Abstract

Optical activity is manifested by chiral molecules including natural products and drugs, so that circular dichroism (CD) and optical rotatory dispersion (ORD) measurements can provide invaluable information on their chiro-optical properties and structures. It is experimentally demonstrated that heterodyne-detected Fourier-transform spectral interferometry with a femtosecond infrared pulse can be used to fully characterize the phase and amplitude of vibrational optical activity free-induction-decay field. The measured spectral interferograms are then converted to the linear optical activity susceptibility whose imaginary and real parts correspond to vibrational CD and ORD spectra. Unlike the conventional differential measurement technique, the present method based on a heterodyned interferometry is shown to be quite robust and stable. We anticipate that the present vibrational optical activity measurement technique will be of critical use in elucidating chiro-optical properties and structural changes in biomolecules.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Circular Dichroism: Principles and Applications, edited by N.Berova, K.Nakanishi, and R.W.Woody (Wiley-VCH, 2000).
  2. H. Rhee, J.-H. Ha, S.-J. Jeon, and M. Cho, “Femtosecond spectral interferometry of optical activity: theory,” J. Chem. Phys. 129, 094507 (2008).
    [CrossRef] [PubMed]
  3. H. Rhee, Y.-G. June, J.-S. Lee, K.-K. Lee, J.-H. Ha, Z. H. Kim, S.-J. Jeon, and M. Cho, “Femtosecond characterization of vibrational optical activity of chiral molecules,” Nature 458, 310-313 (2008).
    [CrossRef]
  4. L. Lepetit, G. Cheriaux, and M. Joffre, “Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B 12, 2467-2474 (1995).
    [CrossRef]
  5. D. N. Fittinghoff, J. L. Bowie, J. N. Sweetser, R. T. Jennings, M. A. Krumbugel, K. W. DeLong, R. Trebino, and I. A. Walmsley, “Measurement of the intensity and phase of ultraweak, ultrashort laser pulses,” Opt. Lett. 21, 884-886 (1996).
    [CrossRef] [PubMed]
  6. W. J. Walecki, D. N. Fittinghoff, A. L. Smirl, and R. Trebino, “Characterization of the polarization state of weak ultrashort coherent signals by dual-channel spectral interferometry,” Opt. Lett. 22, 81-83 (1997).
    [CrossRef] [PubMed]
  7. A. Albrecht Ferro, J. D. Hybl, and D. M. Jonas, “Complete femtosecond linear free induction decay, Fourier algorithm for dispersion relations, and accuracy of the rotating wave approximation,” J. Chem. Phys. 114, 4649-4656 (2001).
    [CrossRef]
  8. M. T. Zanni, N.-H. Ge, Y. S. Kim, and R. M. Hochstrasser, “Two-dimensional IR spectroscopy can be designed to eliminate the diagonal peaks and expose only the crosspeaks needed for structure determination,” Proc. Natl. Acad. Sci. U.S.A. 98, 11265-11270 (2001).
    [CrossRef] [PubMed]
  9. M. Khalil, N. Demirdoven, and A. Tokmakoff, “Coherent 2D IR spectroscopy: molecular structure and dynamics in solution,” J. Phys. Chem. A 107, 5258-5279 (2003).
    [CrossRef]
  10. T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625-628 (2005).
    [CrossRef] [PubMed]
  11. T. H. Zhang, C. N. Borca, X. Li, and S. T. Cundiff, “Optical two-dimensional Fourier transform spectroscopy with active interferometric stabilization,” Opt. Express 13, 7432-7441 (2005).
    [CrossRef] [PubMed]
  12. S.-H. Lim, A. G. Caster, and S. R. Leone, “Fourier transform spectral interferometric coherent anti-Stokes Raman scattering (FTSI-CARS) spectroscopy,” Opt. Lett. 32, 1332-1334 (2007).
    [CrossRef] [PubMed]
  13. M. Cho, H. M. Vaswani, T. Brixner, J. Stenger, and G. R. Fleming, “Exciton analysis in 2D electronic spectroscopy,” J. Phys. Chem. B 109, 10542-10556 (2005).
    [CrossRef]
  14. D. J. Kane and R. Trebino, “Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating,” IEEE J. Quantum Electron. 29, 571-579 (1993).
    [CrossRef]
  15. C. Iaconis and I. A. Walmsley, “Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses,” Opt. Lett. 23, 792-794 (1998).
    [CrossRef]
  16. R. Loudon, The Quantum Theory of Light (Oxford University Press, 1983).
  17. T. J. Bridges and J. W. Kluver, “Dichroic calcite polarizers for the infrared,” Appl. Opt. 4, 1121-1125 (1965).
    [CrossRef]
  18. E. Hecht, Optics (Addison-Wesley Longman, 1998).
  19. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, 1995).
  20. C. Guo, R. D. Shah, R. K. Dukor, T. B. Freedman, X. Cao, and L. A. Nafie, “Fourier transform vibrational circular dichroism from 800 to 10,000 cm−1: near-IR-VCD spectral standards for terpenes and related molecules,” Vib. Spectrosc. 42, 254-272 (2006).
    [CrossRef]
  21. K.-K. Lee, S. Hahn, K.-I. Oh, J. S. Choi, C. Joo, H. Han, and M. Cho, “Structure of N-acetylproline amide in liquid water: experimentally measured and numerically simulated infrared and vibrational circular dichroism spectra,” J. Chem. Phys. 110, 18834-18843 (2006).
    [CrossRef]
  22. K.-K. Lee, K.-I. Oh, H. Lee, C. Joo, H. Han, and M. Cho, “Dipeptide structure determination by vibrational circular dichroism combined with quantum chemistry calculations,” ChemPhysChem 8, 2218-2226 (2007).
    [CrossRef] [PubMed]
  23. V. B. Schrader and E. H. Korte, “Infrarot-rotationsdispersion (IRD),” Angew. Chem. 84, 218-219 (1972).
    [CrossRef]
  24. Y. N. Chirgadze, S. Y. Venyaminov, and V. M. Lobachev, “Optical rotatory dispersion of polypeptides in the near-infrared region,” Biopolymers 10, 809-820 (1971).
    [CrossRef] [PubMed]
  25. J. W. Lewis, R. F. Tilton, C. M. Einterz, S. J. Milder, I. D. Kuntz, and D. S. Kliger, “New technique for measuring circular dichroism changes on a nanosecond time scale: Application to (carbonmonoxy)myoglobin and (carbonmonoxy)hemoglobin,” J. Phys. Chem. 89, 289-294 (1985).
    [CrossRef]
  26. R. A. Goldbeck, D. B. Kim-Shapiro, and D. S. Kliger, “Fast natural and magnetic circular dichroism spectroscopy,” Annu. Rev. Phys. Chem. 48, 453-479 (1997).
    [CrossRef] [PubMed]
  27. X. Xie and J. D. Simon, “Picosecond time-resolved circular dichroism spectroscopy: experimental details and applications,” Rev. Sci. Instrum. 60, 2614-2627 (1989).
    [CrossRef]
  28. X. Xie and J. D. Simon, “Picosecond circular dichroism spectroscopy: a Jones matrix analysis,” J. Opt. Soc. Am. B 7, 1673-1684 (1990).
    [CrossRef]
  29. X. Xie and J. D. Simon, “Picosecond time-resolved circular dichroism study of protein relaxation in myoglobin following photodissociation of CO,” J. Am. Chem. Soc. 112, 7802-7803 (1990).
    [CrossRef]
  30. M. Bonmarin and J. Helbing, “A picosecond time-resolved vibrational circular dichroism spectrometer,” Opt. Lett. 33, 2086-2088 (2008).
    [CrossRef] [PubMed]
  31. C. Niezborala and F. Hache, “Measuring the dynamics of circular dichroism in a pump-probe experiment with a Babinet-Soleil compensator,” J. Opt. Soc. Am. B 23, 2418-2424 (2006).
    [CrossRef]
  32. C. Niezborala and F. Hache, “Conformational changes in photoexcited (R)-(+)-1,1′-bi-2-naphthol studied by time-resolved circular dichroism,” J. Am. Chem. Soc. 130, 12783-12786 (2008).
    [CrossRef] [PubMed]

