Abstract

We propose a design tool for dielectric optical resonator-based biochemical refractometry sensors. Analogous to the widely accepted photodetector figure of merit, the detectivity D*, we introduce a new sensor system figure of merit, the time-normalized sensitivity S*, to permit quantitative, cross-technology-platform comparison between resonator sensors with distinctive device designs and interrogation configurations. The functional dependence of S* on device parameters, such as resonant cavity quality factor (Q), extinction ratio, system noise, and light source spectral bandwidth, is evaluated by using a Lorentzian peak fitting algorithm and Monte Carlo simulations to provide theoretical insights and useful design guidelines for optical resonator sensors. Importantly, we find that S* critically depends on the cavity Q factor, and we develop a method of optimizing sensor resolution and sensitivity to noise as a function of cavity Q factor. Finally, we compare the simulation predictions of sensor wavelength resolution with experimental results obtained in Ge17Sb12S71 resonators, and good agreement is confirmed.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057-4059 (2002).
    [CrossRef]
  2. C. Chao and L. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527-1529 (2003).
    [CrossRef]
  3. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610-7615 (2007).
    [CrossRef] [PubMed]
  4. A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. Little, V. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. Unlu, and B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148-155 (2006).
    [CrossRef]
  5. S. Cho and N. Jokerst, “A polymer microdisk photonic sensor integrated onto silicon,” IEEE Photon. Technol. Lett. 18, 2096-2098 (2006).
    [CrossRef]
  6. A. Armani, R. Kulkarni, S. Fraser, R. Flagan, and K. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783-787 (2007).
    [CrossRef] [PubMed]
  7. I. White, H. Oveys, and X. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett. 31, 1319-1321 (2006).
    [CrossRef] [PubMed]
  8. Y. Sun, S. Shopova, G. Frye-Mason, and X. Fan, “Rapid chemical-vapor sensing using optofluidic ring resonators,” Opt. Lett. 33, 788-790 (2008).
    [CrossRef] [PubMed]
  9. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29, 1093-1095 (2004).
    [CrossRef] [PubMed]
  10. M. Lee and P. Fauchet, “Two-dimensional silicon photonic crystal based biosensing platform for protein detection,” Opt. Express 15, 4530-4535 (2007).
    [CrossRef] [PubMed]
  11. R. Boyd and J. Heebner, “Sensitive disk resonator photonic biosensor,” Appl. Opt. 40, 5742-5747 (2001).
    [CrossRef]
  12. I. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16, 1020-1028 (2008).
    [CrossRef] [PubMed]
  13. J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3-15 (1999).
    [CrossRef]
  14. C. Barrios, M. Bañuls, V. González-Pedro, K. Gylfason, B. Sánchez, A. Griol, A. Maquieira, H. Sohlström, M. Holgado, and R. Casquel, “Label-free optical biosensing with slot-waveguides,” Opt. Lett. 33, 708-710 (2008).
    [CrossRef] [PubMed]
  15. B. Liedberg, C. Nylander, and I. Lundstrom, “Biosensing with surface plasmon resonance--how it all started,” Biosens. Bioelectron. 10, 1-9 (1995).
    [CrossRef]
  16. D.R.Linde, ed., The CRC Handbook of Chemistry and Physics (CRC Press,2005).
  17. Y. Kokubun, M. Takizawa, and S. Taga, “Three-dimensional athermal waveguides for temperature independent lightwave devices,” Electron. Lett. 30, 1223-1224 (1994).
    [CrossRef]
  18. See, for example, T. Clark, M. Currie, and P. Matthews, “Digitally linearized wide-band photonic link,” J. Lightwave Technol. 19, 172-179 (2001). In practical applications, it is necessary to specify the measurement bandwidth at which the SNR is attained to obtain the S* value and an accurate description of the sensor system.
    [CrossRef]
  19. M. Gorodetsky, A. Savchenkov, and V. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453-455 (1996).
    [CrossRef] [PubMed]
  20. D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925-929 (2003).
    [CrossRef] [PubMed]
  21. J. Hu, N. Carlie, N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing,” Opt. Lett. 33, 2500-2502 (2008).
    [CrossRef] [PubMed]
  22. H. Zhu, I. White, J. Suter, P. Dale, and X. Fan, “Analysis of biomolecule detection with optofluidic ring resonator sensors,” Opt. Express 15, 9139-9146 (2007).
    [CrossRef] [PubMed]
  23. Understandably, sensors with small sensing area are advantageous in achieving a low molecular mass LOD. Nevertheless, a small sensing area (e.g., <10 μm2) often leads to inefficient molecular capturing and large statistical variations of measurement results, design trade-offs that need to be taken into account.
  24. J. Hu, V. Tarasov, N. Carlie, N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides,” Opt. Express 15, 11798-11807 (2007).
    [CrossRef] [PubMed]
  25. J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Demonstration of chalcogenide glass racetrack microresonators,” Opt. Lett. 33, 761-763 (2008).
    [CrossRef] [PubMed]
  26. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321-322 (2000).
    [CrossRef]
  27. B. Little, J. Laine, and S. Chu, “Surface-roughness-induced contradirectional coupling in ring and disk resonators,” Opt. Lett. 22, 4-6 (1997).
    [CrossRef] [PubMed]
  28. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866-1878 (1961).
    [CrossRef]
  29. R. Orta, P. Savi, R. Tascone, and D. Trinchero, “Synthesis of multiple-ring-resonator filters for optical systems,” IEEE Photon. Technol. Lett. 7, 1447-1449 (1995).
    [CrossRef]
  30. B. Little, S. Chu, J. Hryniewicz, and P. Absil, “Filter synthesis for periodically coupled microring resonators,” Opt. Lett. 25, 344-346 (2000).
    [CrossRef]

