Abstract

Spectroscopic ellipsometry (SE) has been utilized during the past decades for the measurement of the dielectric function of semiconductors. By using SE, interband critical point parameters such as energy gaps and broadenings are routinely determined. In the direct-space analysis approach, these parameters are known by taking the numerical energy derivatives of the dielectric function and fitting the spectra by using a Lorenzian line shape. However, in many cases the noise of the spectra does not allow the determination of such parameters as precisely as they are needed. Additionally, the determination of the character of the transitions, which is uncorrelated (one electron) or correlated (discrete excitons), is necessary for the analysis of the dielectric function. For instance, different values for the broadening parameter are obtained by using uncorrelated or correlated line shapes. We use a reciprocal-space analysis instead of the most commonly used direct-space analysis for determining without any uncertainty the character and, consequently, a precise value of the broadening parameter of the E1 transitions of GaP, GaAs, Si, CdTe, GaSb, HgTe, and an alloy semiconductor: Cd0.18Hg0.82Te.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5to6.0 eV,” Phys. Rev. B 27, 985-1009 (1983).
    [CrossRef]
  2. G. E. Jellison, Jr., “Optical functions of GaAs, GaP, Ge determined by two channel polarization ellipsometry,” Opt. Mater. 1, 151-160 (1992).
    [CrossRef]
  3. P. Lautenschlager, M. Garriga, S. Logothetidis, and M. Cardona, “Interband critical points of GaAs and their temperature dependence,” Phys. Rev. B 35, 9174-9189 (1987).
    [CrossRef]
  4. P. Lautenschlager, M. Garriga, L. Vina, and M. Cardona, “Temperature dependence of the dielectric function and interband critical points in silicon,” Phys. Rev. B 36, 4821-4830 (1987).
    [CrossRef]
  5. S. Adachi, T. Kimura, and N. Suzuki, “Optical properties of CdTe: experiment and modeling,” J. Appl. Phys. 74, 3435-3441 (1993).
    [CrossRef]
  6. Y. W. Jung, T. H. Ghong, Y. D. Kim, and D. E. Aspnes, “Effect of overlayers on critical-point parameters in the analysis of ellipsometric spectra,” Appl. Phys. Lett. 91, 121903 (2007).
    [CrossRef]
  7. M. Muñoz, K. Wei, and F. H. Pollak, “Spectral ellipsometry of GaSb: Experiment and modeling,” Phys. Rev. B 60, 8105-8110 (1999).
    [CrossRef]
  8. P. Lautenschlager, M. Garriga, and M. Cardona, “Temperature dependence of the interband critical-point parameters of InP,” Phys. Rev. B 36, 4813-4820 (1987).
    [CrossRef]
  9. M. Cardona, Modulation Spectroscopy (Academic, 1969).
  10. D. E. Aspnes, “Modulation spectroscopy/electric field effects on the dielectric function of semiconductors,” Handbook on Semiconductors, M.Balkanski ed. (North-Holland, 1980), Vol. 2, pp. 109-179.
  11. P. Y. Yu and M. Cardona, Fundamentals of Semiconductors (Springer, 1996).
  12. A. B. Djurisic, Y. Chan, E. H. Li, “Progress in the room-temperature optical functions of semiconductors,” Mater. Sci. Eng. R. 38, 237-293 (2002).
    [CrossRef]
  13. D. E. Aspnes and H. Arwin, “Analysis of optical-spectra by Fourier methods--filtering and least-square regression in reciprocal space,” J. Opt. Soc. Am. 73, 1759-1764 (1983).
    [CrossRef]
  14. S. D. Yoo and D. E. Aspnes, “Elimination of endpoint-discontinuity artifacts in the analysis of spectra in reciprocal space,” J. Appl. Phys. 89, 8183-8192 (2001).
    [CrossRef]
  15. D. E. Aspnes, “The analysis of optical-spectra by Fourier methods,” Surf. Sci. 135, 284-306 (1983).
    [CrossRef]
  16. D. E. Aspnes, “Fourier critical-point analysis-extension to Gaussian lineshapes,” Sol. Energy Mater. Sol. Cells 32, 413-419 (1994).
    [CrossRef]
  17. L. F. Lastras-Martínez, T. Ruf, M. Konuma, M. Cardona, and D. E. Aspnes, “Isotopic effects on the dielectric response of Si around the E1 gap,” Phys. Rev. B 61, 12946-12951 (2000).
    [CrossRef]
  18. S. D. Yoo, D. E. Aspnes, L. F. Lastras-Martínez, T. Ruf, M. Konuma, and M. Cardona, “High-resolution spectroscopy with reciprocal-space analysis: application to isotopically pure Si,” Phys. Status Solidi B 220, 117-125 (2000).
    [CrossRef]
  19. J. Price and A. C. Diebold, “Spectroscopic ellipsometry characterization of ultrathin silicon-on-insulator films,” J. Vac. Sci. Technol. B 24, 2156-2159 (2006).
    [CrossRef]
  20. A. C. Diebold and J. Price, “Observation of quantum confinement and quantum size effects,” Phys. Status Solidi A 205, 896-900 (2008).
    [CrossRef]
  21. P. H. Hahn, W. G. Schmidt, and F. Bechstedt, “Bulk excitonic effects in surface optical spectra,” Phys. Rev. Lett. 88, 016402 (2002).
    [CrossRef] [PubMed]
  22. W. G. Schmidt, F. Bechstedt, W. Lu, and J. Bernholc, “Interplay of surface reconstruction and surface electric fields in the optical anisotropy of GaAs(001),” Phys. Rev. B 66, 085334 (2002).
    [CrossRef]
  23. L. F. Lastras-Martínez, J. M. Flores-Camacho, R. E. Balderas-Navarro, M. Chavira-Rodríguez, A. Lastras-Martínez, and M. Cardona, “Effect of reconstruction-induced strain on the reflectance difference spectroscopy of GaAs (001) around E1 and E1+Δ1 transitions,” Phys. Rev. B 75, 235315 (2007).
    [CrossRef]
  24. L. D. Sun, M. Hohage, P. Zeppenfeld, and R. E. Balderas-Navarro, “Origin and temperature dependence of the surface optical anisotropy on Cu(110),” Surf. Sci. 589, 153-163 (2005).
    [CrossRef]
  25. J. M. Flores-Camacho, O. F. Núñez-Olvera, G. Rodríguez-Pedroza, A. Lastras-Martínez, and L. F. Lastras-Martínez, “Lock-in amplifier-based rotating-analyzer spectroscopic ellipsometer with micro-controlled angular frequency,” Rev. Mex. Fis. 51, 274-283 (2005).
  26. H. Arwin and D. E. Aspnes, “Nondestructive analysis of Hg1-XCdXTe(X=0.00,0.20,0.29,and1.00) by spectroscopic ellipsometry. 2. Substrate, oxide, and interface properties,” J. Vac. Sci. Technol. A 2, 1316-1323 (1984).
    [CrossRef]
  27. O. S. Heavens, Optical Properies of Thin Solid Films (Dover, 1991).
  28. D. E. Aspnes, B. Schwartz, A. A. Studna, L. Derick, and L. A. Koszi, “Optical properties of anodically grown native oxides on some Ga-V compounds from 1.5to6.0 eV,” J. Appl. Phys. 48, 3510-3513 (1977).
    [CrossRef]
  29. R. H. Philipp, “Silicon dioxide (SiO2) (Glass),” in Handbook of Optical Constants of Solids, E.D.Palik, ed. (Academic, 1985), pp. 749-763.
  30. J. E. Rowe and D. E. Aspnes, “Approximate treatment of exciton effects in electric field modulation via the Slater-Koster interaction,” Phys. Rev. Lett. 25, 162-165 (1970).
    [CrossRef]
  31. B. Velický and J. Sak, “Excitonic effects in the interband absorption of semiconductors,” Phys. Status Solidi B 16, 147-157 (1966).
    [CrossRef]
  32. S. Zollner, M. Garriga, J. Kircher, J. Humlicek, M. Cardona, and G. Neuhold, “Temperature dependence of the dielectric function and the interband critical-point parameters of GaP,” Phys. Rev. B 48, 7915-7929 (1993).
    [CrossRef]
  33. M. Rohlfing and S. G. Louie, “Electron-hole excitations and optical spectra from first principles,” Phys. Rev. B 62, 4927-4944 (2000).
    [CrossRef]
  34. S. Zollner, M. Garriga, J. Humlicek, S. Gopalan, and M. Cardona, “Temperature dependence of the dielectric function and the interband critical-point parameters of GaSb,” Phys. Rev. B 43, 4349-4360 (1991).
    [CrossRef]
  35. L. Viña, C. Umbach, M. Cardona, and L. Vodopyanov, “Ellipsometric studies of electronic interband transitions in CdxHg1−xTe,” Phys. Rev. B 29, 6752-6760 (1984).
    [CrossRef]