2008 (4)

H. Rhee, J.-H. Ha, S.-J. Jeon, and M. Cho, “Femtosecond spectral interferometry of optical activity: theory,” J. Chem. Phys. 129, 094507 (2008).
[CrossRef] [PubMed]

H. Rhee, Y.-G. June, J.-S. Lee, K.-K. Lee, J.-H. Ha, Z. H. Kim, S.-J. Jeon, and M. Cho, “Femtosecond characterization of vibrational optical activity of chiral molecules,” Nature 458, 310-313 (2008).
[CrossRef]

M. Bonmarin and J. Helbing, “A picosecond time-resolved vibrational circular dichroism spectrometer,” Opt. Lett. 33, 2086-2088 (2008).
[CrossRef] [PubMed]

C. Niezborala and F. Hache, “Conformational changes in photoexcited (R)-(+)-1,1′-bi-2-naphthol studied by time-resolved circular dichroism,” J. Am. Chem. Soc. 130, 12783-12786 (2008).
[CrossRef] [PubMed]

2007 (2)

S.-H. Lim, A. G. Caster, and S. R. Leone, “Fourier transform spectral interferometric coherent anti-Stokes Raman scattering (FTSI-CARS) spectroscopy,” Opt. Lett. 32, 1332-1334 (2007).
[CrossRef] [PubMed]

K.-K. Lee, K.-I. Oh, H. Lee, C. Joo, H. Han, and M. Cho, “Dipeptide structure determination by vibrational circular dichroism combined with quantum chemistry calculations,” ChemPhysChem 8, 2218-2226 (2007).
[CrossRef] [PubMed]

2006 (3)

C. Guo, R. D. Shah, R. K. Dukor, T. B. Freedman, X. Cao, and L. A. Nafie, “Fourier transform vibrational circular dichroism from 800 to 10,000 cm−1: near-IR-VCD spectral standards for terpenes and related molecules,” Vib. Spectrosc. 42, 254-272 (2006).
[CrossRef]

K.-K. Lee, S. Hahn, K.-I. Oh, J. S. Choi, C. Joo, H. Han, and M. Cho, “Structure of N-acetylproline amide in liquid water: experimentally measured and numerically simulated infrared and vibrational circular dichroism spectra,” J. Chem. Phys. 110, 18834-18843 (2006).
[CrossRef]

C. Niezborala and F. Hache, “Measuring the dynamics of circular dichroism in a pump-probe experiment with a Babinet-Soleil compensator,” J. Opt. Soc. Am. B 23, 2418-2424 (2006).
[CrossRef]

2005 (3)

M. Cho, H. M. Vaswani, T. Brixner, J. Stenger, and G. R. Fleming, “Exciton analysis in 2D electronic spectroscopy,” J. Phys. Chem. B 109, 10542-10556 (2005).
[CrossRef]

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625-628 (2005).
[CrossRef] [PubMed]

T. H. Zhang, C. N. Borca, X. Li, and S. T. Cundiff, “Optical two-dimensional Fourier transform spectroscopy with active interferometric stabilization,” Opt. Express 13, 7432-7441 (2005).
[CrossRef] [PubMed]

2003 (1)

M. Khalil, N. Demirdoven, and A. Tokmakoff, “Coherent 2D IR spectroscopy: molecular structure and dynamics in solution,” J. Phys. Chem. A 107, 5258-5279 (2003).
[CrossRef]

2001 (2)

A. Albrecht Ferro, J. D. Hybl, and D. M. Jonas, “Complete femtosecond linear free induction decay, Fourier algorithm for dispersion relations, and accuracy of the rotating wave approximation,” J. Chem. Phys. 114, 4649-4656 (2001).
[CrossRef]

