Abstract

Self-amplification of weak scattered coherent light waves in photorefractive crystals leads to losses, known as light-induced scattering or holographic scattering. We find with 532nm light that it is reduced in LiNbO3:Fe for femtosecond laser pulses as compared to cw laser light. Light-induced scattering of pulses is completely absent in samples with sufficiently small Fe2+ content, in contrast to the scattering of cw light. Additional differences include a slower buildup time, a weaker Bragg selectivity, and a narrower angular distribution of the scattered light for pulsed illumination. The differences can be attributed mainly to the smaller temporal coherence of pulses.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Magnusson and T. K. Gaylord, “Laser scattering induced holograms in lithium niobate,” Appl. Opt. 13, 1545-1548 (1974).
    [CrossRef]
  2. S. G. Odoulov and M. S. Soskin, “Amplification, oscillation, and light-induced scattering in photorefractive crystals,” in Photorefractive Materials and Their Applications II, 1st ed. (Springer-Verlag, 1989), Chap. 1, pp. 5-43.
    [CrossRef]
  3. G. Barbastathis, M. Balberg, and D. Brady, “Confocal microscopy with a volume holographic filter,” Opt. Lett. 24, 811-813 (1999).
    [CrossRef]
  4. W. Liu, D. Psaltis, and G. Barbastathis, “Real-time spectral imaging in three spatial dimensions,” Opt. Lett. 27, 854-856 (2002).
    [CrossRef]
  5. K. Buse, F. Havermeyer, W. Liu, C. Moser, and D. Psaltis, “Holographic filters,” in Photorefractive Materials and Their Applications 3, 2nd ed. (Springer Science+Business Media, LLC, 2007), Chap. 11, pp. 295-319.
    [CrossRef]
  6. P.Boffi, D.Piccinin, and M.C.Ubaldi, eds., Infrared Holography for Optical Communications (Springer-Verlag, 2003).
    [CrossRef]
  7. D. Z. Anderson, D. M. Lininger, and J. Feinberg, “Optical tracking novelty filter,” Opt. Lett. 12, 123-125 (1987).
    [CrossRef] [PubMed]
  8. M. Woerdemann, F. Holtmann, and C. Denz, “Full-field particle velocimetry with a photorefractive optical novelty filter,” Appl. Phys. Lett. 93, 021108 (2008).
    [CrossRef]
  9. P.Günter and J.-P.Huignard, eds., Photorefractive Materials and Their Applications 3 (Springer Science+Business Media, LLC, 2007).
  10. R. A. Rupp, “Material characterization by holographic methods,” Appl. Phys. A 55, 2-20 (1992).
    [CrossRef]
  11. M. Goulkov, M. Imlau, and T. Woike, “Photorefractive parameters of lithium niobate crystals from photoinduced light scattering,” Phys. Rev. B 77, 235110 (2008).
    [CrossRef]
  12. A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72-74 (1966).
    [CrossRef]
  13. R. A. Rupp, J. Marotz, K. H. Ringhofer, S. Treichel, S. Feng, and E. Krätzig, “Four-wave interaction phenomena contributing to holographic scattering in LiNbO3 and LiTaO3,” IEEE J. Quantum Electron. 23, 2136-2141 (1987).
    [CrossRef]
  14. Q. Wu, J. Xu, G. Zhang, L. Zhao, X. Zhang, H. Qiao, Q. Sun, W. Lu, G. Zhang, and T. Volk, “Fanning scattering in LiNbO3 at 750-850 nm induced by femtosecond laser pulses,” Opt. Mater. (Amsterdam, Neth.) 23, 277-280 (2003).
  15. G. Peterson, A. Glass, and T. Negran, “Control of susceptibility of lithium niobate to laser-induced refractive index changes,” Appl. Phys. Lett. 19, 130-132 (1971).
    [CrossRef]
  16. H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer-, and EPR-methods,” Appl. Phys. 12, 355-368 (1977).
    [CrossRef]
  17. B. I. Sturman, S. G. Odoulov, and M. Y. Goulkov, “Parametric four-wave processes in photorefractive crystals,” Phys. Rep. 275, 197-254 (1996).
    [CrossRef]
  18. G. Zhang, N. Y. Kamber, J. Xu, S. Liu, Q. Sun, and G. Zhang, “Light-amplification competition between fanning noise and the signal beam in doped lithium niobate crystals,” J. Opt. Soc. Am. B 16, 905-910 (1999).
    [CrossRef]
  19. E. M. Avakyan, K. G. Belabaev, and S. G. Odulov, “Polarized-anisotropy light-induced scattering in LiNbO3:Fe crystals,” Fiz. Tverd. Tela (Leningrad) 25, 3274-3281 (1983).
  20. S. Liu, J. Xu, G. Zhang, and Y. Wu, “Light-climbing effect in LiNbO3:Fe crystal,” Appl. Opt. 33, 997-999 (1994).
  21. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M.-S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals.1: Steady-state,” Ferroelectrics 22, 949-960 (1979).
    [CrossRef]
  22. H. Kogelnik, “Coupled-wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2947 (1969).
  23. S. Tao, Z. H. Song, and D. R. Selviah, “Bragg-shift of holographic gratings in photorefractive Fe:LiNbO3 crystals,” Opt. Commun. 108, 144-152 (1994).
    [CrossRef]
  24. K. Buse, S. Kämper, J. Frejlich, R. Pankrath, and K. H. Ringhofer, “Tilting of holograms in photorefractive Sr0.61Ba0.39Nb2O6 crystals by self-diffraction,” Opt. Lett. 20, 2249-2251 (1995).
    [CrossRef] [PubMed]