2008

2007

2006

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. Little, V. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. Unlu, and B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148-155 (2006).
[CrossRef]

S. Cho and N. Jokerst, “A polymer microdisk photonic sensor integrated onto silicon,” IEEE Photon. Technol. Lett. 18, 2096-2098 (2006).
[CrossRef]

I. White, H. Oveys, and X. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett. 31, 1319-1321 (2006).
[CrossRef] [PubMed]

2004

2003

C. Chao and L. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527-1529 (2003).
[CrossRef]

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925-929 (2003).
[CrossRef] [PubMed]

2002

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057-4059 (2002).
[CrossRef]

2001

2000

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321-322 (2000).
[CrossRef]

B. Little, S. Chu, J. Hryniewicz, and P. Absil, “Filter synthesis for periodically coupled microring resonators,” Opt. Lett. 25, 344-346 (2000).
[CrossRef]

1999

J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

1997

1996

1995

B. Liedberg, C. Nylander, and I. Lundstrom, “Biosensing with surface plasmon resonance--how it all started,” Biosens. Bioelectron. 10, 1-9 (1995).
[CrossRef]

R. Orta, P. Savi, R. Tascone, and D. Trinchero, “Synthesis of multiple-ring-resonator filters for optical systems,” IEEE Photon. Technol. Lett. 7, 1447-1449 (1995).
[CrossRef]

1994

Y. Kokubun, M. Takizawa, and S. Taga, “Three-dimensional athermal waveguides for temperature independent lightwave devices,” Electron. Lett. 30, 1223-1224 (1994).
[CrossRef]

1961

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866-1878 (1961).
[CrossRef]

Absil, P.

Agarwal, A.

Aldridge, J.

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. Little, V. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. Unlu, and B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148-155 (2006).
[CrossRef]

Anthes-Washburn, M.

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. Little, V. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. Unlu, and B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148-155 (2006).
[CrossRef]

Armani, A.

A. Armani, R. Kulkarni, S. Fraser, R. Flagan, and K. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783-787 (2007).
[CrossRef] [PubMed]

Armani, D.

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925-929 (2003).
[CrossRef] [PubMed]

Arnold, S.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057-4059 (2002).
[CrossRef]

Baets, R.

Bañuls, M.

Barrios, C.

Bartolozzi, I.

Bienstman, P.