M. T. Zanni, N.-H. Ge, Y. S. Kim, and R. M. Hochstrasser, “Two-dimensional IR spectroscopy can be designed to eliminate the diagonal peaks and expose only the crosspeaks needed for structure determination,” Proc. Natl. Acad. Sci. U.S.A. 98, 11265-11270 (2001).
[CrossRef] [PubMed]

1998 (1)

1997 (2)

1996 (1)

1995 (1)

1993 (1)

D. J. Kane and R. Trebino, “Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating,” IEEE J. Quantum Electron. 29, 571-579 (1993).
[CrossRef]

1990 (2)

X. Xie and J. D. Simon, “Picosecond circular dichroism spectroscopy: a Jones matrix analysis,” J. Opt. Soc. Am. B 7, 1673-1684 (1990).
[CrossRef]

X. Xie and J. D. Simon, “Picosecond time-resolved circular dichroism study of protein relaxation in myoglobin following photodissociation of CO,” J. Am. Chem. Soc. 112, 7802-7803 (1990).
[CrossRef]

1989 (1)

X. Xie and J. D. Simon, “Picosecond time-resolved circular dichroism spectroscopy: experimental details and applications,” Rev. Sci. Instrum. 60, 2614-2627 (1989).
[CrossRef]

1985 (1)

J. W. Lewis, R. F. Tilton, C. M. Einterz, S. J. Milder, I. D. Kuntz, and D. S. Kliger, “New technique for measuring circular dichroism changes on a nanosecond time scale: Application to (carbonmonoxy)myoglobin and (carbonmonoxy)hemoglobin,” J. Phys. Chem. 89, 289-294 (1985).
[CrossRef]

1972 (1)

V. B. Schrader and E. H. Korte, “Infrarot-rotationsdispersion (IRD),” Angew. Chem. 84, 218-219 (1972).
[CrossRef]

1971 (1)

Y. N. Chirgadze, S. Y. Venyaminov, and V. M. Lobachev, “Optical rotatory dispersion of polypeptides in the near-infrared region,” Biopolymers 10, 809-820 (1971).
[CrossRef] [PubMed]

1965 (1)

Blankenship, R. E.

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625-628 (2005).
[CrossRef] [PubMed]

Bonmarin, M.

Borca, C. N.

Bowie, J. L.

Bridges, T. J.

Brixner, T.

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625-628 (2005).
[CrossRef] [PubMed]

M. Cho, H. M. Vaswani, T. Brixner, J. Stenger, and G. R. Fleming, “Exciton analysis in 2D electronic spectroscopy,” J. Phys. Chem. B 109, 10542-10556 (2005).
[CrossRef]

Cao, X.

C. Guo, R. D. Shah, R. K. Dukor, T. B. Freedman, X. Cao, and L. A. Nafie, “Fourier transform vibrational circular dichroism from 800 to 10,000 cm−1: near-IR-VCD spectral standards for terpenes and related molecules,” Vib. Spectrosc. 42, 254-272 (2006).
[CrossRef]

Caster, A. G.

Cheriaux, G.

Chirgadze, Y. N.

Y. N. Chirgadze, S. Y. Venyaminov, and V. M. Lobachev, “Optical rotatory dispersion of polypeptides in the near-infrared region,” Biopolymers 10, 809-820 (1971).
[CrossRef] [PubMed]

Cho, M.

H. Rhee, J.-H. Ha, S.-J. Jeon, and M. Cho, “Femtosecond spectral interferometry of optical activity: theory,” J. Chem. Phys. 129, 094507 (2008).
[CrossRef] [PubMed]

H. Rhee, Y.-G. June, J.-S. Lee, K.-K. Lee, J.-H. Ha, Z. H. Kim, S.-J. Jeon, and M. Cho, “Femtosecond characterization of vibrational optical activity of chiral molecules,” Nature 458, 310-313 (2008).
[CrossRef]

K.-K. Lee, K.-I. Oh, H. Lee, C. Joo, H. Han, and M. Cho, “Dipeptide structure determination by vibrational circular dichroism combined with quantum chemistry calculations,” ChemPhysChem 8, 2218-2226 (2007).
[CrossRef] [PubMed]

K.-K. Lee, S. Hahn, K.-I. Oh, J. S. Choi, C. Joo, H. Han, and M. Cho, “Structure of N-acetylproline amide in liquid water: experimentally measured and numerically simulated infrared and vibrational circular dichroism spectra,” J. Chem. Phys. 110, 18834-18843 (2006).
[CrossRef]

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625-628 (2005).
[CrossRef] [PubMed]

M. Cho, H. M. Vaswani, T. Brixner, J. Stenger, and G. R. Fleming, “Exciton analysis in 2D electronic spectroscopy,” J. Phys. Chem. B 109, 10542-10556 (2005).
[CrossRef]

Choi, J. S.

K.-K. Lee, S. Hahn, K.-I. Oh, J. S. Choi, C. Joo, H. Han, and M. Cho, “Structure of N-acetylproline amide in liquid water: experimentally measured and numerically simulated infrared and vibrational circular dichroism spectra,” J. Chem. Phys. 110, 18834-18843 (2006).
[CrossRef]

Cundiff, S. T.

DeLong, K. W.

Demirdoven, N.

M. Khalil, N. Demirdoven, and A. Tokmakoff, “Coherent 2D IR spectroscopy: molecular structure and dynamics in solution,” J. Phys. Chem. A 107, 5258-5279 (2003).
[CrossRef]

Dukor, R. K.

C. Guo, R. D. Shah, R. K. Dukor, T. B. Freedman, X. Cao, and L. A. Nafie, “Fourier transform vibrational circular dichroism from 800 to 10,000 cm−1: near-IR-VCD spectral standards for terpenes and related molecules,” Vib. Spectrosc. 42, 254-272 (2006).
[CrossRef]

Einterz, C. M.