2008

A. C. Diebold and J. Price, “Observation of quantum confinement and quantum size effects,” Phys. Status Solidi A 205, 896-900 (2008).
[CrossRef]

2007

L. F. Lastras-Martínez, J. M. Flores-Camacho, R. E. Balderas-Navarro, M. Chavira-Rodríguez, A. Lastras-Martínez, and M. Cardona, “Effect of reconstruction-induced strain on the reflectance difference spectroscopy of GaAs (001) around E1 and E1+Δ1 transitions,” Phys. Rev. B 75, 235315 (2007).
[CrossRef]

Y. W. Jung, T. H. Ghong, Y. D. Kim, and D. E. Aspnes, “Effect of overlayers on critical-point parameters in the analysis of ellipsometric spectra,” Appl. Phys. Lett. 91, 121903 (2007).
[CrossRef]

2006

J. Price and A. C. Diebold, “Spectroscopic ellipsometry characterization of ultrathin silicon-on-insulator films,” J. Vac. Sci. Technol. B 24, 2156-2159 (2006).
[CrossRef]

2005

L. D. Sun, M. Hohage, P. Zeppenfeld, and R. E. Balderas-Navarro, “Origin and temperature dependence of the surface optical anisotropy on Cu(110),” Surf. Sci. 589, 153-163 (2005).
[CrossRef]

J. M. Flores-Camacho, O. F. Núñez-Olvera, G. Rodríguez-Pedroza, A. Lastras-Martínez, and L. F. Lastras-Martínez, “Lock-in amplifier-based rotating-analyzer spectroscopic ellipsometer with micro-controlled angular frequency,” Rev. Mex. Fis. 51, 274-283 (2005).

2002

P. H. Hahn, W. G. Schmidt, and F. Bechstedt, “Bulk excitonic effects in surface optical spectra,” Phys. Rev. Lett. 88, 016402 (2002).
[CrossRef] [PubMed]

W. G. Schmidt, F. Bechstedt, W. Lu, and J. Bernholc, “Interplay of surface reconstruction and surface electric fields in the optical anisotropy of GaAs(001),” Phys. Rev. B 66, 085334 (2002).
[CrossRef]

A. B. Djurisic, Y. Chan, E. H. Li, “Progress in the room-temperature optical functions of semiconductors,” Mater. Sci. Eng. R. 38, 237-293 (2002).
[CrossRef]

2001

S. D. Yoo and D. E. Aspnes, “Elimination of endpoint-discontinuity artifacts in the analysis of spectra in reciprocal space,” J. Appl. Phys. 89, 8183-8192 (2001).
[CrossRef]

2000

L. F. Lastras-Martínez, T. Ruf, M. Konuma, M. Cardona, and D. E. Aspnes, “Isotopic effects on the dielectric response of Si around the E1 gap,” Phys. Rev. B 61, 12946-12951 (2000).
[CrossRef]

S. D. Yoo, D. E. Aspnes, L. F. Lastras-Martínez, T. Ruf, M. Konuma, and M. Cardona, “High-resolution spectroscopy with reciprocal-space analysis: application to isotopically pure Si,” Phys. Status Solidi B 220, 117-125 (2000).
[CrossRef]

M. Rohlfing and S. G. Louie, “Electron-hole excitations and optical spectra from first principles,” Phys. Rev. B 62, 4927-4944 (2000).
[CrossRef]

1999

M. Muñoz, K. Wei, and F. H. Pollak, “Spectral ellipsometry of GaSb: Experiment and modeling,” Phys. Rev. B 60, 8105-8110 (1999).
[CrossRef]

1996

P. Y. Yu and M. Cardona, Fundamentals of Semiconductors (Springer, 1996).

1994

D. E. Aspnes, “Fourier critical-point analysis-extension to Gaussian lineshapes,” Sol. Energy Mater. Sol. Cells 32, 413-419 (1994).
[CrossRef]

1993

S. Zollner, M. Garriga, J. Kircher, J. Humlicek, M. Cardona, and G. Neuhold, “Temperature dependence of the dielectric function and the interband critical-point parameters of GaP,” Phys. Rev. B 48, 7915-7929 (1993).
[CrossRef]

S. Adachi, T. Kimura, and N. Suzuki, “Optical properties of CdTe: experiment and modeling,” J. Appl. Phys. 74, 3435-3441 (1993).
[CrossRef]

1992

G. E. Jellison, Jr., “Optical functions of GaAs, GaP, Ge determined by two channel polarization ellipsometry,” Opt. Mater. 1, 151-160 (1992).
[CrossRef]

1991

S. Zollner, M. Garriga, J. Humlicek, S. Gopalan, and M. Cardona, “Temperature dependence of the dielectric function and the interband critical-point parameters of GaSb,” Phys. Rev. B 43, 4349-4360 (1991).
[CrossRef]

O. S. Heavens, Optical Properies of Thin Solid Films (Dover, 1991).

1987

P. Lautenschlager, M. Garriga, S. Logothetidis, and M. Cardona, “Interband critical points of GaAs and their temperature dependence,” Phys. Rev. B 35, 9174-9189 (1987).
[CrossRef]

P. Lautenschlager, M. Garriga, L. Vina, and M. Cardona, “Temperature dependence of the dielectric function and interband critical points in silicon,” Phys. Rev. B 36, 4821-4830 (1987).
[CrossRef]

P. Lautenschlager, M. Garriga, and M. Cardona, “Temperature dependence of the interband critical-point parameters of InP,” Phys. Rev. B 36, 4813-4820 (1987).
[CrossRef]

1985

R. H. Philipp, “Silicon dioxide (SiO2) (Glass),” in Handbook of Optical Constants of Solids, E.D.Palik, ed. (Academic, 1985), pp. 749-763.

