Abstract

Energy transfer analyses are performed on Tb3+ and Yb3+ codoped in borosilicate glasses to assess their potential as gain media for green lasers and amplifiers under the 0.98μm band pumping. Based on experimental observations using the samples highly codoped with Tb3+ and Yb3+, a rate equation model of energy transfers between Tb3+ and Yb3+ is constructed considering the four types of energy transfers processes; (i) the cooperative energy transfer upconversion, (ii) the phonon-assisted energy transfer from Tb3+ to Yb3+, (iii) the cooperative cross relaxation, and (iv) the phonon-assisted energy transfer from Yb3+ to Tb3+. The rate equation model can simulate the experimental emission dynamics of Tb3+ and Yb3+ codoped samples well. It is clarified that a practical signal gain at 0.54μm can be obtained in Tb3+Yb3+ codoped fiber under the 0.98μm band pumping.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Yamashita and Y. Ohishi, “Concentration and temperature effects on spectroscopic properties of Tb3+-doped borosilicate glasses,” J. Appl. Phys. 102, 123107 (2007).
    [CrossRef]
  2. T. Yamashita and Y. Ohishi, “Optical amplification at 0.54 μm by Tb3+-doped fluoride fiber,” Electron. Lett. 43, 88-89 (2007).
    [CrossRef]
  3. T. Yamashita and Y. Ohishi, “Amplification and lasing characteristics of Tb3+-doped fluoride fiber,” Jpn. J. Appl. Phys., Part 2 46, L991-L993 (2007).
    [CrossRef]
  4. G. R. Atkins and A. L. G. Carter, “Photodarkening in Tb3+-doped phosphosilicate and germanosilicate optical fibers,” Opt. Lett. 19, 874-876 (1994).
    [CrossRef] [PubMed]
  5. P. Xie, “Laser-induced photochoromic effect in Tb3+-doped silica fibers,” Electron. Lett. 30, 1970-1971 (1994).
    [CrossRef]
  6. F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. (Washington, D.C.) 104, 139-173 (2004).
    [CrossRef]
  7. L. D. Livanova, I. G. Saitkulov, and A. L. Stolov, “Summation processes for quanta in CaF2 and SrF2 single crystals activated with Tb3+ and Yb3+ ions,” Sov. Phys. Solid State 11, 750-754 (1969).
  8. F. W. Ostermayer and L. G. Van Uitert, “Cooperative energy transfer from Yb3+ to Tb3+ in YF3,” Phys. Rev. B 1, 4208-4212 (1970).
    [CrossRef]
  9. M. A. Noginov, P. Venkateswarlu, and M. Mahadi, “Two-step upconversion luminescence in Yb:Tb:YSGG crystals,” J. Opt. Soc. Am. B 13, 735-741 (1996).
    [CrossRef]
  10. G. M. Salley, R. Valiente, and H. U. Gudel, “Phonon-assisted cooperative sensitization of Tb3+ in SrCl2: Yb, Tb,” J. Phys.: Condens. Matter 14, 5461-5475 (2002).
    [CrossRef]
  11. L. de S. Menezes, G. S. Maciel, C. B. de Arajo, and Y. Messaddeq, “Phonon-assisted cooperative energy transfer and frequency upconversion in a Yb3+/Tb3+ codoped fluoroindate glass,” J. Appl. Phys. 94, 863-866 (2003).
    [CrossRef]
  12. L. Huang, G. Qin, Y. Arai, R. Jose, T. Suzuki, Y. Ohishi, T. Yamashita, and Y. Akimoto, “Crystallization kinetics and spectroscopic investigations on Tb3+ and Yb3+ codoped glass ceramics containing CaF2 nanocrystals,” J. Appl. Phys. 102, 093506 (2007).
    [CrossRef]
  13. T. Yamashita and Y. Ohishi, “Cooperative energy transfer between Tb3+ and Yb3+ ions codoped in borosilicate glass,” J. Non-Cryst. Solids 354, 1883-1890 (2008).
    [CrossRef]
  14. T. Holstein, S. K. Lyo, and R. Orbach, “Excitation transfer in disordered systems,” in Laser Spectroscopy of Solids, W.M.Yen and P.M.Selzer, eds. (Springer-Verlag, 1986), Chap. 2, 39-82.
  15. T. Komiyama, “Energy transfer in Eu3+-Yb3+ and Tb3+-Yb3+ system in glasses,” J. Non-Cryst. Solids 18, 107-118 (1975).
    [CrossRef]
  16. T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B 1, 2961-2969 (1970).
    [CrossRef]
  17. D. L. Dexter, “Possibility of luminescent quantum yields greater than unity,” Phys. Rev. 108, 630-633 (1957).
    [CrossRef]
  18. V. Sudarasan, V. K. Shrikhande, G. P. Kothiyal, and S. K. Kulshreshta, “Structural aspects of B2O3-substituted (PbO)0.5(SiO2)0.5 glasses,” J. Phys.: Condens. Matter 14, 6553-6565 (2002).
    [CrossRef]
  19. P. McMillan, “Structural studies of silicate glasses and melts--applications and limitations of Raman spectroscopy,” Am. Mineral. 69, 622-644 (1984).
  20. J. L. Kennedy and N. Djeu, “Energy transfer in rare earth doped Y3Al5O12 at very high temperature,” J. Lumin. 101, 147-153 (2003).
    [CrossRef]
  21. E. Maurice, G. Monnom, B. Dussardier, and D. B. Ostrowsky, “Clustering-induced nonsaturable phenomenon in heavily erbium-doped silica fibers,” Opt. Lett. 20, 2487-2489 (1995).
    [CrossRef] [PubMed]
  22. G. A. Sefler, W. Daniel Mack, G. C. Valley, and T. S. Rose, “Secondary energy transfer and non-participatory Yb3+ ions in Er3+-Yb3+ high-power amplifier fibers,” J. Opt. Soc. Am. B 21, 1740-1748 (2004).
    [CrossRef]