2008

M. Woerdemann, F. Holtmann, and C. Denz, “Full-field particle velocimetry with a photorefractive optical novelty filter,” Appl. Phys. Lett. 93, 021108 (2008).
[CrossRef]

M. Goulkov, M. Imlau, and T. Woike, “Photorefractive parameters of lithium niobate crystals from photoinduced light scattering,” Phys. Rev. B 77, 235110 (2008).
[CrossRef]

2003

Q. Wu, J. Xu, G. Zhang, L. Zhao, X. Zhang, H. Qiao, Q. Sun, W. Lu, G. Zhang, and T. Volk, “Fanning scattering in LiNbO3 at 750-850 nm induced by femtosecond laser pulses,” Opt. Mater. (Amsterdam, Neth.) 23, 277-280 (2003).

2002

1999

1996

B. I. Sturman, S. G. Odoulov, and M. Y. Goulkov, “Parametric four-wave processes in photorefractive crystals,” Phys. Rep. 275, 197-254 (1996).
[CrossRef]

1995

1994

S. Liu, J. Xu, G. Zhang, and Y. Wu, “Light-climbing effect in LiNbO3:Fe crystal,” Appl. Opt. 33, 997-999 (1994).

S. Tao, Z. H. Song, and D. R. Selviah, “Bragg-shift of holographic gratings in photorefractive Fe:LiNbO3 crystals,” Opt. Commun. 108, 144-152 (1994).
[CrossRef]

1992

R. A. Rupp, “Material characterization by holographic methods,” Appl. Phys. A 55, 2-20 (1992).
[CrossRef]

1987

R. A. Rupp, J. Marotz, K. H. Ringhofer, S. Treichel, S. Feng, and E. Krätzig, “Four-wave interaction phenomena contributing to holographic scattering in LiNbO3 and LiTaO3,” IEEE J. Quantum Electron. 23, 2136-2141 (1987).
[CrossRef]

D. Z. Anderson, D. M. Lininger, and J. Feinberg, “Optical tracking novelty filter,” Opt. Lett. 12, 123-125 (1987).
[CrossRef] [PubMed]

1983

E. M. Avakyan, K. G. Belabaev, and S. G. Odulov, “Polarized-anisotropy light-induced scattering in LiNbO3:Fe crystals,” Fiz. Tverd. Tela (Leningrad) 25, 3274-3281 (1983).

1979

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M.-S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals.1: Steady-state,” Ferroelectrics 22, 949-960 (1979).
[CrossRef]

1977

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer-, and EPR-methods,” Appl. Phys. 12, 355-368 (1977).
[CrossRef]

1974

1971

G. Peterson, A. Glass, and T. Negran, “Control of susceptibility of lithium niobate to laser-induced refractive index changes,” Appl. Phys. Lett. 19, 130-132 (1971).
[CrossRef]

1969

H. Kogelnik, “Coupled-wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2947 (1969).

1966

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72-74 (1966).
[CrossRef]

Anderson, D. Z.