1984

H. Arwin and D. E. Aspnes, “Nondestructive analysis of Hg1-XCdXTe(X=0.00,0.20,0.29,and1.00) by spectroscopic ellipsometry. 2. Substrate, oxide, and interface properties,” J. Vac. Sci. Technol. A 2, 1316-1323 (1984).
[CrossRef]

L. Viña, C. Umbach, M. Cardona, and L. Vodopyanov, “Ellipsometric studies of electronic interband transitions in CdxHg1−xTe,” Phys. Rev. B 29, 6752-6760 (1984).
[CrossRef]

1983

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5to6.0 eV,” Phys. Rev. B 27, 985-1009 (1983).
[CrossRef]

D. E. Aspnes and H. Arwin, “Analysis of optical-spectra by Fourier methods--filtering and least-square regression in reciprocal space,” J. Opt. Soc. Am. 73, 1759-1764 (1983).
[CrossRef]

D. E. Aspnes, “The analysis of optical-spectra by Fourier methods,” Surf. Sci. 135, 284-306 (1983).
[CrossRef]

1980

D. E. Aspnes, “Modulation spectroscopy/electric field effects on the dielectric function of semiconductors,” Handbook on Semiconductors, M.Balkanski ed. (North-Holland, 1980), Vol. 2, pp. 109-179.

1977

D. E. Aspnes, B. Schwartz, A. A. Studna, L. Derick, and L. A. Koszi, “Optical properties of anodically grown native oxides on some Ga-V compounds from 1.5to6.0 eV,” J. Appl. Phys. 48, 3510-3513 (1977).
[CrossRef]

1970

J. E. Rowe and D. E. Aspnes, “Approximate treatment of exciton effects in electric field modulation via the Slater-Koster interaction,” Phys. Rev. Lett. 25, 162-165 (1970).
[CrossRef]

1969

M. Cardona, Modulation Spectroscopy (Academic, 1969).

1966

B. Velický and J. Sak, “Excitonic effects in the interband absorption of semiconductors,” Phys. Status Solidi B 16, 147-157 (1966).
[CrossRef]

Adachi, S.

S. Adachi, T. Kimura, and N. Suzuki, “Optical properties of CdTe: experiment and modeling,” J. Appl. Phys. 74, 3435-3441 (1993).
[CrossRef]

Arwin, H.

H. Arwin and D. E. Aspnes, “Nondestructive analysis of Hg1-XCdXTe(X=0.00,0.20,0.29,and1.00) by spectroscopic ellipsometry. 2. Substrate, oxide, and interface properties,” J. Vac. Sci. Technol. A 2, 1316-1323 (1984).
[CrossRef]

D. E. Aspnes and H. Arwin, “Analysis of optical-spectra by Fourier methods--filtering and least-square regression in reciprocal space,” J. Opt. Soc. Am. 73, 1759-1764 (1983).
[CrossRef]

Aspnes, D. E.

Y. W. Jung, T. H. Ghong, Y. D. Kim, and D. E. Aspnes, “Effect of overlayers on critical-point parameters in the analysis of ellipsometric spectra,” Appl. Phys. Lett. 91, 121903 (2007).
[CrossRef]

S. D. Yoo and D. E. Aspnes, “Elimination of endpoint-discontinuity artifacts in the analysis of spectra in reciprocal space,” J. Appl. Phys. 89, 8183-8192 (2001).
[CrossRef]

S. D. Yoo, D. E. Aspnes, L. F. Lastras-Martínez, T. Ruf, M. Konuma, and M. Cardona, “High-resolution spectroscopy with reciprocal-space analysis: application to isotopically pure Si,” Phys. Status Solidi B 220, 117-125 (2000).
[CrossRef]

L. F. Lastras-Martínez, T. Ruf, M. Konuma, M. Cardona, and D. E. Aspnes, “Isotopic effects on the dielectric response of Si around the E1 gap,” Phys. Rev. B 61, 12946-12951 (2000).
[CrossRef]

D. E. Aspnes, “Fourier critical-point analysis-extension to Gaussian lineshapes,” Sol. Energy Mater. Sol. Cells 32, 413-419 (1994).
[CrossRef]

H. Arwin and D. E. Aspnes, “Nondestructive analysis of Hg1-XCdXTe(X=0.00,0.20,0.29,and1.00) by spectroscopic ellipsometry. 2. Substrate, oxide, and interface properties,” J. Vac. Sci. Technol. A 2, 1316-1323 (1984).
[CrossRef]

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5to6.0 eV,” Phys. Rev. B 27, 985-1009 (1983).
[CrossRef]

D. E. Aspnes and H. Arwin, “Analysis of optical-spectra by Fourier methods--filtering and least-square regression in reciprocal space,” J. Opt. Soc. Am. 73, 1759-1764 (1983).
[CrossRef]

D. E. Aspnes, “The analysis of optical-spectra by Fourier methods,” Surf. Sci. 135, 284-306 (1983).
[CrossRef]

D. E. Aspnes, “Modulation spectroscopy/electric field effects on the dielectric function of semiconductors,” Handbook on Semiconductors, M.Balkanski ed. (North-Holland, 1980), Vol. 2, pp. 109-179.

D. E. Aspnes, B. Schwartz, A. A. Studna, L. Derick, and L. A. Koszi, “Optical properties of anodically grown native oxides on some Ga-V compounds from 1.5to6.0 eV,” J. Appl. Phys. 48, 3510-3513 (1977).
[CrossRef]

J. E. Rowe and D. E. Aspnes, “Approximate treatment of exciton effects in electric field modulation via the Slater-Koster interaction,” Phys. Rev. Lett. 25, 162-165 (1970).
[CrossRef]

Balderas-Navarro, R. E.

L. F. Lastras-Martínez, J. M. Flores-Camacho, R. E. Balderas-Navarro, M. Chavira-Rodríguez, A. Lastras-Martínez, and M. Cardona, “Effect of reconstruction-induced strain on the reflectance difference spectroscopy of GaAs (001) around E1 and E1+Δ1 transitions,” Phys. Rev. B 75, 235315 (2007).
[CrossRef]

L. D. Sun, M. Hohage, P. Zeppenfeld, and R. E. Balderas-Navarro, “Origin and temperature dependence of the surface optical anisotropy on Cu(110),” Surf. Sci. 589, 153-163 (2005).
[CrossRef]

Bechstedt, F.