2008 (1)

T. Yamashita and Y. Ohishi, “Cooperative energy transfer between Tb3+ and Yb3+ ions codoped in borosilicate glass,” J. Non-Cryst. Solids 354, 1883-1890 (2008).
[CrossRef]

2007 (4)

L. Huang, G. Qin, Y. Arai, R. Jose, T. Suzuki, Y. Ohishi, T. Yamashita, and Y. Akimoto, “Crystallization kinetics and spectroscopic investigations on Tb3+ and Yb3+ codoped glass ceramics containing CaF2 nanocrystals,” J. Appl. Phys. 102, 093506 (2007).
[CrossRef]

T. Yamashita and Y. Ohishi, “Concentration and temperature effects on spectroscopic properties of Tb3+-doped borosilicate glasses,” J. Appl. Phys. 102, 123107 (2007).
[CrossRef]

T. Yamashita and Y. Ohishi, “Optical amplification at 0.54 μm by Tb3+-doped fluoride fiber,” Electron. Lett. 43, 88-89 (2007).
[CrossRef]

T. Yamashita and Y. Ohishi, “Amplification and lasing characteristics of Tb3+-doped fluoride fiber,” Jpn. J. Appl. Phys., Part 2 46, L991-L993 (2007).
[CrossRef]

2004 (2)

2003 (2)

J. L. Kennedy and N. Djeu, “Energy transfer in rare earth doped Y3Al5O12 at very high temperature,” J. Lumin. 101, 147-153 (2003).
[CrossRef]

L. de S. Menezes, G. S. Maciel, C. B. de Arajo, and Y. Messaddeq, “Phonon-assisted cooperative energy transfer and frequency upconversion in a Yb3+/Tb3+ codoped fluoroindate glass,” J. Appl. Phys. 94, 863-866 (2003).
[CrossRef]

2002 (2)

V. Sudarasan, V. K. Shrikhande, G. P. Kothiyal, and S. K. Kulshreshta, “Structural aspects of B2O3-substituted (PbO)0.5(SiO2)0.5 glasses,” J. Phys.: Condens. Matter 14, 6553-6565 (2002).
[CrossRef]

G. M. Salley, R. Valiente, and H. U. Gudel, “Phonon-assisted cooperative sensitization of Tb3+ in SrCl2: Yb, Tb,” J. Phys.: Condens. Matter 14, 5461-5475 (2002).
[CrossRef]

1996 (1)

1995 (1)

1994 (2)

1986 (1)

T. Holstein, S. K. Lyo, and R. Orbach, “Excitation transfer in disordered systems,” in Laser Spectroscopy of Solids, W.M.Yen and P.M.Selzer, eds. (Springer-Verlag, 1986), Chap. 2, 39-82.