Ashkin, A.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72-74 (1966).
[CrossRef]

Avakyan, E. M.

E. M. Avakyan, K. G. Belabaev, and S. G. Odulov, “Polarized-anisotropy light-induced scattering in LiNbO3:Fe crystals,” Fiz. Tverd. Tela (Leningrad) 25, 3274-3281 (1983).

Balberg, M.

Ballman, A. A.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72-74 (1966).
[CrossRef]

Barbastathis, G.

Belabaev, K. G.

E. M. Avakyan, K. G. Belabaev, and S. G. Odulov, “Polarized-anisotropy light-induced scattering in LiNbO3:Fe crystals,” Fiz. Tverd. Tela (Leningrad) 25, 3274-3281 (1983).

Boyd, G. D.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72-74 (1966).
[CrossRef]

Brady, D.

Buse, K.

K. Buse, S. Kämper, J. Frejlich, R. Pankrath, and K. H. Ringhofer, “Tilting of holograms in photorefractive Sr0.61Ba0.39Nb2O6 crystals by self-diffraction,” Opt. Lett. 20, 2249-2251 (1995).
[CrossRef] [PubMed]

K. Buse, F. Havermeyer, W. Liu, C. Moser, and D. Psaltis, “Holographic filters,” in Photorefractive Materials and Their Applications 3, 2nd ed. (Springer Science+Business Media, LLC, 2007), Chap. 11, pp. 295-319.
[CrossRef]

Denz, C.

M. Woerdemann, F. Holtmann, and C. Denz, “Full-field particle velocimetry with a photorefractive optical novelty filter,” Appl. Phys. Lett. 93, 021108 (2008).
[CrossRef]

Dischler, B.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer-, and EPR-methods,” Appl. Phys. 12, 355-368 (1977).
[CrossRef]

Dziedzic, J. M.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72-74 (1966).
[CrossRef]

Engelmann, H.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer-, and EPR-methods,” Appl. Phys. 12, 355-368 (1977).
[CrossRef]

Feinberg, J.

Feng, S.

R. A. Rupp, J. Marotz, K. H. Ringhofer, S. Treichel, S. Feng, and E. Krätzig, “Four-wave interaction phenomena contributing to holographic scattering in LiNbO3 and LiTaO3,” IEEE J. Quantum Electron. 23, 2136-2141 (1987).
[CrossRef]

Frejlich, J.

Gaylord, T. K.

Glass, A.

G. Peterson, A. Glass, and T. Negran, “Control of susceptibility of lithium niobate to laser-induced refractive index changes,” Appl. Phys. Lett. 19, 130-132 (1971).
[CrossRef]

Gonser, U.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer-, and EPR-methods,” Appl. Phys. 12, 355-368 (1977).
[CrossRef]

Goulkov, M.

M. Goulkov, M. Imlau, and T. Woike, “Photorefractive parameters of lithium niobate crystals from photoinduced light scattering,” Phys. Rev. B 77, 235110 (2008).
[CrossRef]

Goulkov, M. Y.

B. I. Sturman, S. G. Odoulov, and M. Y. Goulkov, “Parametric four-wave processes in photorefractive crystals,” Phys. Rep. 275, 197-254 (1996).
[CrossRef]

Havermeyer, F.

K. Buse, F. Havermeyer, W. Liu, C. Moser, and D. Psaltis, “Holographic filters,” in Photorefractive Materials and Their Applications 3, 2nd ed. (Springer Science+Business Media, LLC, 2007), Chap. 11, pp. 295-319.
[CrossRef]

Holtmann, F.

M. Woerdemann, F. Holtmann, and C. Denz, “Full-field particle velocimetry with a photorefractive optical novelty filter,” Appl. Phys. Lett. 93, 021108 (2008).
[CrossRef]

Imlau, M.

M. Goulkov, M. Imlau, and T. Woike, “Photorefractive parameters of lithium niobate crystals from photoinduced light scattering,” Phys. Rev. B 77, 235110 (2008).
[CrossRef]

Kamber, N. Y.

Kämper, S.

Keune, W.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer-, and EPR-methods,” Appl. Phys. 12, 355-368 (1977).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled-wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2947 (1969).

Krätzig, E.