Boyd, R.

Braun, D.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057-4059 (2002).
[CrossRef]

Carlie, N.

Casquel, R.

Chao, C.

C. Chao and L. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527-1529 (2003).
[CrossRef]

Chbouki, N.

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. Little, V. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. Unlu, and B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148-155 (2006).
[CrossRef]

Cho, S.

S. Cho and N. Jokerst, “A polymer microdisk photonic sensor integrated onto silicon,” IEEE Photon. Technol. Lett. 18, 2096-2098 (2006).
[CrossRef]

Chow, E.

Chu, S.

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. Little, V. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. Unlu, and B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148-155 (2006).
[CrossRef]

B. Little, S. Chu, J. Hryniewicz, and P. Absil, “Filter synthesis for periodically coupled microring resonators,” Opt. Lett. 25, 344-346 (2000).
[CrossRef]

B. Little, J. Laine, and S. Chu, “Surface-roughness-induced contradirectional coupling in ring and disk resonators,” Opt. Lett. 22, 4-6 (1997).
[CrossRef] [PubMed]

Clark, T.

Currie, M.

Dale, P.

De Vos, K.

Desai, T.

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. Little, V. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. Unlu, and B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148-155 (2006).
[CrossRef]

Fan, X.

Fano, U.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866-1878 (1961).
[CrossRef]

Fauchet, P.

Feng, N.

Flagan, R.

A. Armani, R. Kulkarni, S. Fraser, R. Flagan, and K. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783-787 (2007).
[CrossRef] [PubMed]

Fraser, S.

A. Armani, R. Kulkarni, S. Fraser, R. Flagan, and K. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783-787 (2007).
[CrossRef] [PubMed]

Frye-Mason, G.

Gauglitz, G.

J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

Gill, D.

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. Little, V. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. Unlu, and B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148-155 (2006).
[CrossRef]

Girolami, G.

Goldberg, B.

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. Little, V. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. Unlu, and B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148-155 (2006).
[CrossRef]

González-Pedro, V.

Gorodetsky, M.

Griol, A.

Grot, A.

Guo, L.

C. Chao and L. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527-1529 (2003).
[CrossRef]

Gylfason, K.

Heebner, J.

Holgado, M.

Homola, J.

J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

Hryniewicz, J.

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. Little, V. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. Unlu, and B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148-155 (2006).
[CrossRef]

B. Little, S. Chu, J. Hryniewicz, and P. Absil, “Filter synthesis for periodically coupled microring resonators,” Opt. Lett. 25, 344-346 (2000).
[CrossRef]

Hu, J.

Ilchenko, V.

Jokerst, N.

S. Cho and N. Jokerst, “A polymer microdisk photonic sensor integrated onto silicon,” IEEE Photon. Technol. Lett. 18, 2096-2098 (2006).
[CrossRef]

Khoshsima, M.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057-4059 (2002).
[CrossRef]

Kimerling, L.

King, V.

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. Little, V. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. Unlu, and B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148-155 (2006).
[CrossRef]

Kippenberg, T.

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925-929 (2003).
[CrossRef] [PubMed]

Kokubun, Y.

Y. Kokubun, M. Takizawa, and S. Taga, “Three-dimensional athermal waveguides for temperature independent lightwave devices,” Electron. Lett. 30, 1223-1224 (1994).
[CrossRef]

Kulkarni, R.

A. Armani, R. Kulkarni, S. Fraser, R. Flagan, and K. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783-787 (2007).
[CrossRef] [PubMed]

Laine, J.

Lee, M.

Libchaber, A.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057-4059 (2002).
[CrossRef]

Liedberg, B.

B. Liedberg, C. Nylander, and I. Lundstrom, “Biosensing with surface plasmon resonance--how it all started,” Biosens. Bioelectron. 10, 1-9 (1995).
[CrossRef]

Little, B.