1984 (1)

P. McMillan, “Structural studies of silicate glasses and melts--applications and limitations of Raman spectroscopy,” Am. Mineral. 69, 622-644 (1984).

1975 (1)

T. Komiyama, “Energy transfer in Eu3+-Yb3+ and Tb3+-Yb3+ system in glasses,” J. Non-Cryst. Solids 18, 107-118 (1975).
[CrossRef]

1970 (2)

T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B 1, 2961-2969 (1970).
[CrossRef]

F. W. Ostermayer and L. G. Van Uitert, “Cooperative energy transfer from Yb3+ to Tb3+ in YF3,” Phys. Rev. B 1, 4208-4212 (1970).
[CrossRef]

1969 (1)

L. D. Livanova, I. G. Saitkulov, and A. L. Stolov, “Summation processes for quanta in CaF2 and SrF2 single crystals activated with Tb3+ and Yb3+ ions,” Sov. Phys. Solid State 11, 750-754 (1969).

1957 (1)

D. L. Dexter, “Possibility of luminescent quantum yields greater than unity,” Phys. Rev. 108, 630-633 (1957).
[CrossRef]

Akimoto, Y.

L. Huang, G. Qin, Y. Arai, R. Jose, T. Suzuki, Y. Ohishi, T. Yamashita, and Y. Akimoto, “Crystallization kinetics and spectroscopic investigations on Tb3+ and Yb3+ codoped glass ceramics containing CaF2 nanocrystals,” J. Appl. Phys. 102, 093506 (2007).
[CrossRef]

Arai, Y.

L. Huang, G. Qin, Y. Arai, R. Jose, T. Suzuki, Y. Ohishi, T. Yamashita, and Y. Akimoto, “Crystallization kinetics and spectroscopic investigations on Tb3+ and Yb3+ codoped glass ceramics containing CaF2 nanocrystals,” J. Appl. Phys. 102, 093506 (2007).
[CrossRef]

Atkins, G. R.

Auzel, F.

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. (Washington, D.C.) 104, 139-173 (2004).
[CrossRef]

Carter, A. L. G.

de Arajo, C. B.

L. de S. Menezes, G. S. Maciel, C. B. de Arajo, and Y. Messaddeq, “Phonon-assisted cooperative energy transfer and frequency upconversion in a Yb3+/Tb3+ codoped fluoroindate glass,” J. Appl. Phys. 94, 863-866 (2003).
[CrossRef]

de S. Menezes, L.

L. de S. Menezes, G. S. Maciel, C. B. de Arajo, and Y. Messaddeq, “Phonon-assisted cooperative energy transfer and frequency upconversion in a Yb3+/Tb3+ codoped fluoroindate glass,” J. Appl. Phys. 94, 863-866 (2003).
[CrossRef]

Dexter, D. L.

T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B 1, 2961-2969 (1970).
[CrossRef]

D. L. Dexter, “Possibility of luminescent quantum yields greater than unity,” Phys. Rev. 108, 630-633 (1957).
[CrossRef]

Djeu, N.

J. L. Kennedy and N. Djeu, “Energy transfer in rare earth doped Y3Al5O12 at very high temperature,” J. Lumin. 101, 147-153 (2003).
[CrossRef]

Dussardier, B.

Gudel, H. U.

G. M. Salley, R. Valiente, and H. U. Gudel, “Phonon-assisted cooperative sensitization of Tb3+ in SrCl2: Yb, Tb,” J. Phys.: Condens. Matter 14, 5461-5475 (2002).
[CrossRef]

Holstein, T.

T. Holstein, S. K. Lyo, and R. Orbach, “Excitation transfer in disordered systems,” in Laser Spectroscopy of Solids, W.M.Yen and P.M.Selzer, eds. (Springer-Verlag, 1986), Chap. 2, 39-82.

Huang, L.