R. A. Rupp, J. Marotz, K. H. Ringhofer, S. Treichel, S. Feng, and E. Krätzig, “Four-wave interaction phenomena contributing to holographic scattering in LiNbO3 and LiTaO3,” IEEE J. Quantum Electron. 23, 2136-2141 (1987).
[CrossRef]

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer-, and EPR-methods,” Appl. Phys. 12, 355-368 (1977).
[CrossRef]

Kukhtarev, N. V.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M.-S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals.1: Steady-state,” Ferroelectrics 22, 949-960 (1979).
[CrossRef]

Kurz, H.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer-, and EPR-methods,” Appl. Phys. 12, 355-368 (1977).
[CrossRef]

Levinstein, J. J.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72-74 (1966).
[CrossRef]

Lininger, D. M.

Liu, S.

Liu, W.

W. Liu, D. Psaltis, and G. Barbastathis, “Real-time spectral imaging in three spatial dimensions,” Opt. Lett. 27, 854-856 (2002).
[CrossRef]

K. Buse, F. Havermeyer, W. Liu, C. Moser, and D. Psaltis, “Holographic filters,” in Photorefractive Materials and Their Applications 3, 2nd ed. (Springer Science+Business Media, LLC, 2007), Chap. 11, pp. 295-319.
[CrossRef]

Lu, W.

Q. Wu, J. Xu, G. Zhang, L. Zhao, X. Zhang, H. Qiao, Q. Sun, W. Lu, G. Zhang, and T. Volk, “Fanning scattering in LiNbO3 at 750-850 nm induced by femtosecond laser pulses,” Opt. Mater. (Amsterdam, Neth.) 23, 277-280 (2003).

Magnusson, R.

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M.-S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals.1: Steady-state,” Ferroelectrics 22, 949-960 (1979).
[CrossRef]

Marotz, J.

R. A. Rupp, J. Marotz, K. H. Ringhofer, S. Treichel, S. Feng, and E. Krätzig, “Four-wave interaction phenomena contributing to holographic scattering in LiNbO3 and LiTaO3,” IEEE J. Quantum Electron. 23, 2136-2141 (1987).
[CrossRef]

Moser, C.

K. Buse, F. Havermeyer, W. Liu, C. Moser, and D. Psaltis, “Holographic filters,” in Photorefractive Materials and Their Applications 3, 2nd ed. (Springer Science+Business Media, LLC, 2007), Chap. 11, pp. 295-319.
[CrossRef]

Nassau, K.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72-74 (1966).
[CrossRef]

Negran, T.

G. Peterson, A. Glass, and T. Negran, “Control of susceptibility of lithium niobate to laser-induced refractive index changes,” Appl. Phys. Lett. 19, 130-132 (1971).
[CrossRef]

Odoulov, S. G.

B. I. Sturman, S. G. Odoulov, and M. Y. Goulkov, “Parametric four-wave processes in photorefractive crystals,” Phys. Rep. 275, 197-254 (1996).
[CrossRef]

S. G. Odoulov and M. S. Soskin, “Amplification, oscillation, and light-induced scattering in photorefractive crystals,” in Photorefractive Materials and Their Applications II, 1st ed. (Springer-Verlag, 1989), Chap. 1, pp. 5-43.
[CrossRef]

Odulov, S. G.

E. M. Avakyan, K. G. Belabaev, and S. G. Odulov, “Polarized-anisotropy light-induced scattering in LiNbO3:Fe crystals,” Fiz. Tverd. Tela (Leningrad) 25, 3274-3281 (1983).

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M.-S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals.1: Steady-state,” Ferroelectrics 22, 949-960 (1979).
[CrossRef]

Pankrath, R.

Peterson, G.

G. Peterson, A. Glass, and T. Negran, “Control of susceptibility of lithium niobate to laser-induced refractive index changes,” Appl. Phys. Lett. 19, 130-132 (1971).
[CrossRef]

Psaltis, D.

W. Liu, D. Psaltis, and G. Barbastathis, “Real-time spectral imaging in three spatial dimensions,” Opt. Lett. 27, 854-856 (2002).
[CrossRef]

K. Buse, F. Havermeyer, W. Liu, C. Moser, and D. Psaltis, “Holographic filters,” in Photorefractive Materials and Their Applications 3, 2nd ed. (Springer Science+Business Media, LLC, 2007), Chap. 11, pp. 295-319.
[CrossRef]

Qiao, H.