J. W. Lewis, R. F. Tilton, C. M. Einterz, S. J. Milder, I. D. Kuntz, and D. S. Kliger, “New technique for measuring circular dichroism changes on a nanosecond time scale: Application to (carbonmonoxy)myoglobin and (carbonmonoxy)hemoglobin,” J. Phys. Chem. 89, 289-294 (1985).
[CrossRef]

Ferro, A. Albrecht

A. Albrecht Ferro, J. D. Hybl, and D. M. Jonas, “Complete femtosecond linear free induction decay, Fourier algorithm for dispersion relations, and accuracy of the rotating wave approximation,” J. Chem. Phys. 114, 4649-4656 (2001).
[CrossRef]

Fittinghoff, D. N.

Fleming, G. R.

M. Cho, H. M. Vaswani, T. Brixner, J. Stenger, and G. R. Fleming, “Exciton analysis in 2D electronic spectroscopy,” J. Phys. Chem. B 109, 10542-10556 (2005).
[CrossRef]

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625-628 (2005).
[CrossRef] [PubMed]

Freedman, T. B.

C. Guo, R. D. Shah, R. K. Dukor, T. B. Freedman, X. Cao, and L. A. Nafie, “Fourier transform vibrational circular dichroism from 800 to 10,000 cm−1: near-IR-VCD spectral standards for terpenes and related molecules,” Vib. Spectrosc. 42, 254-272 (2006).
[CrossRef]

Ge, N. -H.

M. T. Zanni, N.-H. Ge, Y. S. Kim, and R. M. Hochstrasser, “Two-dimensional IR spectroscopy can be designed to eliminate the diagonal peaks and expose only the crosspeaks needed for structure determination,” Proc. Natl. Acad. Sci. U.S.A. 98, 11265-11270 (2001).
[CrossRef] [PubMed]

Goldbeck, R. A.

R. A. Goldbeck, D. B. Kim-Shapiro, and D. S. Kliger, “Fast natural and magnetic circular dichroism spectroscopy,” Annu. Rev. Phys. Chem. 48, 453-479 (1997).
[CrossRef] [PubMed]

Guo, C.

C. Guo, R. D. Shah, R. K. Dukor, T. B. Freedman, X. Cao, and L. A. Nafie, “Fourier transform vibrational circular dichroism from 800 to 10,000 cm−1: near-IR-VCD spectral standards for terpenes and related molecules,” Vib. Spectrosc. 42, 254-272 (2006).
[CrossRef]

Ha, J. -H.

H. Rhee, J.-H. Ha, S.-J. Jeon, and M. Cho, “Femtosecond spectral interferometry of optical activity: theory,” J. Chem. Phys. 129, 094507 (2008).
[CrossRef] [PubMed]

H. Rhee, Y.-G. June, J.-S. Lee, K.-K. Lee, J.-H. Ha, Z. H. Kim, S.-J. Jeon, and M. Cho, “Femtosecond characterization of vibrational optical activity of chiral molecules,” Nature 458, 310-313 (2008).
[CrossRef]

Hache, F.

C. Niezborala and F. Hache, “Conformational changes in photoexcited (R)-(+)-1,1′-bi-2-naphthol studied by time-resolved circular dichroism,” J. Am. Chem. Soc. 130, 12783-12786 (2008).
[CrossRef] [PubMed]

C. Niezborala and F. Hache, “Measuring the dynamics of circular dichroism in a pump-probe experiment with a Babinet-Soleil compensator,” J. Opt. Soc. Am. B 23, 2418-2424 (2006).
[CrossRef]

Hahn, S.

K.-K. Lee, S. Hahn, K.-I. Oh, J. S. Choi, C. Joo, H. Han, and M. Cho, “Structure of N-acetylproline amide in liquid water: experimentally measured and numerically simulated infrared and vibrational circular dichroism spectra,” J. Chem. Phys. 110, 18834-18843 (2006).
[CrossRef]

Han, H.

K.-K. Lee, K.-I. Oh, H. Lee, C. Joo, H. Han, and M. Cho, “Dipeptide structure determination by vibrational circular dichroism combined with quantum chemistry calculations,” ChemPhysChem 8, 2218-2226 (2007).
[CrossRef] [PubMed]

K.-K. Lee, S. Hahn, K.-I. Oh, J. S. Choi, C. Joo, H. Han, and M. Cho, “Structure of N-acetylproline amide in liquid water: experimentally measured and numerically simulated infrared and vibrational circular dichroism spectra,” J. Chem. Phys. 110, 18834-18843 (2006).
[CrossRef]

Hecht, E.

E. Hecht, Optics (Addison-Wesley Longman, 1998).

Helbing, J.

Hochstrasser, R. M.

M. T. Zanni, N.-H. Ge, Y. S. Kim, and R. M. Hochstrasser, “Two-dimensional IR spectroscopy can be designed to eliminate the diagonal peaks and expose only the crosspeaks needed for structure determination,” Proc. Natl. Acad. Sci. U.S.A. 98, 11265-11270 (2001).
[CrossRef] [PubMed]

Hybl, J. D.

A. Albrecht Ferro, J. D. Hybl, and D. M. Jonas, “Complete femtosecond linear free induction decay, Fourier algorithm for dispersion relations, and accuracy of the rotating wave approximation,” J. Chem. Phys. 114, 4649-4656 (2001).
[CrossRef]

Iaconis, C.

Jennings, R. T.

Jeon, S. -J.

H. Rhee, Y.-G. June, J.-S. Lee, K.-K. Lee, J.-H. Ha, Z. H. Kim, S.-J. Jeon, and M. Cho, “Femtosecond characterization of vibrational optical activity of chiral molecules,” Nature 458, 310-313 (2008).
[CrossRef]

H. Rhee, J.-H. Ha, S.-J. Jeon, and M. Cho, “Femtosecond spectral interferometry of optical activity: theory,” J. Chem. Phys. 129, 094507 (2008).
[CrossRef] [PubMed]

Joffre, M.

Jonas, D. M.