L. Huang, G. Qin, Y. Arai, R. Jose, T. Suzuki, Y. Ohishi, T. Yamashita, and Y. Akimoto, “Crystallization kinetics and spectroscopic investigations on Tb3+ and Yb3+ codoped glass ceramics containing CaF2 nanocrystals,” J. Appl. Phys. 102, 093506 (2007).
[CrossRef]

Jose, R.

L. Huang, G. Qin, Y. Arai, R. Jose, T. Suzuki, Y. Ohishi, T. Yamashita, and Y. Akimoto, “Crystallization kinetics and spectroscopic investigations on Tb3+ and Yb3+ codoped glass ceramics containing CaF2 nanocrystals,” J. Appl. Phys. 102, 093506 (2007).
[CrossRef]

Kennedy, J. L.

J. L. Kennedy and N. Djeu, “Energy transfer in rare earth doped Y3Al5O12 at very high temperature,” J. Lumin. 101, 147-153 (2003).
[CrossRef]

Komiyama, T.

T. Komiyama, “Energy transfer in Eu3+-Yb3+ and Tb3+-Yb3+ system in glasses,” J. Non-Cryst. Solids 18, 107-118 (1975).
[CrossRef]

Kothiyal, G. P.

V. Sudarasan, V. K. Shrikhande, G. P. Kothiyal, and S. K. Kulshreshta, “Structural aspects of B2O3-substituted (PbO)0.5(SiO2)0.5 glasses,” J. Phys.: Condens. Matter 14, 6553-6565 (2002).
[CrossRef]

Kulshreshta, S. K.

V. Sudarasan, V. K. Shrikhande, G. P. Kothiyal, and S. K. Kulshreshta, “Structural aspects of B2O3-substituted (PbO)0.5(SiO2)0.5 glasses,” J. Phys.: Condens. Matter 14, 6553-6565 (2002).
[CrossRef]

Livanova, L. D.

L. D. Livanova, I. G. Saitkulov, and A. L. Stolov, “Summation processes for quanta in CaF2 and SrF2 single crystals activated with Tb3+ and Yb3+ ions,” Sov. Phys. Solid State 11, 750-754 (1969).

Lyo, S. K.

T. Holstein, S. K. Lyo, and R. Orbach, “Excitation transfer in disordered systems,” in Laser Spectroscopy of Solids, W.M.Yen and P.M.Selzer, eds. (Springer-Verlag, 1986), Chap. 2, 39-82.

Maciel, G. S.

L. de S. Menezes, G. S. Maciel, C. B. de Arajo, and Y. Messaddeq, “Phonon-assisted cooperative energy transfer and frequency upconversion in a Yb3+/Tb3+ codoped fluoroindate glass,” J. Appl. Phys. 94, 863-866 (2003).
[CrossRef]

Mack, W. Daniel

Mahadi, M.

Maurice, E.

McMillan, P.

P. McMillan, “Structural studies of silicate glasses and melts--applications and limitations of Raman spectroscopy,” Am. Mineral. 69, 622-644 (1984).

Messaddeq, Y.

L. de S. Menezes, G. S. Maciel, C. B. de Arajo, and Y. Messaddeq, “Phonon-assisted cooperative energy transfer and frequency upconversion in a Yb3+/Tb3+ codoped fluoroindate glass,” J. Appl. Phys. 94, 863-866 (2003).
[CrossRef]

Miyakawa, T.

T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B 1, 2961-2969 (1970).
[CrossRef]

Monnom, G.

Noginov, M. A.

Ohishi, Y.

T. Yamashita and Y. Ohishi, “Cooperative energy transfer between Tb3+ and Yb3+ ions codoped in borosilicate glass,” J. Non-Cryst. Solids 354, 1883-1890 (2008).
[CrossRef]

T. Yamashita and Y. Ohishi, “Optical amplification at 0.54 μm by Tb3+-doped fluoride fiber,” Electron. Lett. 43, 88-89 (2007).
[CrossRef]

T. Yamashita and Y. Ohishi, “Amplification and lasing characteristics of Tb3+-doped fluoride fiber,” Jpn. J. Appl. Phys., Part 2 46, L991-L993 (2007).
[CrossRef]

L. Huang, G. Qin, Y. Arai, R. Jose, T. Suzuki, Y. Ohishi, T. Yamashita, and Y. Akimoto, “Crystallization kinetics and spectroscopic investigations on Tb3+ and Yb3+ codoped glass ceramics containing CaF2 nanocrystals,” J. Appl. Phys. 102, 093506 (2007).
[CrossRef]

T. Yamashita and Y. Ohishi, “Concentration and temperature effects on spectroscopic properties of Tb3+-doped borosilicate glasses,” J. Appl. Phys. 102, 123107 (2007).
[CrossRef]

Orbach, R.