Q. Wu, J. Xu, G. Zhang, L. Zhao, X. Zhang, H. Qiao, Q. Sun, W. Lu, G. Zhang, and T. Volk, “Fanning scattering in LiNbO3 at 750-850 nm induced by femtosecond laser pulses,” Opt. Mater. (Amsterdam, Neth.) 23, 277-280 (2003).

Räuber, A.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer-, and EPR-methods,” Appl. Phys. 12, 355-368 (1977).
[CrossRef]

Ringhofer, K. H.

K. Buse, S. Kämper, J. Frejlich, R. Pankrath, and K. H. Ringhofer, “Tilting of holograms in photorefractive Sr0.61Ba0.39Nb2O6 crystals by self-diffraction,” Opt. Lett. 20, 2249-2251 (1995).
[CrossRef] [PubMed]

R. A. Rupp, J. Marotz, K. H. Ringhofer, S. Treichel, S. Feng, and E. Krätzig, “Four-wave interaction phenomena contributing to holographic scattering in LiNbO3 and LiTaO3,” IEEE J. Quantum Electron. 23, 2136-2141 (1987).
[CrossRef]

Rupp, R. A.

R. A. Rupp, “Material characterization by holographic methods,” Appl. Phys. A 55, 2-20 (1992).
[CrossRef]

R. A. Rupp, J. Marotz, K. H. Ringhofer, S. Treichel, S. Feng, and E. Krätzig, “Four-wave interaction phenomena contributing to holographic scattering in LiNbO3 and LiTaO3,” IEEE J. Quantum Electron. 23, 2136-2141 (1987).
[CrossRef]

Selviah, D. R.

S. Tao, Z. H. Song, and D. R. Selviah, “Bragg-shift of holographic gratings in photorefractive Fe:LiNbO3 crystals,” Opt. Commun. 108, 144-152 (1994).
[CrossRef]

Smith, R. G.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72-74 (1966).
[CrossRef]

Song, Z. H.

S. Tao, Z. H. Song, and D. R. Selviah, “Bragg-shift of holographic gratings in photorefractive Fe:LiNbO3 crystals,” Opt. Commun. 108, 144-152 (1994).
[CrossRef]

Soskin, M. S.

S. G. Odoulov and M. S. Soskin, “Amplification, oscillation, and light-induced scattering in photorefractive crystals,” in Photorefractive Materials and Their Applications II, 1st ed. (Springer-Verlag, 1989), Chap. 1, pp. 5-43.
[CrossRef]

Soskin, M.-S.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M.-S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals.1: Steady-state,” Ferroelectrics 22, 949-960 (1979).
[CrossRef]

Sturman, B. I.

B. I. Sturman, S. G. Odoulov, and M. Y. Goulkov, “Parametric four-wave processes in photorefractive crystals,” Phys. Rep. 275, 197-254 (1996).
[CrossRef]

Sun, Q.

Q. Wu, J. Xu, G. Zhang, L. Zhao, X. Zhang, H. Qiao, Q. Sun, W. Lu, G. Zhang, and T. Volk, “Fanning scattering in LiNbO3 at 750-850 nm induced by femtosecond laser pulses,” Opt. Mater. (Amsterdam, Neth.) 23, 277-280 (2003).

G. Zhang, N. Y. Kamber, J. Xu, S. Liu, Q. Sun, and G. Zhang, “Light-amplification competition between fanning noise and the signal beam in doped lithium niobate crystals,” J. Opt. Soc. Am. B 16, 905-910 (1999).
[CrossRef]

Tao, S.

S. Tao, Z. H. Song, and D. R. Selviah, “Bragg-shift of holographic gratings in photorefractive Fe:LiNbO3 crystals,” Opt. Commun. 108, 144-152 (1994).
[CrossRef]

Treichel, S.

R. A. Rupp, J. Marotz, K. H. Ringhofer, S. Treichel, S. Feng, and E. Krätzig, “Four-wave interaction phenomena contributing to holographic scattering in LiNbO3 and LiTaO3,” IEEE J. Quantum Electron. 23, 2136-2141 (1987).
[CrossRef]

Vinetskii, V. L.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M.-S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals.1: Steady-state,” Ferroelectrics 22, 949-960 (1979).
[CrossRef]

Volk, T.