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. Little, V. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. Unlu, and B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148-155 (2006).
[CrossRef]

B. Little, S. Chu, J. Hryniewicz, and P. Absil, “Filter synthesis for periodically coupled microring resonators,” Opt. Lett. 25, 344-346 (2000).
[CrossRef]

B. Little, J. Laine, and S. Chu, “Surface-roughness-induced contradirectional coupling in ring and disk resonators,” Opt. Lett. 22, 4-6 (1997).
[CrossRef] [PubMed]

Lundstrom, I.

B. Liedberg, C. Nylander, and I. Lundstrom, “Biosensing with surface plasmon resonance--how it all started,” Biosens. Bioelectron. 10, 1-9 (1995).
[CrossRef]

Maquieira, A.

Matthews, P.

Mirkarimi, L. W.

Nylander, C.

B. Liedberg, C. Nylander, and I. Lundstrom, “Biosensing with surface plasmon resonance--how it all started,” Biosens. Bioelectron. 10, 1-9 (1995).
[CrossRef]

Orta, R.

R. Orta, P. Savi, R. Tascone, and D. Trinchero, “Synthesis of multiple-ring-resonator filters for optical systems,” IEEE Photon. Technol. Lett. 7, 1447-1449 (1995).
[CrossRef]

Oveys, H.

Petit, L.

Popat, K.

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. Little, V. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. Unlu, and B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148-155 (2006).
[CrossRef]

Richardson, K.

Sánchez, B.

Savchenkov, A.

Savi, P.

R. Orta, P. Savi, R. Tascone, and D. Trinchero, “Synthesis of multiple-ring-resonator filters for optical systems,” IEEE Photon. Technol. Lett. 7, 1447-1449 (1995).
[CrossRef]

Schacht, E.

Shopova, S.

Sigalas, M.

Sohlström, H.

Spillane, S.

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925-929 (2003).
[CrossRef] [PubMed]

Sun, Y.

Suter, J.

Taga, S.

Y. Kokubun, M. Takizawa, and S. Taga, “Three-dimensional athermal waveguides for temperature independent lightwave devices,” Electron. Lett. 30, 1223-1224 (1994).
[CrossRef]

Takizawa, M.

Y. Kokubun, M. Takizawa, and S. Taga, “Three-dimensional athermal waveguides for temperature independent lightwave devices,” Electron. Lett. 30, 1223-1224 (1994).
[CrossRef]

Tarasov, V.

Tascone, R.

R. Orta, P. Savi, R. Tascone, and D. Trinchero, “Synthesis of multiple-ring-resonator filters for optical systems,” IEEE Photon. Technol. Lett. 7, 1447-1449 (1995).
[CrossRef]

Teraoka, I.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057-4059 (2002).
[CrossRef]

Trinchero, D.

R. Orta, P. Savi, R. Tascone, and D. Trinchero, “Synthesis of multiple-ring-resonator filters for optical systems,” IEEE Photon. Technol. Lett. 7, 1447-1449 (1995).
[CrossRef]

Unlu, M.

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. Little, V. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. Unlu, and B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148-155 (2006).
[CrossRef]

Vahala, K.

A. Armani, R. Kulkarni, S. Fraser, R. Flagan, and K. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783-787 (2007).
[CrossRef] [PubMed]

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925-929 (2003).
[CrossRef] [PubMed]

Van, V.

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. Little, V. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. Unlu, and B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148-155 (2006).
[CrossRef]

Vollmer, F.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057-4059 (2002).
[CrossRef]

White, I.

Yalcin, A.

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. Little, V. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. Unlu, and B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148-155 (2006).
[CrossRef]

Yariv, A.

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321-322 (2000).
[CrossRef]

Yee, S.

J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

Zhu, H.

Appl. Opt.

Appl. Phys. Lett.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80, 4057-4059 (2002).
[CrossRef]

C. Chao and L. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527-1529 (2003).
[CrossRef]

Biosens. Bioelectron.

B. Liedberg, C. Nylander, and I. Lundstrom, “Biosensing with surface plasmon resonance--how it all started,” Biosens. Bioelectron. 10, 1-9 (1995).
[CrossRef]

Electron. Lett.