W. G. Schmidt, F. Bechstedt, W. Lu, and J. Bernholc, “Interplay of surface reconstruction and surface electric fields in the optical anisotropy of GaAs(001),” Phys. Rev. B 66, 085334 (2002).
[CrossRef]

P. H. Hahn, W. G. Schmidt, and F. Bechstedt, “Bulk excitonic effects in surface optical spectra,” Phys. Rev. Lett. 88, 016402 (2002).
[CrossRef] [PubMed]

Bernholc, J.

W. G. Schmidt, F. Bechstedt, W. Lu, and J. Bernholc, “Interplay of surface reconstruction and surface electric fields in the optical anisotropy of GaAs(001),” Phys. Rev. B 66, 085334 (2002).
[CrossRef]

Cardona, M.

L. F. Lastras-Martínez, J. M. Flores-Camacho, R. E. Balderas-Navarro, M. Chavira-Rodríguez, A. Lastras-Martínez, and M. Cardona, “Effect of reconstruction-induced strain on the reflectance difference spectroscopy of GaAs (001) around E1 and E1+Δ1 transitions,” Phys. Rev. B 75, 235315 (2007).
[CrossRef]

L. F. Lastras-Martínez, T. Ruf, M. Konuma, M. Cardona, and D. E. Aspnes, “Isotopic effects on the dielectric response of Si around the E1 gap,” Phys. Rev. B 61, 12946-12951 (2000).
[CrossRef]

S. D. Yoo, D. E. Aspnes, L. F. Lastras-Martínez, T. Ruf, M. Konuma, and M. Cardona, “High-resolution spectroscopy with reciprocal-space analysis: application to isotopically pure Si,” Phys. Status Solidi B 220, 117-125 (2000).
[CrossRef]

P. Y. Yu and M. Cardona, Fundamentals of Semiconductors (Springer, 1996).

S. Zollner, M. Garriga, J. Kircher, J. Humlicek, M. Cardona, and G. Neuhold, “Temperature dependence of the dielectric function and the interband critical-point parameters of GaP,” Phys. Rev. B 48, 7915-7929 (1993).
[CrossRef]

S. Zollner, M. Garriga, J. Humlicek, S. Gopalan, and M. Cardona, “Temperature dependence of the dielectric function and the interband critical-point parameters of GaSb,” Phys. Rev. B 43, 4349-4360 (1991).
[CrossRef]

P. Lautenschlager, M. Garriga, and M. Cardona, “Temperature dependence of the interband critical-point parameters of InP,” Phys. Rev. B 36, 4813-4820 (1987).
[CrossRef]

P. Lautenschlager, M. Garriga, L. Vina, and M. Cardona, “Temperature dependence of the dielectric function and interband critical points in silicon,” Phys. Rev. B 36, 4821-4830 (1987).
[CrossRef]

P. Lautenschlager, M. Garriga, S. Logothetidis, and M. Cardona, “Interband critical points of GaAs and their temperature dependence,” Phys. Rev. B 35, 9174-9189 (1987).
[CrossRef]

L. Viña, C. Umbach, M. Cardona, and L. Vodopyanov, “Ellipsometric studies of electronic interband transitions in CdxHg1−xTe,” Phys. Rev. B 29, 6752-6760 (1984).
[CrossRef]

M. Cardona, Modulation Spectroscopy (Academic, 1969).

Chan, Y.

A. B. Djurisic, Y. Chan, E. H. Li, “Progress in the room-temperature optical functions of semiconductors,” Mater. Sci. Eng. R. 38, 237-293 (2002).
[CrossRef]

Chavira-Rodríguez, M.

L. F. Lastras-Martínez, J. M. Flores-Camacho, R. E. Balderas-Navarro, M. Chavira-Rodríguez, A. Lastras-Martínez, and M. Cardona, “Effect of reconstruction-induced strain on the reflectance difference spectroscopy of GaAs (001) around E1 and E1+Δ1 transitions,” Phys. Rev. B 75, 235315 (2007).
[CrossRef]

Derick, L.

D. E. Aspnes, B. Schwartz, A. A. Studna, L. Derick, and L. A. Koszi, “Optical properties of anodically grown native oxides on some Ga-V compounds from 1.5to6.0 eV,” J. Appl. Phys. 48, 3510-3513 (1977).
[CrossRef]

Diebold, A. C.

A. C. Diebold and J. Price, “Observation of quantum confinement and quantum size effects,” Phys. Status Solidi A 205, 896-900 (2008).
[CrossRef]

J. Price and A. C. Diebold, “Spectroscopic ellipsometry characterization of ultrathin silicon-on-insulator films,” J. Vac. Sci. Technol. B 24, 2156-2159 (2006).
[CrossRef]

Djurisic, A. B.

A. B. Djurisic, Y. Chan, E. H. Li, “Progress in the room-temperature optical functions of semiconductors,” Mater. Sci. Eng. R. 38, 237-293 (2002).
[CrossRef]

Flores-Camacho, J. M.

L. F. Lastras-Martínez, J. M. Flores-Camacho, R. E. Balderas-Navarro, M. Chavira-Rodríguez, A. Lastras-Martínez, and M. Cardona, “Effect of reconstruction-induced strain on the reflectance difference spectroscopy of GaAs (001) around E1 and E1+Δ1 transitions,” Phys. Rev. B 75, 235315 (2007).
[CrossRef]

J. M. Flores-Camacho, O. F. Núñez-Olvera, G. Rodríguez-Pedroza, A. Lastras-Martínez, and L. F. Lastras-Martínez, “Lock-in amplifier-based rotating-analyzer spectroscopic ellipsometer with micro-controlled angular frequency,” Rev. Mex. Fis. 51, 274-283 (2005).

Garriga, M.

S. Zollner, M. Garriga, J. Kircher, J. Humlicek, M. Cardona, and G. Neuhold, “Temperature dependence of the dielectric function and the interband critical-point parameters of GaP,” Phys. Rev. B 48, 7915-7929 (1993).
[CrossRef]

S. Zollner, M. Garriga, J. Humlicek, S. Gopalan, and M. Cardona, “Temperature dependence of the dielectric function and the interband critical-point parameters of GaSb,” Phys. Rev. B 43, 4349-4360 (1991).
[CrossRef]

P. Lautenschlager, M. Garriga, L. Vina, and M. Cardona, “Temperature dependence of the dielectric function and interband critical points in silicon,” Phys. Rev. B 36, 4821-4830 (1987).
[CrossRef]

P. Lautenschlager, M. Garriga, and M. Cardona, “Temperature dependence of the interband critical-point parameters of InP,” Phys. Rev. B 36, 4813-4820 (1987).
[CrossRef]

P. Lautenschlager, M. Garriga, S. Logothetidis, and M. Cardona, “Interband critical points of GaAs and their temperature dependence,” Phys. Rev. B 35, 9174-9189 (1987).
[CrossRef]

Ghong, T. H.