T. Holstein, S. K. Lyo, and R. Orbach, “Excitation transfer in disordered systems,” in Laser Spectroscopy of Solids, W.M.Yen and P.M.Selzer, eds. (Springer-Verlag, 1986), Chap. 2, 39-82.

Ostermayer, F. W.

F. W. Ostermayer and L. G. Van Uitert, “Cooperative energy transfer from Yb3+ to Tb3+ in YF3,” Phys. Rev. B 1, 4208-4212 (1970).
[CrossRef]

Ostrowsky, D. B.

Qin, G.

L. Huang, G. Qin, Y. Arai, R. Jose, T. Suzuki, Y. Ohishi, T. Yamashita, and Y. Akimoto, “Crystallization kinetics and spectroscopic investigations on Tb3+ and Yb3+ codoped glass ceramics containing CaF2 nanocrystals,” J. Appl. Phys. 102, 093506 (2007).
[CrossRef]

Rose, T. S.

Saitkulov, I. G.

L. D. Livanova, I. G. Saitkulov, and A. L. Stolov, “Summation processes for quanta in CaF2 and SrF2 single crystals activated with Tb3+ and Yb3+ ions,” Sov. Phys. Solid State 11, 750-754 (1969).

Salley, G. M.

G. M. Salley, R. Valiente, and H. U. Gudel, “Phonon-assisted cooperative sensitization of Tb3+ in SrCl2: Yb, Tb,” J. Phys.: Condens. Matter 14, 5461-5475 (2002).
[CrossRef]

Sefler, G. A.

Shrikhande, V. K.

V. Sudarasan, V. K. Shrikhande, G. P. Kothiyal, and S. K. Kulshreshta, “Structural aspects of B2O3-substituted (PbO)0.5(SiO2)0.5 glasses,” J. Phys.: Condens. Matter 14, 6553-6565 (2002).
[CrossRef]

Stolov, A. L.

L. D. Livanova, I. G. Saitkulov, and A. L. Stolov, “Summation processes for quanta in CaF2 and SrF2 single crystals activated with Tb3+ and Yb3+ ions,” Sov. Phys. Solid State 11, 750-754 (1969).

Sudarasan, V.

V. Sudarasan, V. K. Shrikhande, G. P. Kothiyal, and S. K. Kulshreshta, “Structural aspects of B2O3-substituted (PbO)0.5(SiO2)0.5 glasses,” J. Phys.: Condens. Matter 14, 6553-6565 (2002).
[CrossRef]

Suzuki, T.

L. Huang, G. Qin, Y. Arai, R. Jose, T. Suzuki, Y. Ohishi, T. Yamashita, and Y. Akimoto, “Crystallization kinetics and spectroscopic investigations on Tb3+ and Yb3+ codoped glass ceramics containing CaF2 nanocrystals,” J. Appl. Phys. 102, 093506 (2007).
[CrossRef]

Valiente, R.

G. M. Salley, R. Valiente, and H. U. Gudel, “Phonon-assisted cooperative sensitization of Tb3+ in SrCl2: Yb, Tb,” J. Phys.: Condens. Matter 14, 5461-5475 (2002).
[CrossRef]

Valley, G. C.

Van Uitert, L. G.

F. W. Ostermayer and L. G. Van Uitert, “Cooperative energy transfer from Yb3+ to Tb3+ in YF3,” Phys. Rev. B 1, 4208-4212 (1970).
[CrossRef]

Venkateswarlu, P.

Xie, P.

P. Xie, “Laser-induced photochoromic effect in Tb3+-doped silica fibers,” Electron. Lett. 30, 1970-1971 (1994).
[CrossRef]

Yamashita, T.