Y. Kokubun, M. Takizawa, and S. Taga, “Three-dimensional athermal waveguides for temperature independent lightwave devices,” Electron. Lett. 30, 1223-1224 (1994).
[CrossRef]

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321-322 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

A. Yalcin, K. Popat, J. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. Little, V. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. Unlu, and B. Goldberg, “Optical sensing of biomolecules using microring resonators,” IEEE J. Sel. Top. Quantum Electron. 12, 148-155 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

S. Cho and N. Jokerst, “A polymer microdisk photonic sensor integrated onto silicon,” IEEE Photon. Technol. Lett. 18, 2096-2098 (2006).
[CrossRef]

R. Orta, P. Savi, R. Tascone, and D. Trinchero, “Synthesis of multiple-ring-resonator filters for optical systems,” IEEE Photon. Technol. Lett. 7, 1447-1449 (1995).
[CrossRef]

J. Lightwave Technol.

Nature

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925-929 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Demonstration of chalcogenide glass racetrack microresonators,” Opt. Lett. 33, 761-763 (2008).
[CrossRef] [PubMed]

B. Little, S. Chu, J. Hryniewicz, and P. Absil, “Filter synthesis for periodically coupled microring resonators,” Opt. Lett. 25, 344-346 (2000).
[CrossRef]

B. Little, J. Laine, and S. Chu, “Surface-roughness-induced contradirectional coupling in ring and disk resonators,” Opt. Lett. 22, 4-6 (1997).
[CrossRef] [PubMed]

I. White, H. Oveys, and X. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett. 31, 1319-1321 (2006).
[CrossRef] [PubMed]

Y. Sun, S. Shopova, G. Frye-Mason, and X. Fan, “Rapid chemical-vapor sensing using optofluidic ring resonators,” Opt. Lett. 33, 788-790 (2008).
[CrossRef] [PubMed]

E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29, 1093-1095 (2004).
[CrossRef] [PubMed]

C. Barrios, M. Bañuls, V. González-Pedro, K. Gylfason, B. Sánchez, A. Griol, A. Maquieira, H. Sohlström, M. Holgado, and R. Casquel, “Label-free optical biosensing with slot-waveguides,” Opt. Lett. 33, 708-710 (2008).
[CrossRef] [PubMed]

J. Hu, N. Carlie, N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing,” Opt. Lett. 33, 2500-2502 (2008).
[CrossRef] [PubMed]

M. Gorodetsky, A. Savchenkov, and V. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453-455 (1996).
[CrossRef] [PubMed]

Phys. Rev.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866-1878 (1961).
[CrossRef]

Science

A. Armani, R. Kulkarni, S. Fraser, R. Flagan, and K. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783-787 (2007).
[CrossRef] [PubMed]

Sens. Actuators B

J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3-15 (1999).
[CrossRef]

Other

D.R.Linde, ed., The CRC Handbook of Chemistry and Physics (CRC Press,2005).

Understandably, sensors with small sensing area are advantageous in achieving a low molecular mass LOD. Nevertheless, a small sensing area (e.g., <10 μm2) often leads to inefficient molecular capturing and large statistical variations of measurement results, design trade-offs that need to be taken into account.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic illustration of an optical resonator sensor system discussed in this paper, comprising a light source, a coupled optical resonator, and readout components; note that angular and wavelength interrogation schemes employ slightly different configurations. The top inset illustrates the operation principle of refractive index sensors (refractometry).

Fig. 2
Fig. 2

Exemplary transmission spectra of a resonator sensor. Black (upper) curve, analytically calculated spectra obtained using the coupling matrix method; open squares, spectral data points obtained after superimposing Gaussian-type intensity and wavelength noises by using a Monte Carlo method in the analytical calculation. Data points are spaced by a finite spectral width δ λ s . Red (lower) curve, Lorentzian peak fit based on the data points. Inset, analytical and fitted spectra near their minima: the ensemble average of Δ λ was taken as the minimum resolvable wavelength (wavelength resolution) Δ λ min of a sensor.