Q. Wu, J. Xu, G. Zhang, L. Zhao, X. Zhang, H. Qiao, Q. Sun, W. Lu, G. Zhang, and T. Volk, “Fanning scattering in LiNbO3 at 750-850 nm induced by femtosecond laser pulses,” Opt. Mater. (Amsterdam, Neth.) 23, 277-280 (2003).

Woerdemann, M.

M. Woerdemann, F. Holtmann, and C. Denz, “Full-field particle velocimetry with a photorefractive optical novelty filter,” Appl. Phys. Lett. 93, 021108 (2008).
[CrossRef]

Woike, T.

M. Goulkov, M. Imlau, and T. Woike, “Photorefractive parameters of lithium niobate crystals from photoinduced light scattering,” Phys. Rev. B 77, 235110 (2008).
[CrossRef]

Wu, Q.

Q. Wu, J. Xu, G. Zhang, L. Zhao, X. Zhang, H. Qiao, Q. Sun, W. Lu, G. Zhang, and T. Volk, “Fanning scattering in LiNbO3 at 750-850 nm induced by femtosecond laser pulses,” Opt. Mater. (Amsterdam, Neth.) 23, 277-280 (2003).

Wu, Y.

Xu, J.

Zhang, G.

Q. Wu, J. Xu, G. Zhang, L. Zhao, X. Zhang, H. Qiao, Q. Sun, W. Lu, G. Zhang, and T. Volk, “Fanning scattering in LiNbO3 at 750-850 nm induced by femtosecond laser pulses,” Opt. Mater. (Amsterdam, Neth.) 23, 277-280 (2003).

Q. Wu, J. Xu, G. Zhang, L. Zhao, X. Zhang, H. Qiao, Q. Sun, W. Lu, G. Zhang, and T. Volk, “Fanning scattering in LiNbO3 at 750-850 nm induced by femtosecond laser pulses,” Opt. Mater. (Amsterdam, Neth.) 23, 277-280 (2003).

G. Zhang, N. Y. Kamber, J. Xu, S. Liu, Q. Sun, and G. Zhang, “Light-amplification competition between fanning noise and the signal beam in doped lithium niobate crystals,” J. Opt. Soc. Am. B 16, 905-910 (1999).
[CrossRef]

G. Zhang, N. Y. Kamber, J. Xu, S. Liu, Q. Sun, and G. Zhang, “Light-amplification competition between fanning noise and the signal beam in doped lithium niobate crystals,” J. Opt. Soc. Am. B 16, 905-910 (1999).
[CrossRef]

S. Liu, J. Xu, G. Zhang, and Y. Wu, “Light-climbing effect in LiNbO3:Fe crystal,” Appl. Opt. 33, 997-999 (1994).

Zhang, X.

Q. Wu, J. Xu, G. Zhang, L. Zhao, X. Zhang, H. Qiao, Q. Sun, W. Lu, G. Zhang, and T. Volk, “Fanning scattering in LiNbO3 at 750-850 nm induced by femtosecond laser pulses,” Opt. Mater. (Amsterdam, Neth.) 23, 277-280 (2003).

Zhao, L.

Q. Wu, J. Xu, G. Zhang, L. Zhao, X. Zhang, H. Qiao, Q. Sun, W. Lu, G. Zhang, and T. Volk, “Fanning scattering in LiNbO3 at 750-850 nm induced by femtosecond laser pulses,” Opt. Mater. (Amsterdam, Neth.) 23, 277-280 (2003).

Appl. Opt.

Appl. Phys.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer-, and EPR-methods,” Appl. Phys. 12, 355-368 (1977).
[CrossRef]

Appl. Phys. A

R. A. Rupp, “Material characterization by holographic methods,” Appl. Phys. A 55, 2-20 (1992).
[CrossRef]

Appl. Phys. Lett.

M. Woerdemann, F. Holtmann, and C. Denz, “Full-field particle velocimetry with a photorefractive optical novelty filter,” Appl. Phys. Lett. 93, 021108 (2008).
[CrossRef]

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J. Levinstein, and K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72-74 (1966).
[CrossRef]

G. Peterson, A. Glass, and T. Negran, “Control of susceptibility of lithium niobate to laser-induced refractive index changes,” Appl. Phys. Lett. 19, 130-132 (1971).
[CrossRef]

Bell Syst. Tech. J.