T. Yamashita and Y. Ohishi, “Cooperative energy transfer between Tb3+ and Yb3+ ions codoped in borosilicate glass,” J. Non-Cryst. Solids 354, 1883-1890 (2008).
[CrossRef]

T. Yamashita and Y. Ohishi, “Optical amplification at 0.54 μm by Tb3+-doped fluoride fiber,” Electron. Lett. 43, 88-89 (2007).
[CrossRef]

T. Yamashita and Y. Ohishi, “Amplification and lasing characteristics of Tb3+-doped fluoride fiber,” Jpn. J. Appl. Phys., Part 2 46, L991-L993 (2007).
[CrossRef]

L. Huang, G. Qin, Y. Arai, R. Jose, T. Suzuki, Y. Ohishi, T. Yamashita, and Y. Akimoto, “Crystallization kinetics and spectroscopic investigations on Tb3+ and Yb3+ codoped glass ceramics containing CaF2 nanocrystals,” J. Appl. Phys. 102, 093506 (2007).
[CrossRef]

T. Yamashita and Y. Ohishi, “Concentration and temperature effects on spectroscopic properties of Tb3+-doped borosilicate glasses,” J. Appl. Phys. 102, 123107 (2007).
[CrossRef]

Am. Mineral. (1)

P. McMillan, “Structural studies of silicate glasses and melts--applications and limitations of Raman spectroscopy,” Am. Mineral. 69, 622-644 (1984).

Chem. Rev. (Washington, D.C.) (1)

F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. (Washington, D.C.) 104, 139-173 (2004).
[CrossRef]

Electron. Lett. (2)

T. Yamashita and Y. Ohishi, “Optical amplification at 0.54 μm by Tb3+-doped fluoride fiber,” Electron. Lett. 43, 88-89 (2007).
[CrossRef]

P. Xie, “Laser-induced photochoromic effect in Tb3+-doped silica fibers,” Electron. Lett. 30, 1970-1971 (1994).
[CrossRef]

J. Appl. Phys. (3)

T. Yamashita and Y. Ohishi, “Concentration and temperature effects on spectroscopic properties of Tb3+-doped borosilicate glasses,” J. Appl. Phys. 102, 123107 (2007).
[CrossRef]

L. de S. Menezes, G. S. Maciel, C. B. de Arajo, and Y. Messaddeq, “Phonon-assisted cooperative energy transfer and frequency upconversion in a Yb3+/Tb3+ codoped fluoroindate glass,” J. Appl. Phys. 94, 863-866 (2003).
[CrossRef]

L. Huang, G. Qin, Y. Arai, R. Jose, T. Suzuki, Y. Ohishi, T. Yamashita, and Y. Akimoto, “Crystallization kinetics and spectroscopic investigations on Tb3+ and Yb3+ codoped glass ceramics containing CaF2 nanocrystals,” J. Appl. Phys. 102, 093506 (2007).
[CrossRef]

J. Lumin. (1)

J. L. Kennedy and N. Djeu, “Energy transfer in rare earth doped Y3Al5O12 at very high temperature,” J. Lumin. 101, 147-153 (2003).
[CrossRef]

J. Non-Cryst. Solids (2)

T. Yamashita and Y. Ohishi, “Cooperative energy transfer between Tb3+ and Yb3+ ions codoped in borosilicate glass,” J. Non-Cryst. Solids 354, 1883-1890 (2008).
[CrossRef]

T. Komiyama, “Energy transfer in Eu3+-Yb3+ and Tb3+-Yb3+ system in glasses,” J. Non-Cryst. Solids 18, 107-118 (1975).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys.: Condens. Matter (2)

V. Sudarasan, V. K. Shrikhande, G. P. Kothiyal, and S. K. Kulshreshta, “Structural aspects of B2O3-substituted (PbO)0.5(SiO2)0.5 glasses,” J. Phys.: Condens. Matter 14, 6553-6565 (2002).
[CrossRef]

G. M. Salley, R. Valiente, and H. U. Gudel, “Phonon-assisted cooperative sensitization of Tb3+ in SrCl2: Yb, Tb,” J. Phys.: Condens. Matter 14, 5461-5475 (2002).
[CrossRef]

Jpn. J. Appl. Phys., Part 2 (1)