Y. W. Jung, T. H. Ghong, Y. D. Kim, and D. E. Aspnes, “Effect of overlayers on critical-point parameters in the analysis of ellipsometric spectra,” Appl. Phys. Lett. 91, 121903 (2007).
[CrossRef]

Gopalan, S.

S. Zollner, M. Garriga, J. Humlicek, S. Gopalan, and M. Cardona, “Temperature dependence of the dielectric function and the interband critical-point parameters of GaSb,” Phys. Rev. B 43, 4349-4360 (1991).
[CrossRef]

Hahn, P. H.

P. H. Hahn, W. G. Schmidt, and F. Bechstedt, “Bulk excitonic effects in surface optical spectra,” Phys. Rev. Lett. 88, 016402 (2002).
[CrossRef] [PubMed]

Heavens, O. S.

O. S. Heavens, Optical Properies of Thin Solid Films (Dover, 1991).

Hohage, M.

L. D. Sun, M. Hohage, P. Zeppenfeld, and R. E. Balderas-Navarro, “Origin and temperature dependence of the surface optical anisotropy on Cu(110),” Surf. Sci. 589, 153-163 (2005).
[CrossRef]

Humlicek, J.

S. Zollner, M. Garriga, J. Kircher, J. Humlicek, M. Cardona, and G. Neuhold, “Temperature dependence of the dielectric function and the interband critical-point parameters of GaP,” Phys. Rev. B 48, 7915-7929 (1993).
[CrossRef]

S. Zollner, M. Garriga, J. Humlicek, S. Gopalan, and M. Cardona, “Temperature dependence of the dielectric function and the interband critical-point parameters of GaSb,” Phys. Rev. B 43, 4349-4360 (1991).
[CrossRef]

Jellison, G. E.

G. E. Jellison, Jr., “Optical functions of GaAs, GaP, Ge determined by two channel polarization ellipsometry,” Opt. Mater. 1, 151-160 (1992).
[CrossRef]

Jung, Y. W.

Y. W. Jung, T. H. Ghong, Y. D. Kim, and D. E. Aspnes, “Effect of overlayers on critical-point parameters in the analysis of ellipsometric spectra,” Appl. Phys. Lett. 91, 121903 (2007).
[CrossRef]

Kim, Y. D.

Y. W. Jung, T. H. Ghong, Y. D. Kim, and D. E. Aspnes, “Effect of overlayers on critical-point parameters in the analysis of ellipsometric spectra,” Appl. Phys. Lett. 91, 121903 (2007).
[CrossRef]

Kimura, T.

S. Adachi, T. Kimura, and N. Suzuki, “Optical properties of CdTe: experiment and modeling,” J. Appl. Phys. 74, 3435-3441 (1993).
[CrossRef]

Kircher, J.

S. Zollner, M. Garriga, J. Kircher, J. Humlicek, M. Cardona, and G. Neuhold, “Temperature dependence of the dielectric function and the interband critical-point parameters of GaP,” Phys. Rev. B 48, 7915-7929 (1993).
[CrossRef]

Konuma, M.

S. D. Yoo, D. E. Aspnes, L. F. Lastras-Martínez, T. Ruf, M. Konuma, and M. Cardona, “High-resolution spectroscopy with reciprocal-space analysis: application to isotopically pure Si,” Phys. Status Solidi B 220, 117-125 (2000).
[CrossRef]

L. F. Lastras-Martínez, T. Ruf, M. Konuma, M. Cardona, and D. E. Aspnes, “Isotopic effects on the dielectric response of Si around the E1 gap,” Phys. Rev. B 61, 12946-12951 (2000).
[CrossRef]

Koszi, L. A.

D. E. Aspnes, B. Schwartz, A. A. Studna, L. Derick, and L. A. Koszi, “Optical properties of anodically grown native oxides on some Ga-V compounds from 1.5to6.0 eV,” J. Appl. Phys. 48, 3510-3513 (1977).
[CrossRef]

Lastras-Martínez, A.

L. F. Lastras-Martínez, J. M. Flores-Camacho, R. E. Balderas-Navarro, M. Chavira-Rodríguez, A. Lastras-Martínez, and M. Cardona, “Effect of reconstruction-induced strain on the reflectance difference spectroscopy of GaAs (001) around E1 and E1+Δ1 transitions,” Phys. Rev. B 75, 235315 (2007).
[CrossRef]

J. M. Flores-Camacho, O. F. Núñez-Olvera, G. Rodríguez-Pedroza, A. Lastras-Martínez, and L. F. Lastras-Martínez, “Lock-in amplifier-based rotating-analyzer spectroscopic ellipsometer with micro-controlled angular frequency,” Rev. Mex. Fis. 51, 274-283 (2005).

Lastras-Martínez, L. F.

L. F. Lastras-Martínez, J. M. Flores-Camacho, R. E. Balderas-Navarro, M. Chavira-Rodríguez, A. Lastras-Martínez, and M. Cardona, “Effect of reconstruction-induced strain on the reflectance difference spectroscopy of GaAs (001) around E1 and E1+Δ1 transitions,” Phys. Rev. B 75, 235315 (2007).
[CrossRef]

J. M. Flores-Camacho, O. F. Núñez-Olvera, G. Rodríguez-Pedroza, A. Lastras-Martínez, and L. F. Lastras-Martínez, “Lock-in amplifier-based rotating-analyzer spectroscopic ellipsometer with micro-controlled angular frequency,” Rev. Mex. Fis. 51, 274-283 (2005).

S. D. Yoo, D. E. Aspnes, L. F. Lastras-Martínez, T. Ruf, M. Konuma, and M. Cardona, “High-resolution spectroscopy with reciprocal-space analysis: application to isotopically pure Si,” Phys. Status Solidi B 220, 117-125 (2000).
[CrossRef]

L. F. Lastras-Martínez, T. Ruf, M. Konuma, M. Cardona, and D. E. Aspnes, “Isotopic effects on the dielectric response of Si around the E1 gap,” Phys. Rev. B 61, 12946-12951 (2000).
[CrossRef]

Lautenschlager, P.

P. Lautenschlager, M. Garriga, and M. Cardona, “Temperature dependence of the interband critical-point parameters of InP,” Phys. Rev. B 36, 4813-4820 (1987).
[CrossRef]

P. Lautenschlager, M. Garriga, L. Vina, and M. Cardona, “Temperature dependence of the dielectric function and interband critical points in silicon,” Phys. Rev. B 36, 4821-4830 (1987).
[CrossRef]

P. Lautenschlager, M. Garriga, S. Logothetidis, and M. Cardona, “Interband critical points of GaAs and their temperature dependence,” Phys. Rev. B 35, 9174-9189 (1987).
[CrossRef]

Li, E. H.