A. Albrecht Ferro, J. D. Hybl, and D. M. Jonas, “Complete femtosecond linear free induction decay, Fourier algorithm for dispersion relations, and accuracy of the rotating wave approximation,” J. Chem. Phys. 114, 4649-4656 (2001).
[CrossRef]

Joo, C.

K.-K. Lee, K.-I. Oh, H. Lee, C. Joo, H. Han, and M. Cho, “Dipeptide structure determination by vibrational circular dichroism combined with quantum chemistry calculations,” ChemPhysChem 8, 2218-2226 (2007).
[CrossRef] [PubMed]

K.-K. Lee, S. Hahn, K.-I. Oh, J. S. Choi, C. Joo, H. Han, and M. Cho, “Structure of N-acetylproline amide in liquid water: experimentally measured and numerically simulated infrared and vibrational circular dichroism spectra,” J. Chem. Phys. 110, 18834-18843 (2006).
[CrossRef]

June, Y. -G.

H. Rhee, Y.-G. June, J.-S. Lee, K.-K. Lee, J.-H. Ha, Z. H. Kim, S.-J. Jeon, and M. Cho, “Femtosecond characterization of vibrational optical activity of chiral molecules,” Nature 458, 310-313 (2008).
[CrossRef]

Kane, D. J.

D. J. Kane and R. Trebino, “Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating,” IEEE J. Quantum Electron. 29, 571-579 (1993).
[CrossRef]

Khalil, M.

M. Khalil, N. Demirdoven, and A. Tokmakoff, “Coherent 2D IR spectroscopy: molecular structure and dynamics in solution,” J. Phys. Chem. A 107, 5258-5279 (2003).
[CrossRef]

Kim, Y. S.

M. T. Zanni, N.-H. Ge, Y. S. Kim, and R. M. Hochstrasser, “Two-dimensional IR spectroscopy can be designed to eliminate the diagonal peaks and expose only the crosspeaks needed for structure determination,” Proc. Natl. Acad. Sci. U.S.A. 98, 11265-11270 (2001).
[CrossRef] [PubMed]

Kim, Z. H.

H. Rhee, Y.-G. June, J.-S. Lee, K.-K. Lee, J.-H. Ha, Z. H. Kim, S.-J. Jeon, and M. Cho, “Femtosecond characterization of vibrational optical activity of chiral molecules,” Nature 458, 310-313 (2008).
[CrossRef]

Kim-Shapiro, D. B.

R. A. Goldbeck, D. B. Kim-Shapiro, and D. S. Kliger, “Fast natural and magnetic circular dichroism spectroscopy,” Annu. Rev. Phys. Chem. 48, 453-479 (1997).
[CrossRef] [PubMed]

Kliger, D. S.

R. A. Goldbeck, D. B. Kim-Shapiro, and D. S. Kliger, “Fast natural and magnetic circular dichroism spectroscopy,” Annu. Rev. Phys. Chem. 48, 453-479 (1997).
[CrossRef] [PubMed]

J. W. Lewis, R. F. Tilton, C. M. Einterz, S. J. Milder, I. D. Kuntz, and D. S. Kliger, “New technique for measuring circular dichroism changes on a nanosecond time scale: Application to (carbonmonoxy)myoglobin and (carbonmonoxy)hemoglobin,” J. Phys. Chem. 89, 289-294 (1985).
[CrossRef]

Kluver, J. W.

Korte, E. H.

V. B. Schrader and E. H. Korte, “Infrarot-rotationsdispersion (IRD),” Angew. Chem. 84, 218-219 (1972).
[CrossRef]

Krumbugel, M. A.

Kuntz, I. D.

J. W. Lewis, R. F. Tilton, C. M. Einterz, S. J. Milder, I. D. Kuntz, and D. S. Kliger, “New technique for measuring circular dichroism changes on a nanosecond time scale: Application to (carbonmonoxy)myoglobin and (carbonmonoxy)hemoglobin,” J. Phys. Chem. 89, 289-294 (1985).
[CrossRef]

Lee, H.

K.-K. Lee, K.-I. Oh, H. Lee, C. Joo, H. Han, and M. Cho, “Dipeptide structure determination by vibrational circular dichroism combined with quantum chemistry calculations,” ChemPhysChem 8, 2218-2226 (2007).
[CrossRef] [PubMed]

Lee, J. -S.

H. Rhee, Y.-G. June, J.-S. Lee, K.-K. Lee, J.-H. Ha, Z. H. Kim, S.-J. Jeon, and M. Cho, “Femtosecond characterization of vibrational optical activity of chiral molecules,” Nature 458, 310-313 (2008).
[CrossRef]

Lee, K. -K.

H. Rhee, Y.-G. June, J.-S. Lee, K.-K. Lee, J.-H. Ha, Z. H. Kim, S.-J. Jeon, and M. Cho, “Femtosecond characterization of vibrational optical activity of chiral molecules,” Nature 458, 310-313 (2008).
[CrossRef]

K.-K. Lee, K.-I. Oh, H. Lee, C. Joo, H. Han, and M. Cho, “Dipeptide structure determination by vibrational circular dichroism combined with quantum chemistry calculations,” ChemPhysChem 8, 2218-2226 (2007).
[CrossRef] [PubMed]

K.-K. Lee, S. Hahn, K.-I. Oh, J. S. Choi, C. Joo, H. Han, and M. Cho, “Structure of N-acetylproline amide in liquid water: experimentally measured and numerically simulated infrared and vibrational circular dichroism spectra,” J. Chem. Phys. 110, 18834-18843 (2006).
[CrossRef]

Leone, S. R.

Lepetit, L.

Lewis, J. W.

J. W. Lewis, R. F. Tilton, C. M. Einterz, S. J. Milder, I. D. Kuntz, and D. S. Kliger, “New technique for measuring circular dichroism changes on a nanosecond time scale: Application to (carbonmonoxy)myoglobin and (carbonmonoxy)hemoglobin,” J. Phys. Chem. 89, 289-294 (1985).
[CrossRef]

Li, X.

Lim, S. -H.

Lobachev, V. M.