T. Yamashita and Y. Ohishi, “Amplification and lasing characteristics of Tb3+-doped fluoride fiber,” Jpn. J. Appl. Phys., Part 2 46, L991-L993 (2007).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. (1)

D. L. Dexter, “Possibility of luminescent quantum yields greater than unity,” Phys. Rev. 108, 630-633 (1957).
[CrossRef]

Phys. Rev. B (2)

T. Miyakawa and D. L. Dexter, “Phonon sidebands, multiphonon relaxation of excited states, and phonon-assisted energy transfer between ions in solids,” Phys. Rev. B 1, 2961-2969 (1970).
[CrossRef]

F. W. Ostermayer and L. G. Van Uitert, “Cooperative energy transfer from Yb3+ to Tb3+ in YF3,” Phys. Rev. B 1, 4208-4212 (1970).
[CrossRef]

Sov. Phys. Solid State (1)

L. D. Livanova, I. G. Saitkulov, and A. L. Stolov, “Summation processes for quanta in CaF2 and SrF2 single crystals activated with Tb3+ and Yb3+ ions,” Sov. Phys. Solid State 11, 750-754 (1969).

Other (1)

T. Holstein, S. K. Lyo, and R. Orbach, “Excitation transfer in disordered systems,” in Laser Spectroscopy of Solids, W.M.Yen and P.M.Selzer, eds. (Springer-Verlag, 1986), Chap. 2, 39-82.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Schematic energy level diagram for the energy transfer analysis on the Tb 3 + Yb 3 + codoped system. The nonparticipatory Yb 3 + is considered in the coupled rate equation model. The parameters in the diagram are described in the text.

Fig. 2
Fig. 2

Absorption spectra of Tb 3 + Yb 3 + codoped SBNACZ glasses at room temperature. Tb 3 + number densities are set to about 1.05 × 10 21   ions cm 3 and Yb 3 + concentrations are varied up to 1.19 × 10 21   ions cm 3 (SBNACZ x Yb 10 Tb ).

Fig. 3
Fig. 3

Absorption cross-section spectra for the F 7 2 2 F 5 2 2 transition of Yb 3 + in SBNACZ glasses codoped with Tb 3 + and Yb 3 + (SBNACZ x Yb 10 Tb ).

Fig. 4
Fig. 4

Upconversion emission spectra of Tb 3 + Yb 3 + codoped SBNACZ glasses at room temperature. Tb 3 + number densities are set to about 1.05 × 10 21   ions cm 3 and Yb 3 + concentrations are varied up to 1.19 × 10 21   ions cm 3 (SBNACZ x Yb 10 Tb ). The excited wavelength is 974 nm . All spectra are normalized so that the highest peak intensity of each spectrum is equal to unity.

Fig. 5
Fig. 5

Excitation power dependences on upconversion emission intensities of the Tb 3 + Yb 3 + codoped SBNACZ glass (SBNACZ 5Yb10Tb). The excited wavelength is 974 nm . The Tb 3 + : D 4 5 F 5 7 and Tb 3 + : D 3 5 F 6 7 emission intensities are monitored at 544 and 378 nm , respectively.

Fig. 6
Fig. 6

Infrared emission spectrum of the Tb 3 + Yb 3 + codoped SBNACZ glass (SBNACZ 1Yb10Tb) at room temperature. The excited wavelength is 488 nm .

Fig. 7
Fig. 7

Yb 3 + number density dependence of the Tb 3 + : D 4 5 F 5 5 emission lifetimes measured in Tb 3 + Yb 3 + codoped SBNACZ glasses (SBNACZ x Yb 10 Tb ) under 488 and 974 nm excitations at room temperature.

Fig. 8
Fig. 8

Temperature dependence of the Tb 3 + : D 4 5 F 7 5 emission lifetimes observed in Tb 3 + -doped (SBNACZ Tb10) and Tb 3 + Yb 3 + codoped (SBNACZ 5YbTb10) SBNACZ glasses. The excitation wavelength for the Tb 3 + -doped and Tb 3 + Yb 3 + codoped samples are 488 and 974 nm , respectively.

Fig. 9
Fig. 9

Backward energy transfer probability for the Tb 3 + Yb 3 + codoped SBNACZ glass (SBNACZ 5Yb10Tb). The measured values are obtained from the measured emission lifetimes shown in Fig. 8. The solid curve represents the fitted curve by the phonon-assisted transfer probability using Eq. (3).