A. B. Djurisic, Y. Chan, E. H. Li, “Progress in the room-temperature optical functions of semiconductors,” Mater. Sci. Eng. R. 38, 237-293 (2002).
[CrossRef]

Logothetidis, S.

P. Lautenschlager, M. Garriga, S. Logothetidis, and M. Cardona, “Interband critical points of GaAs and their temperature dependence,” Phys. Rev. B 35, 9174-9189 (1987).
[CrossRef]

Louie, S. G.

M. Rohlfing and S. G. Louie, “Electron-hole excitations and optical spectra from first principles,” Phys. Rev. B 62, 4927-4944 (2000).
[CrossRef]

Lu, W.

W. G. Schmidt, F. Bechstedt, W. Lu, and J. Bernholc, “Interplay of surface reconstruction and surface electric fields in the optical anisotropy of GaAs(001),” Phys. Rev. B 66, 085334 (2002).
[CrossRef]

Muñoz, M.

M. Muñoz, K. Wei, and F. H. Pollak, “Spectral ellipsometry of GaSb: Experiment and modeling,” Phys. Rev. B 60, 8105-8110 (1999).
[CrossRef]

Neuhold, G.

S. Zollner, M. Garriga, J. Kircher, J. Humlicek, M. Cardona, and G. Neuhold, “Temperature dependence of the dielectric function and the interband critical-point parameters of GaP,” Phys. Rev. B 48, 7915-7929 (1993).
[CrossRef]

Núñez-Olvera, O. F.

J. M. Flores-Camacho, O. F. Núñez-Olvera, G. Rodríguez-Pedroza, A. Lastras-Martínez, and L. F. Lastras-Martínez, “Lock-in amplifier-based rotating-analyzer spectroscopic ellipsometer with micro-controlled angular frequency,” Rev. Mex. Fis. 51, 274-283 (2005).

Philipp, R. H.

R. H. Philipp, “Silicon dioxide (SiO2) (Glass),” in Handbook of Optical Constants of Solids, E.D.Palik, ed. (Academic, 1985), pp. 749-763.

Pollak, F. H.

M. Muñoz, K. Wei, and F. H. Pollak, “Spectral ellipsometry of GaSb: Experiment and modeling,” Phys. Rev. B 60, 8105-8110 (1999).
[CrossRef]

Price, J.

A. C. Diebold and J. Price, “Observation of quantum confinement and quantum size effects,” Phys. Status Solidi A 205, 896-900 (2008).
[CrossRef]

J. Price and A. C. Diebold, “Spectroscopic ellipsometry characterization of ultrathin silicon-on-insulator films,” J. Vac. Sci. Technol. B 24, 2156-2159 (2006).
[CrossRef]

Rodríguez-Pedroza, G.

J. M. Flores-Camacho, O. F. Núñez-Olvera, G. Rodríguez-Pedroza, A. Lastras-Martínez, and L. F. Lastras-Martínez, “Lock-in amplifier-based rotating-analyzer spectroscopic ellipsometer with micro-controlled angular frequency,” Rev. Mex. Fis. 51, 274-283 (2005).

Rohlfing, M.

M. Rohlfing and S. G. Louie, “Electron-hole excitations and optical spectra from first principles,” Phys. Rev. B 62, 4927-4944 (2000).
[CrossRef]

Rowe, J. E.

J. E. Rowe and D. E. Aspnes, “Approximate treatment of exciton effects in electric field modulation via the Slater-Koster interaction,” Phys. Rev. Lett. 25, 162-165 (1970).
[CrossRef]

Ruf, T.

L. F. Lastras-Martínez, T. Ruf, M. Konuma, M. Cardona, and D. E. Aspnes, “Isotopic effects on the dielectric response of Si around the E1 gap,” Phys. Rev. B 61, 12946-12951 (2000).
[CrossRef]

S. D. Yoo, D. E. Aspnes, L. F. Lastras-Martínez, T. Ruf, M. Konuma, and M. Cardona, “High-resolution spectroscopy with reciprocal-space analysis: application to isotopically pure Si,” Phys. Status Solidi B 220, 117-125 (2000).
[CrossRef]

Sak, J.

B. Velický and J. Sak, “Excitonic effects in the interband absorption of semiconductors,” Phys. Status Solidi B 16, 147-157 (1966).
[CrossRef]

Schmidt, W. G.

P. H. Hahn, W. G. Schmidt, and F. Bechstedt, “Bulk excitonic effects in surface optical spectra,” Phys. Rev. Lett. 88, 016402 (2002).
[CrossRef] [PubMed]

W. G. Schmidt, F. Bechstedt, W. Lu, and J. Bernholc, “Interplay of surface reconstruction and surface electric fields in the optical anisotropy of GaAs(001),” Phys. Rev. B 66, 085334 (2002).
[CrossRef]

Schwartz, B.

D. E. Aspnes, B. Schwartz, A. A. Studna, L. Derick, and L. A. Koszi, “Optical properties of anodically grown native oxides on some Ga-V compounds from 1.5to6.0 eV,” J. Appl. Phys. 48, 3510-3513 (1977).
[CrossRef]

Studna, A. A.

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5to6.0 eV,” Phys. Rev. B 27, 985-1009 (1983).
[CrossRef]

D. E. Aspnes, B. Schwartz, A. A. Studna, L. Derick, and L. A. Koszi, “Optical properties of anodically grown native oxides on some Ga-V compounds from 1.5to6.0 eV,” J. Appl. Phys. 48, 3510-3513 (1977).
[CrossRef]

Sun, L. D.

L. D. Sun, M. Hohage, P. Zeppenfeld, and R. E. Balderas-Navarro, “Origin and temperature dependence of the surface optical anisotropy on Cu(110),” Surf. Sci. 589, 153-163 (2005).
[CrossRef]

Suzuki, N.

S. Adachi, T. Kimura, and N. Suzuki, “Optical properties of CdTe: experiment and modeling,” J. Appl. Phys. 74, 3435-3441 (1993).
[CrossRef]

Umbach, C.

L. Viña, C. Umbach, M. Cardona, and L. Vodopyanov, “Ellipsometric studies of electronic interband transitions in CdxHg1−xTe,” Phys. Rev. B 29, 6752-6760 (1984).
[CrossRef]

Velický, B.

B. Velický and J. Sak, “Excitonic effects in the interband absorption of semiconductors,” Phys. Status Solidi B 16, 147-157 (1966).
[CrossRef]

Vina, L.

P. Lautenschlager, M. Garriga, L. Vina, and M. Cardona, “Temperature dependence of the dielectric function and interband critical points in silicon,” Phys. Rev. B 36, 4821-4830 (1987).
[CrossRef]

Viña, L.

L. Viña, C. Umbach, M. Cardona, and L. Vodopyanov, “Ellipsometric studies of electronic interband transitions in CdxHg1−xTe,” Phys. Rev. B 29, 6752-6760 (1984).
[CrossRef]

Vodopyanov, L.