Y. N. Chirgadze, S. Y. Venyaminov, and V. M. Lobachev, “Optical rotatory dispersion of polypeptides in the near-infrared region,” Biopolymers 10, 809-820 (1971).
[CrossRef] [PubMed]

Loudon, R.

R. Loudon, The Quantum Theory of Light (Oxford University Press, 1983).

Milder, S. J.

J. W. Lewis, R. F. Tilton, C. M. Einterz, S. J. Milder, I. D. Kuntz, and D. S. Kliger, “New technique for measuring circular dichroism changes on a nanosecond time scale: Application to (carbonmonoxy)myoglobin and (carbonmonoxy)hemoglobin,” J. Phys. Chem. 89, 289-294 (1985).
[CrossRef]

Mukamel, S.

S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, 1995).

Nafie, L. A.

C. Guo, R. D. Shah, R. K. Dukor, T. B. Freedman, X. Cao, and L. A. Nafie, “Fourier transform vibrational circular dichroism from 800 to 10,000 cm−1: near-IR-VCD spectral standards for terpenes and related molecules,” Vib. Spectrosc. 42, 254-272 (2006).
[CrossRef]

Niezborala, C.

C. Niezborala and F. Hache, “Conformational changes in photoexcited (R)-(+)-1,1′-bi-2-naphthol studied by time-resolved circular dichroism,” J. Am. Chem. Soc. 130, 12783-12786 (2008).
[CrossRef] [PubMed]

C. Niezborala and F. Hache, “Measuring the dynamics of circular dichroism in a pump-probe experiment with a Babinet-Soleil compensator,” J. Opt. Soc. Am. B 23, 2418-2424 (2006).
[CrossRef]

Oh, K. -I.

K.-K. Lee, K.-I. Oh, H. Lee, C. Joo, H. Han, and M. Cho, “Dipeptide structure determination by vibrational circular dichroism combined with quantum chemistry calculations,” ChemPhysChem 8, 2218-2226 (2007).
[CrossRef] [PubMed]

K.-K. Lee, S. Hahn, K.-I. Oh, J. S. Choi, C. Joo, H. Han, and M. Cho, “Structure of N-acetylproline amide in liquid water: experimentally measured and numerically simulated infrared and vibrational circular dichroism spectra,” J. Chem. Phys. 110, 18834-18843 (2006).
[CrossRef]

Rhee, H.

H. Rhee, Y.-G. June, J.-S. Lee, K.-K. Lee, J.-H. Ha, Z. H. Kim, S.-J. Jeon, and M. Cho, “Femtosecond characterization of vibrational optical activity of chiral molecules,” Nature 458, 310-313 (2008).
[CrossRef]

H. Rhee, J.-H. Ha, S.-J. Jeon, and M. Cho, “Femtosecond spectral interferometry of optical activity: theory,” J. Chem. Phys. 129, 094507 (2008).
[CrossRef] [PubMed]

Schrader, V. B.

V. B. Schrader and E. H. Korte, “Infrarot-rotationsdispersion (IRD),” Angew. Chem. 84, 218-219 (1972).
[CrossRef]

Shah, R. D.

C. Guo, R. D. Shah, R. K. Dukor, T. B. Freedman, X. Cao, and L. A. Nafie, “Fourier transform vibrational circular dichroism from 800 to 10,000 cm−1: near-IR-VCD spectral standards for terpenes and related molecules,” Vib. Spectrosc. 42, 254-272 (2006).
[CrossRef]

Simon, J. D.

X. Xie and J. D. Simon, “Picosecond circular dichroism spectroscopy: a Jones matrix analysis,” J. Opt. Soc. Am. B 7, 1673-1684 (1990).
[CrossRef]

X. Xie and J. D. Simon, “Picosecond time-resolved circular dichroism study of protein relaxation in myoglobin following photodissociation of CO,” J. Am. Chem. Soc. 112, 7802-7803 (1990).
[CrossRef]

X. Xie and J. D. Simon, “Picosecond time-resolved circular dichroism spectroscopy: experimental details and applications,” Rev. Sci. Instrum. 60, 2614-2627 (1989).
[CrossRef]

Smirl, A. L.

Stenger, J.

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625-628 (2005).
[CrossRef] [PubMed]

M. Cho, H. M. Vaswani, T. Brixner, J. Stenger, and G. R. Fleming, “Exciton analysis in 2D electronic spectroscopy,” J. Phys. Chem. B 109, 10542-10556 (2005).
[CrossRef]

Sweetser, J. N.

Tilton, R. F.

J. W. Lewis, R. F. Tilton, C. M. Einterz, S. J. Milder, I. D. Kuntz, and D. S. Kliger, “New technique for measuring circular dichroism changes on a nanosecond time scale: Application to (carbonmonoxy)myoglobin and (carbonmonoxy)hemoglobin,” J. Phys. Chem. 89, 289-294 (1985).
[CrossRef]

Tokmakoff, A.

M. Khalil, N. Demirdoven, and A. Tokmakoff, “Coherent 2D IR spectroscopy: molecular structure and dynamics in solution,” J. Phys. Chem. A 107, 5258-5279 (2003).
[CrossRef]

Trebino, R.

Vaswani, H. M.

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625-628 (2005).
[CrossRef] [PubMed]

M. Cho, H. M. Vaswani, T. Brixner, J. Stenger, and G. R. Fleming, “Exciton analysis in 2D electronic spectroscopy,” J. Phys. Chem. B 109, 10542-10556 (2005).
[CrossRef]

Venyaminov, S. Y.

Y. N. Chirgadze, S. Y. Venyaminov, and V. M. Lobachev, “Optical rotatory dispersion of polypeptides in the near-infrared region,” Biopolymers 10, 809-820 (1971).
[CrossRef] [PubMed]

Walecki, W. J.

Walmsley, I. A.

Xie, X.