H. Kogelnik, “Coupled-wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2947 (1969).

Ferroelectrics

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M.-S. Soskin, and V. L. Vinetskii, “Holographic storage in electrooptic crystals.1: Steady-state,” Ferroelectrics 22, 949-960 (1979).
[CrossRef]

Fiz. Tverd. Tela (Leningrad)

E. M. Avakyan, K. G. Belabaev, and S. G. Odulov, “Polarized-anisotropy light-induced scattering in LiNbO3:Fe crystals,” Fiz. Tverd. Tela (Leningrad) 25, 3274-3281 (1983).

IEEE J. Quantum Electron.

R. A. Rupp, J. Marotz, K. H. Ringhofer, S. Treichel, S. Feng, and E. Krätzig, “Four-wave interaction phenomena contributing to holographic scattering in LiNbO3 and LiTaO3,” IEEE J. Quantum Electron. 23, 2136-2141 (1987).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

S. Tao, Z. H. Song, and D. R. Selviah, “Bragg-shift of holographic gratings in photorefractive Fe:LiNbO3 crystals,” Opt. Commun. 108, 144-152 (1994).
[CrossRef]

Opt. Lett.

Opt. Mater. (Amsterdam, Neth.)

Q. Wu, J. Xu, G. Zhang, L. Zhao, X. Zhang, H. Qiao, Q. Sun, W. Lu, G. Zhang, and T. Volk, “Fanning scattering in LiNbO3 at 750-850 nm induced by femtosecond laser pulses,” Opt. Mater. (Amsterdam, Neth.) 23, 277-280 (2003).

Phys. Rep.

B. I. Sturman, S. G. Odoulov, and M. Y. Goulkov, “Parametric four-wave processes in photorefractive crystals,” Phys. Rep. 275, 197-254 (1996).
[CrossRef]

Phys. Rev. B

M. Goulkov, M. Imlau, and T. Woike, “Photorefractive parameters of lithium niobate crystals from photoinduced light scattering,” Phys. Rev. B 77, 235110 (2008).
[CrossRef]

Other

P.Günter and J.-P.Huignard, eds., Photorefractive Materials and Their Applications 3 (Springer Science+Business Media, LLC, 2007).

S. G. Odoulov and M. S. Soskin, “Amplification, oscillation, and light-induced scattering in photorefractive crystals,” in Photorefractive Materials and Their Applications II, 1st ed. (Springer-Verlag, 1989), Chap. 1, pp. 5-43.
[CrossRef]

K. Buse, F. Havermeyer, W. Liu, C. Moser, and D. Psaltis, “Holographic filters,” in Photorefractive Materials and Their Applications 3, 2nd ed. (Springer Science+Business Media, LLC, 2007), Chap. 11, pp. 295-319.
[CrossRef]

P.Boffi, D.Piccinin, and M.C.Ubaldi, eds., Infrared Holography for Optical Communications (Springer-Verlag, 2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Writing curves. Transmission through an as-grown DT2 crystal with different intensities for extraordinarily polarized (a) cw light and (b) pulses, respectively. The average intensities for the cw and pulse measurements are in the same range.

Fig. 2
Fig. 2

Sensitivity S in an as-grown DT2 crystal as a function of the average intensity for extraordinarily polarized cw and pulsed light.

Fig. 3
Fig. 3

Dependence of the saturated transmission T sat on the Fe 2 + concentration. Open symbols represent pulse measurements, while closed symbols indicate cw light measurements. The different shapes of the symbols correspond to the total Fe concentration of the respective sample (△, 56 × 10 24 m 3 ; ◻, 20 × 10 24 m 3 ; ▽, 7 × 10 24 m 3 ). Arrows connect measurements using the same sample before and after a thermal treatment. The measurements in the shaded area reveal no light-induced scattering.

Fig. 4
Fig. 4

Angular selectivities of light-induced scattering for cw light and for pulses with comparable average intensities for an as-grown sample DT2. The curves are calculated based on a simple model explained in Section 4.

Fig. 5
Fig. 5

Photo of scattered fs pulsed light on a screen 27 cm behind the crystal.

Fig. 6
Fig. 6

Schematic sketch of the overlap between a pulse, which propagates through the crystal in the direction r 0 , and a spherical pulsed wave originating from its interaction with a scattering center S close to the front of the crystal. The vector r S , max indicates the direction of wavefront propagation for scattered light with the largest angle 2 θ max towards r 0 that still overlaps with the main pulse at the end of the crystal.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S = t η t 0 .

Metrics