L. Viña, C. Umbach, M. Cardona, and L. Vodopyanov, “Ellipsometric studies of electronic interband transitions in CdxHg1−xTe,” Phys. Rev. B 29, 6752-6760 (1984).
[CrossRef]

Wei, K.

M. Muñoz, K. Wei, and F. H. Pollak, “Spectral ellipsometry of GaSb: Experiment and modeling,” Phys. Rev. B 60, 8105-8110 (1999).
[CrossRef]

Yoo, S. D.

S. D. Yoo and D. E. Aspnes, “Elimination of endpoint-discontinuity artifacts in the analysis of spectra in reciprocal space,” J. Appl. Phys. 89, 8183-8192 (2001).
[CrossRef]

S. D. Yoo, D. E. Aspnes, L. F. Lastras-Martínez, T. Ruf, M. Konuma, and M. Cardona, “High-resolution spectroscopy with reciprocal-space analysis: application to isotopically pure Si,” Phys. Status Solidi B 220, 117-125 (2000).
[CrossRef]

Yu, P. Y.

P. Y. Yu and M. Cardona, Fundamentals of Semiconductors (Springer, 1996).

Zeppenfeld, P.

L. D. Sun, M. Hohage, P. Zeppenfeld, and R. E. Balderas-Navarro, “Origin and temperature dependence of the surface optical anisotropy on Cu(110),” Surf. Sci. 589, 153-163 (2005).
[CrossRef]

Zollner, S.

S. Zollner, M. Garriga, J. Kircher, J. Humlicek, M. Cardona, and G. Neuhold, “Temperature dependence of the dielectric function and the interband critical-point parameters of GaP,” Phys. Rev. B 48, 7915-7929 (1993).
[CrossRef]

S. Zollner, M. Garriga, J. Humlicek, S. Gopalan, and M. Cardona, “Temperature dependence of the dielectric function and the interband critical-point parameters of GaSb,” Phys. Rev. B 43, 4349-4360 (1991).
[CrossRef]

Appl. Phys. Lett.

Y. W. Jung, T. H. Ghong, Y. D. Kim, and D. E. Aspnes, “Effect of overlayers on critical-point parameters in the analysis of ellipsometric spectra,” Appl. Phys. Lett. 91, 121903 (2007).
[CrossRef]

J. Appl. Phys.

S. Adachi, T. Kimura, and N. Suzuki, “Optical properties of CdTe: experiment and modeling,” J. Appl. Phys. 74, 3435-3441 (1993).
[CrossRef]

S. D. Yoo and D. E. Aspnes, “Elimination of endpoint-discontinuity artifacts in the analysis of spectra in reciprocal space,” J. Appl. Phys. 89, 8183-8192 (2001).
[CrossRef]

D. E. Aspnes, B. Schwartz, A. A. Studna, L. Derick, and L. A. Koszi, “Optical properties of anodically grown native oxides on some Ga-V compounds from 1.5to6.0 eV,” J. Appl. Phys. 48, 3510-3513 (1977).
[CrossRef]

J. Opt. Soc. Am.

J. Vac. Sci. Technol. A

H. Arwin and D. E. Aspnes, “Nondestructive analysis of Hg1-XCdXTe(X=0.00,0.20,0.29,and1.00) by spectroscopic ellipsometry. 2. Substrate, oxide, and interface properties,” J. Vac. Sci. Technol. A 2, 1316-1323 (1984).
[CrossRef]

J. Vac. Sci. Technol. B

J. Price and A. C. Diebold, “Spectroscopic ellipsometry characterization of ultrathin silicon-on-insulator films,” J. Vac. Sci. Technol. B 24, 2156-2159 (2006).
[CrossRef]

Mater. Sci. Eng. R.

A. B. Djurisic, Y. Chan, E. H. Li, “Progress in the room-temperature optical functions of semiconductors,” Mater. Sci. Eng. R. 38, 237-293 (2002).
[CrossRef]

Opt. Mater.

G. E. Jellison, Jr., “Optical functions of GaAs, GaP, Ge determined by two channel polarization ellipsometry,” Opt. Mater. 1, 151-160 (1992).
[CrossRef]

Phys. Rev. B

P. Lautenschlager, M. Garriga, S. Logothetidis, and M. Cardona, “Interband critical points of GaAs and their temperature dependence,” Phys. Rev. B 35, 9174-9189 (1987).
[CrossRef]

P. Lautenschlager, M. Garriga, L. Vina, and M. Cardona, “Temperature dependence of the dielectric function and interband critical points in silicon,” Phys. Rev. B 36, 4821-4830 (1987).
[CrossRef]

S. Zollner, M. Garriga, J. Kircher, J. Humlicek, M. Cardona, and G. Neuhold, “Temperature dependence of the dielectric function and the interband critical-point parameters of GaP,” Phys. Rev. B 48, 7915-7929 (1993).
[CrossRef]

M. Rohlfing and S. G. Louie, “Electron-hole excitations and optical spectra from first principles,” Phys. Rev. B 62, 4927-4944 (2000).
[CrossRef]

S. Zollner, M. Garriga, J. Humlicek, S. Gopalan, and M. Cardona, “Temperature dependence of the dielectric function and the interband critical-point parameters of GaSb,” Phys. Rev. B 43, 4349-4360 (1991).
[CrossRef]

L. Viña, C. Umbach, M. Cardona, and L. Vodopyanov, “Ellipsometric studies of electronic interband transitions in CdxHg1−xTe,” Phys. Rev. B 29, 6752-6760 (1984).
[CrossRef]

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5to6.0 eV,” Phys. Rev. B 27, 985-1009 (1983).
[CrossRef]

M. Muñoz, K. Wei, and F. H. Pollak, “Spectral ellipsometry of GaSb: Experiment and modeling,” Phys. Rev. B 60, 8105-8110 (1999).
[CrossRef]

P. Lautenschlager, M. Garriga, and M. Cardona, “Temperature dependence of the interband critical-point parameters of InP,” Phys. Rev. B 36, 4813-4820 (1987).
[CrossRef]

L. F. Lastras-Martínez, T. Ruf, M. Konuma, M. Cardona, and D. E. Aspnes, “Isotopic effects on the dielectric response of Si around the E1 gap,” Phys. Rev. B 61, 12946-12951 (2000).
[CrossRef]

W. G. Schmidt, F. Bechstedt, W. Lu, and J. Bernholc, “Interplay of surface reconstruction and surface electric fields in the optical anisotropy of GaAs(001),” Phys. Rev. B 66, 085334 (2002).
[CrossRef]

L. F. Lastras-Martínez, J. M. Flores-Camacho, R. E. Balderas-Navarro, M. Chavira-Rodríguez, A. Lastras-Martínez, and M. Cardona, “Effect of reconstruction-induced strain on the reflectance difference spectroscopy of GaAs (001) around E1 and E1+Δ1 transitions,” Phys. Rev. B 75, 235315 (2007).
[CrossRef]

Phys. Rev. Lett.