Fig. 3
Fig. 3

Resonant wavelength resolution Δ λ min of optical resonator sensors at (a) intensity noise amplitude of 0.1 dB and (b) wavelength noise amplitude of 0.1 pm . The wavelength resolution values can be read out from the isoresolution curves (unit, picometers).

Fig. 4
Fig. 4

Simulated resonator sensor wavelength resolution Δ λ min at different noise levels, showing linear dependence on noise amplitude for both wavelength and intensity noise: the resonator has a cavity Q = 10 5 , the light source spectral width δ λ s = 1 pm , and both types of noise are of white Gaussian nature.

Fig. 5
Fig. 5

Simulated resonant wavelength resolution ( Δ λ min ) in a Q = 10,000 resonator, which is proportional to the square root of light source spectral width δ λ s : the black dots correspond to Δ λ min , intensity at the intensity noise amplitude of 0.1 dB , and the red dots correspond to Δ λ min , wavelength at the wavelength noise amplitude of 0.1 pm . Linear fittings are represented by the solid lines.

Fig. 6
Fig. 6

Simulated resonant wavelength resolution ( Δ λ min ) of resonator sensors with different cavity Q factors at a given (a) intensity noise amplitude of 0.1 dB and (b) wavelength noise amplitude of 0.1 pm . The dots are simulated Δ λ min results, and the lines are corresponding fitted curves. Δ λ min is inversely proportional to the square root of the resonator cavity Q factor when the sensor performance is limited mainly by intensity noise; in contrast, Δ λ min becomes directly proportional to the square root of the resonator cavity Q factor when wavelength noise dominates.

Fig. 7
Fig. 7

Logarithm of time-normalized sensitivity S * plotted as a function of the cavity Q factor, assuming a constant RI sensitivity independent of the Q factor, an angular dispersion of the dispersive element of 0.002 rad nm , a distance between the linear photodetector pixel array and the dispersive element of 10 cm , pixel linear size 5 μ m , device TO coefficient 10 6 K 1 , and operating temperature fluctuation < 0.01 K . The typical Q factor values for four different types of resonant structure are indicated by arrows. A moderately high Q factor ( 10 6 ) is sufficient to deliver the desirable wavelength-noise-limited operation (in analogy to background limited performance of infrared detectors).

Fig. 8
Fig. 8

Resonant wavelength resolution Δ λ min in resonators with different cavity Q factors: the filled squares are experimentally measured values fitted using transmission spectra from single wavelength-sweeping scans; the open circles are measured values after 16-scan averaging, and the lines are the results of simulations using the Lorentzian fit algorithm, taking into account the actual noise characteristics of the measurement instrumentation.

Fig. 9
Fig. 9

Two types of intensity noise spectrum used in the simulations: the open circles represent noise with a fixed SNR of 16.3 dB (corresponding to an average noise amplitude of 0.1 dB ), and the filled squares are intensity-dependent single-scan noise spectra of a Newport AutoAlign workstation in combination with an optical vector analyzer (LUNA Technologies, Inc.).

Tables (1)

Tables Icon

Table 1 Functional Dependence of Time-Normalized Sensitivity on Resonator Sensor Device Parameters Derived from Monte Carlo Numerical Simulations a

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

S * = Δ f N 1 Δ n min = Δ f 2 N Sensitivity R I Δ λ min = Δ f 2 N Γ iv n g λ Δ λ min
Δ λ min = Δ λ min , intensity 2 + Δ λ min , wavelength 2 ,
Δ λ min δ λ s Δ λ FWHM N wavelength Δ λ FWHM angular ,
Δ λ min , intensity 1 Q = Δ λ FWHM λ 0 .
Δ λ min , wavelength Q = λ 0 Δ λ FWHM .
FOM = Q Γ iv λ 0 n g = 2 π Γ iv α S * wavelength interrogation,
FOM = Q Γ iv λ 0 n g S * angular interrogation.
Δ n T = 2 ( d n d T ) device Δ T system ,
( d n d T ) device = Γ ( d n d T ) = Γ core ( d n d T ) core + Γ substrate ( d n d T ) substrate + Γ clad ( d n d T ) clad ,
N Δ λ FWHM δ λ s .

Metrics