Fig. 10
Fig. 10

Experimental and simulated emission decay curves for the Tb 3 + Yb 3 + codoped SBNACZ glasses using the rate equation model. (a) SBNACZ 1Yb10Tb, (b) 2Yb10Tb, (c) 3Yb10Tb, (d) 5Yb10Tb, (e) 8Yb10Tb, and (f) 11Yb10Tb.

Fig. 11
Fig. 11

Parameters obtained by the fitting of experimental emission decay using Eqs. (4, 5, 6, 7, 8, 9, 10, 11). (a) The fraction of participatory Tb 3 + and Yb 3 + ions, (b) the number of participatory Tb 3 + and Yb 3 + ions, (c) the coefficient of cooperative energy transfer, and (d) the coefficient of the phonon-assisted energy transfer from Tb 3 + to Yb 3 + .

Fig. 12
Fig. 12

Yb 3 + number density dependence of the transfer rates of energy transfers between Tb 3 + and Yb 3 + and nonradiative decay of Yb 3 + . W COT , W CCR , W PAT , and W Yb , n r are the energy transfer rates for the cooperative upconversion, the cooperative cross relaxation, the phonon-assisted transfer from Tb 3 + to Yb 3 + , and the nonradiative relaxation rate of Yb 3 + : F 5 2 2 , respectively. These values were obtained by using the simulated steady-state population when the excited power density was assumed to be 0.25 W mm 2 . Tb 3 + number density is about 1.05 × 10 21   ions cm 3 .

Fig. 13
Fig. 13

Yb 3 + number density dependence of the forward and backward energy transfer efficiencies between Tb 3 + and Yb 3 + obtained using Eqs. (12, 13). Tb 3 + number density is about 1.05 × 10 21   ions cm 3 .

Fig. 14
Fig. 14

Calculated signal gains at 543 nm of Tb 3 + Yb 3 + codoped SBNACZ fiber under 974 nm side pumping. Yb 3 + and Tb 3 + concentrations were 5 wt. % Yb 3 + and 9.43 wt. % Tb 3 + , respectively. The core radius, fiber length, and propagation loss are assumed to be 5 μ m , 0.5 m , and 0.05 dB m , respectively.

Tables (3)

Tables Icon

Table 1 Label, Yb 3 + Concentration ( N Yb ) , Tb 3 + Concentration ( N Tb ) , and Density ( ρ ) , and Refractive Index of the Glass Samples in the Present Study

Tables Icon

Table 2 Parameters Used in the Emission Decay Simulation Using Eqs. (4, 5, 6, 7, 8, 9, 10, 11)

Tables Icon

Table 3 Parameters Obtained by the Emission Decay Simulation using Eqs. (4, 5, 6, 7, 8, 9, 10, 11)

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

σ a , Yb = μ N Yb = 2.303 log 10 ( I I 0 ) l N Yb .
W PAT ( T ) = W PAT ( 0 ) [ exp ( ω k T ) { exp ( ω k T ) 1 } ] n ,
W bt ( T ) = W CCR + W PAT ( T ) .
d n y 2 d t = R Yb n y 1 ( W Yb , r + W Yb , nr ) n y 2 2 C f n y 2 2 n t 1 + 2 C b n y 1 2 n t 2 + C p n t 2 n y 1 ,
d n y 1 d t = R Yb n y 1 + ( W Yb , r + W Yb , nr ) n y 2 ,
d n t 2 d t = W Tb , r n t 2 + C f n y 2 2 n t 1 C b n y 1 2 n t 2 C p n t 2 n y 1 ,
d n t 1 d t = C f n y 2 2 n t 1 + W Tb , r n t 2 ,
n y 2 = f p , Yb N Yb n y 1 ,
n t 2 = f p , Tb N Tb n t 1 ,
d n y 2 d t = R Yb n y 1 ( W Yb , r + W Yb , nr ) n y 2 ,
n y 2 = ( 1 f P , Yb ) N Yb n y 1 ,
η f = W COT W Yb , r + W Yb , nr + W COT ,
η b = W PAT + W CCR W Tb , r + W PAT + W CCR .

Metrics