X. Xie and J. D. Simon, “Picosecond circular dichroism spectroscopy: a Jones matrix analysis,” J. Opt. Soc. Am. B 7, 1673-1684 (1990).
[CrossRef]

X. Xie and J. D. Simon, “Picosecond time-resolved circular dichroism study of protein relaxation in myoglobin following photodissociation of CO,” J. Am. Chem. Soc. 112, 7802-7803 (1990).
[CrossRef]

X. Xie and J. D. Simon, “Picosecond time-resolved circular dichroism spectroscopy: experimental details and applications,” Rev. Sci. Instrum. 60, 2614-2627 (1989).
[CrossRef]

Zanni, M. T.

M. T. Zanni, N.-H. Ge, Y. S. Kim, and R. M. Hochstrasser, “Two-dimensional IR spectroscopy can be designed to eliminate the diagonal peaks and expose only the crosspeaks needed for structure determination,” Proc. Natl. Acad. Sci. U.S.A. 98, 11265-11270 (2001).
[CrossRef] [PubMed]

Zhang, T. H.

Angew. Chem. (1)

V. B. Schrader and E. H. Korte, “Infrarot-rotationsdispersion (IRD),” Angew. Chem. 84, 218-219 (1972).
[CrossRef]

Annu. Rev. Phys. Chem. (1)

R. A. Goldbeck, D. B. Kim-Shapiro, and D. S. Kliger, “Fast natural and magnetic circular dichroism spectroscopy,” Annu. Rev. Phys. Chem. 48, 453-479 (1997).
[CrossRef] [PubMed]

Appl. Opt. (1)

Biopolymers (1)

Y. N. Chirgadze, S. Y. Venyaminov, and V. M. Lobachev, “Optical rotatory dispersion of polypeptides in the near-infrared region,” Biopolymers 10, 809-820 (1971).
[CrossRef] [PubMed]

ChemPhysChem (1)

K.-K. Lee, K.-I. Oh, H. Lee, C. Joo, H. Han, and M. Cho, “Dipeptide structure determination by vibrational circular dichroism combined with quantum chemistry calculations,” ChemPhysChem 8, 2218-2226 (2007).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

D. J. Kane and R. Trebino, “Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating,” IEEE J. Quantum Electron. 29, 571-579 (1993).
[CrossRef]

J. Am. Chem. Soc. (2)

X. Xie and J. D. Simon, “Picosecond time-resolved circular dichroism study of protein relaxation in myoglobin following photodissociation of CO,” J. Am. Chem. Soc. 112, 7802-7803 (1990).
[CrossRef]

C. Niezborala and F. Hache, “Conformational changes in photoexcited (R)-(+)-1,1′-bi-2-naphthol studied by time-resolved circular dichroism,” J. Am. Chem. Soc. 130, 12783-12786 (2008).
[CrossRef] [PubMed]

J. Chem. Phys. (3)

K.-K. Lee, S. Hahn, K.-I. Oh, J. S. Choi, C. Joo, H. Han, and M. Cho, “Structure of N-acetylproline amide in liquid water: experimentally measured and numerically simulated infrared and vibrational circular dichroism spectra,” J. Chem. Phys. 110, 18834-18843 (2006).
[CrossRef]

A. Albrecht Ferro, J. D. Hybl, and D. M. Jonas, “Complete femtosecond linear free induction decay, Fourier algorithm for dispersion relations, and accuracy of the rotating wave approximation,” J. Chem. Phys. 114, 4649-4656 (2001).
[CrossRef]

H. Rhee, J.-H. Ha, S.-J. Jeon, and M. Cho, “Femtosecond spectral interferometry of optical activity: theory,” J. Chem. Phys. 129, 094507 (2008).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (3)

J. Phys. Chem. (1)

J. W. Lewis, R. F. Tilton, C. M. Einterz, S. J. Milder, I. D. Kuntz, and D. S. Kliger, “New technique for measuring circular dichroism changes on a nanosecond time scale: Application to (carbonmonoxy)myoglobin and (carbonmonoxy)hemoglobin,” J. Phys. Chem. 89, 289-294 (1985).
[CrossRef]

J. Phys. Chem. A (1)

M. Khalil, N. Demirdoven, and A. Tokmakoff, “Coherent 2D IR spectroscopy: molecular structure and dynamics in solution,” J. Phys. Chem. A 107, 5258-5279 (2003).
[CrossRef]

J. Phys. Chem. B (1)

M. Cho, H. M. Vaswani, T. Brixner, J. Stenger, and G. R. Fleming, “Exciton analysis in 2D electronic spectroscopy,” J. Phys. Chem. B 109, 10542-10556 (2005).
[CrossRef]

Nature (2)

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625-628 (2005).
[CrossRef] [PubMed]

H. Rhee, Y.-G. June, J.-S. Lee, K.-K. Lee, J.-H. Ha, Z. H. Kim, S.-J. Jeon, and M. Cho, “Femtosecond characterization of vibrational optical activity of chiral molecules,” Nature 458, 310-313 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (5)

Proc. Natl. Acad. Sci. U.S.A. (1)

M. T. Zanni, N.-H. Ge, Y. S. Kim, and R. M. Hochstrasser, “Two-dimensional IR spectroscopy can be designed to eliminate the diagonal peaks and expose only the crosspeaks needed for structure determination,” Proc. Natl. Acad. Sci. U.S.A. 98, 11265-11270 (2001).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

X. Xie and J. D. Simon, “Picosecond time-resolved circular dichroism spectroscopy: experimental details and applications,” Rev. Sci. Instrum. 60, 2614-2627 (1989).
[CrossRef]

Vib. Spectrosc. (1)

C. Guo, R. D. Shah, R. K. Dukor, T. B. Freedman, X. Cao, and L. A. Nafie, “Fourier transform vibrational circular dichroism from 800 to 10,000 cm−1: near-IR-VCD spectral standards for terpenes and related molecules,” Vib. Spectrosc. 42, 254-272 (2006).
[CrossRef]

Other (4)

Circular Dichroism: Principles and Applications, edited by N.Berova, K.Nakanishi, and R.W.Woody (Wiley-VCH, 2000).

