intensity noise amplitude of 0.1 dB , and the red dots correspond to Δ λ min , wavelength at the wavelength noise amplitude of 0.1 pm . Linear fittings are represented by the solid lines.

Fig. 6
Fig. 6

Simulated resonant wavelength resolution ( Δ λ min ) of resonator sensors with different cavity Q factors at a given (a) intensity noise amplitude of 0.1 dB and (b) wavelength noise amplitude of 0.1 pm . The dots are simulated Δ λ min results, and the lines are corresponding fitted curves. Δ λ min is inversely proportional to the square root of the resonator cavity Q factor when the sensor performance is limited mainly by intensity noise; in contrast, Δ λ min becomes directly proportional to the square root of the resonator cavity Q factor when wavelength noise dominates.

Fig. 7
Fig. 7

Logarithm of time-normalized sensitivity S * plotted as a function of the cavity Q factor, assuming a constant RI sensitivity independent of the Q factor, an angular dispersion of the dispersive element of 0.002 rad nm , a distance between the linear photodetector pixel array and the dispersive element of 10 cm , pixel linear size 5 μ m , device TO coefficient 10 6 K 1 , and operating temperature fluctuation < 0.01 K . The typical Q factor values for four different types of resonant structure are indicated by arrows. A moderately high Q factor ( 10 6 ) is sufficient to deliver the desirable wavelength-noise-limited operation (in analogy to background limited performance of infrared detectors).

Fig. 8
Fig. 8

Resonant wavelength resolution Δ λ min in resonators with different cavity Q factors: the filled squares are experimentally measured values fitted using transmission spectra from single wavelength-sweeping scans; the open circles are measured values after 16-scan averaging, and the lines are the results of simulations using the Lorentzian fit algorithm, taking into account the actual noise characteristics of the measurement instrumentation.

Fig. 9
Fig. 9

Two types of intensity noise spectrum used in the simulations: the open circles represent noise with a fixed SNR of 16.3 dB (corresponding to an average noise amplitude of 0.1 dB ), and the filled squares are intensity-dependent single-scan noise spectra of a Newport AutoAlign workstation in combination with an optical vector analyzer (LUNA Technologies, Inc.).

Tables (1)

Tables Icon

Table 1 Functional Dependence of Time-Normalized Sensitivity on Resonator Sensor Device Parameters Derived from Monte Carlo Numerical Simulations a

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

S * = Δ f N 1 Δ n min = Δ f 2 N Sensitivity R I Δ λ min = Δ f 2 N Γ iv n g λ Δ λ min
Δ λ min = Δ λ min , intensity 2 + Δ λ min , wavelength 2 ,
Δ λ min δ λ s Δ λ FWHM N wavelength Δ λ FWHM angular ,
Δ λ min , intensity 1 Q = Δ λ FWHM λ 0 .
Δ λ min , wavelength Q = λ 0 Δ λ FWHM .
FOM = Q Γ iv λ 0 n g = 2 π Γ iv α S * wavelength interrogation,
FOM = Q Γ iv λ 0 n g S * angular interrogation.
Δ n T = 2 ( d n d T ) device Δ T system ,
( d n d T ) device = Γ ( d n d T ) = Γ core ( d n d T ) core + Γ substrate ( d n d T ) substrate + Γ clad ( d n d T ) clad ,
N Δ λ FWHM δ λ s .

Metrics