R. Loudon, The Quantum Theory of Light (Oxford University Press, 1983).

E. Hecht, Optics (Addison-Wesley Longman, 1998).

S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup for the VOAFID measurement. BS1 (wedged ZnSe window) and BS2 (wedged CaF 2 window), beamsplitters; PS, periscope; LP0, LP3 and LP4, rutile prism polarizers; LP1 and LP2, calcite plate polarizers; MRS, motorized rotational stage (LP1 is attached to MRS); WP, wire-grid polarizer; CS, chiral sample; OC, optical chopper; S, shutter; PM, parabolic mirror; MC, monochromator; and InSb, indium antimonide single-element IR detector.

Fig. 2
Fig. 2

VCD and VORD measurements of (R)-limonene (upper panel in each figure) and (1S)-β-pinene (lower panel) in CCl 4 using the FTSI method. (a) Experimentally measured heterodyne-detected spectral interferograms, S het ( ω ) (solid curve) and S het ( ω ) (dashed curve), which were properly factorized for comparison. (b) Normalized amplitudes of the time-domain signal, | θ ( t ) F 1 { S het ( ω ) } | (solid curve) and | θ ( t ) F 1 { S het ( ω ) } | (dashed curve). The residual homodyne and dc signals near time zero (shaded area) is excluded by multiplying θ ( t 0.5   ps ) to F 1 { S , het ( ω ) } instead of θ ( t ) . (c) VCD (solid curve, left scale) and VORD (dashed curve, right scale) spectra obtained by using Eqs. (9, 10), respectively.

Fig. 3
Fig. 3

VCD spectra simulated by using the present method at (a) δ = 0 ° (optically perfect) and (b) δ = 0.05 ° (optically imperfect) in the presence of light source fluctuation only. The VCD spectrum obtained by using the differential measurement method is shown in (c). Values in % in this figure denote the standard deviation of the fluctuating pulse-to-pulse intensity.

Fig. 4
Fig. 4

VCD spectra simulated by using the present method at (a) δ = 0 ° (optically perfect) and (b) δ = 0.05 ° (optically imperfect) in the presence of phase fluctuation only. Values in % denote the standard deviation of the fluctuating delay time around one period (11.3 fs) of the center frequency ( 2950 cm 1 ) of the reference pulse.

Fig. 5
Fig. 5

(a) Normalized heterodyned spectral interferograms, S het (solid curve) and S het (dashed curve), measured in the C-H stretch vibration region of (1S)-β-pinene in CCl 4 at various δ angles. (b) VCD spectra retrieved by Eq. (9) at each δ angle. All the VCD spectra were corrected by each individual linear offset base line for a clear comparison.

Fig. 6
Fig. 6

Real (upper panel, VORD) and imaginary (lower panel, VCD, not base-line-corrected) part spectra obtained by Eqs. (9, 10) under optically imperfect conditions. As δ angle increases, the extinction ratio ( ρ ) of the polarizers becomes larger and consequently the offset magnitude of Re [ Δ χ imperfect ( ω ) ] increases together, whereas the imaginary part spectra are not affected by δ angle because Im [ Δ χ imperfect ( ω ) ] = Im [ Δ χ ( ω ) ] .

Tables (1)

Tables Icon

Table 1 Simulation Parameters Used for Obtaining VCD Spectrum from the VOAFID Measurement via the FTSI for a Model System with Three Vibrational Modes [2]

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

E ̃ FID ( ω ) = π ω L c n ( ω ) Δ χ ( ω ) E ̃ FID ( ω ) ,
S , ( ω ) = | E ̃ , Ref ( ω ) | 2 + | E ̃ , FID ( ω ) | 2 + 2   Re [ E ̃ , Ref ( ω ) E ̃ , FID ( ω ) exp ( i ω τ d ) ] .
E ̃ , FID ( ω ) = F [ θ ( t ) F 1 { S , het ( ω ) } ] exp ( i ω τ d ) 2 E ̃ , Ref ( ω ) .
Δ χ ( ω ) = c n ( ω ) π ω L F [ θ ( t ) F 1 { S het ( ω ) } ] F [ θ ( t ) F 1 { S het ( ω ) } ] .
Δ κ a ( ω ) = 4 π ω n ( ω ) c Im [ Δ χ ( ω ) ] .
Δ A ( ω ) = Δ κ a ( ω ) L 2.303 = 4 2.303 Im [ F [ θ ( t ) F 1 { S het ( ω ) } ] F [ θ ( t ) F 1 { S het ( ω ) } ] ] .
Δ n ( ω ) = 2 π n ( ω ) Re [ Δ χ ( ω ) ] .
Δ φ ( ω ) Δ n ( ω ) ω 2 c L = Re [ F [ θ ( t ) F 1 { S het ( ω ) } ] F [ θ ( t ) F 1 { S het ( ω ) } ] ] .
Δ A ( ω , δ ) = 4 2.303 Im [ F [ θ ( t ) F 1 { S het ( ω ) } ] F [ θ ( t ) F 1 { S het ( ω , δ ) } ] ] sin   δ ,
Δ φ ( ω , δ ) = Re [ F [ θ ( t ) F 1 { S het ( ω ) } ] F [ θ ( t ) F 1 { S het ( ω , δ ) } ] ] sin   δ ,
S , het ( ω ) = 2   Re [ E ̃ , Ref ( ω ) E ̃ , FID ( ω ) exp { i ω ( τ d + δ τ d ) } ] ,
E ̃ , imperfect FID ( ω ) = π ω L c n ( ω ) Δ χ ( ω ) E ̃ FID ( ω ) + ρ 1 / 2 E ̃ FID ( ω ) ,
E ̃ , imperfect FID ( ω ) = π ω L c n ( ω ) Δ χ imperfect ( ω ) E ̃ FID ( ω ) ,
Δ χ imperfect ( ω ) = { Re [ Δ χ ( ω ) ] + γ } + i   Im [ Δ χ ( ω ) ] .

Metrics