J. E. Rowe and D. E. Aspnes, “Approximate treatment of exciton effects in electric field modulation via the Slater-Koster interaction,” Phys. Rev. Lett. 25, 162-165 (1970).
[CrossRef]

P. H. Hahn, W. G. Schmidt, and F. Bechstedt, “Bulk excitonic effects in surface optical spectra,” Phys. Rev. Lett. 88, 016402 (2002).
[CrossRef] [PubMed]

Phys. Status Solidi A

A. C. Diebold and J. Price, “Observation of quantum confinement and quantum size effects,” Phys. Status Solidi A 205, 896-900 (2008).
[CrossRef]

Phys. Status Solidi B

S. D. Yoo, D. E. Aspnes, L. F. Lastras-Martínez, T. Ruf, M. Konuma, and M. Cardona, “High-resolution spectroscopy with reciprocal-space analysis: application to isotopically pure Si,” Phys. Status Solidi B 220, 117-125 (2000).
[CrossRef]

B. Velický and J. Sak, “Excitonic effects in the interband absorption of semiconductors,” Phys. Status Solidi B 16, 147-157 (1966).
[CrossRef]

Rev. Mex. Fis.

J. M. Flores-Camacho, O. F. Núñez-Olvera, G. Rodríguez-Pedroza, A. Lastras-Martínez, and L. F. Lastras-Martínez, “Lock-in amplifier-based rotating-analyzer spectroscopic ellipsometer with micro-controlled angular frequency,” Rev. Mex. Fis. 51, 274-283 (2005).

Sol. Energy Mater. Sol. Cells

D. E. Aspnes, “Fourier critical-point analysis-extension to Gaussian lineshapes,” Sol. Energy Mater. Sol. Cells 32, 413-419 (1994).
[CrossRef]

Surf. Sci.

D. E. Aspnes, “The analysis of optical-spectra by Fourier methods,” Surf. Sci. 135, 284-306 (1983).
[CrossRef]

L. D. Sun, M. Hohage, P. Zeppenfeld, and R. E. Balderas-Navarro, “Origin and temperature dependence of the surface optical anisotropy on Cu(110),” Surf. Sci. 589, 153-163 (2005).
[CrossRef]

Other

O. S. Heavens, Optical Properies of Thin Solid Films (Dover, 1991).

R. H. Philipp, “Silicon dioxide (SiO2) (Glass),” in Handbook of Optical Constants of Solids, E.D.Palik, ed. (Academic, 1985), pp. 749-763.

M. Cardona, Modulation Spectroscopy (Academic, 1969).

D. E. Aspnes, “Modulation spectroscopy/electric field effects on the dielectric function of semiconductors,” Handbook on Semiconductors, M.Balkanski ed. (North-Holland, 1980), Vol. 2, pp. 109-179.

P. Y. Yu and M. Cardona, Fundamentals of Semiconductors (Springer, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Second energy derivative of the dielectric function of GaP measured at room temperature. Solid curves are the fit obtained by using Eq. (2) with the parameters Γ = 0.125 ± 0.01 eV and E g = 3.685 eV (direct-space analysis). The inset displays the dielectric function of GaP.

Fig. 2
Fig. 2

Fourier coefficients calculated from the dielectric function of GaP measured at room temperature. The dashed curve represents the fit obtained by using Eq. (7), Γ = 0.125 ± 0.005 eV and (a) κ = 0 nonderivative, (b) κ = 1 first energy derivative, and (c) κ = 2   second energy derivative.

Fig. 3
Fig. 3

Fourier coefficients calculated from the dielectric function of GaAs measured at T = 150 K . The coefficients correspond only to the E 1 component of the dielectric function. The dashed curve is the fit obtained by using Eq. (7), Γ = 0.037 ± 0.002 eV and κ = 0 . The inset displays the dielectric function of GaAs.

Fig. 4
Fig. 4

Fourier coefficients calculated from the dielectric function of Si measured at T = 25 K . The dashed line is the fit obtained by using Eq. (7), Γ = 0.064 ± 0.003 eV and κ = 0 . The inset displays the dielectric function of Si.

Fig. 5
Fig. 5

Fourier coefficients calculated from the dielectric function of Si measured at T = 300 K . The dashed line is the fit obtained by using Eq. (7), Γ = 0.08 ± 0.008 eV and κ = 0 . The inset displays the dielectric function of Si.

Fig. 6
Fig. 6

Fourier coefficients calculated from the dielectric function of CdTe around the E 1 transitions, measured at T = 300 K . The dashed curve is the fit obtained by using Eq. (7), Γ = 0.105 ± 0.005 eV and κ = 0 . The inset displays the dielectric function of CdTe.

Fig. 7
Fig. 7

Second energy derivative of the dielectric function of GaSb measured at room temperature. Solid curves are the fit obtained by using Eq. (3) with the parameters Γ = 0.08 ± 0.01 eV and E g = 2.04 eV (direct-space analysis). The inset displays the dielectric function of GaP.

Fig. 8
Fig. 8

Fourier coefficients calculated from the dielectric function of GaSb measured at T = 300 K . The dashed curve represents the fit obtained by using Eq. (8), Γ = 0.1 ± 0.005 eV and (a) κ = 1 first energy derivative, (b) κ = 2   second energy derivative, and (c) κ = 3 third energy derivative.

Fig. 9
Fig. 9

Fourier coefficients calculated from the first energy derivative of the spectra of the dielectric function of HgTe measured at T = 300 K . The coefficients correspond only to the E 1 component of the dielectric function. The dashed line is the fit obtained by using Eq. (8), Γ = 0.07 ± 0.002 eV and κ = 1 (first energy derivative). The inset displays the dielectric function of HgTe.

Fig. 10
Fig. 10

Fourier coefficients calculated from the first energy derivative of the dielectric function of Cd 0.18 Hg 0.82 Te measured at T = 300 K . The coefficients correspond only to the E 1 component of the dielectric function. The solid line is the fit obtained by using Eq. (8) (one electron line shape), Γ = 0.09 eV and κ = 1 (first energy derivative). The dashed curve is the fit obtained by using Eq. (7) (excitonic line shape), Γ = 0.117 eV and κ = 1 (first energy derivative). The inset displays the dielectric function of Cd 0.18 Hg 0.82 Te .

Tables (1)

Tables Icon

Table 1 Parameters Used to Fit in the Reciprocal and Direct Space a

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ε = C e i β ( E E g + i Γ ) μ ,
ε = C e i β ( E E g + i Γ ) 1 ,
ε = C e i β ln ( E E g + i Γ ) .
ln C n = ln C Δ E μ + κ Γ ( μ ) n Γ Δ E + ( μ + κ 1 ) ln n ,
ξ n = ( μ κ ) π 2 β + n ( E g E 0 ) Δ E ,
Δ E = E M E i M 1 M 2 π ,
ln C n = ln C Δ E 1 + κ Γ ( 1 ) n Γ Δ E + κ ln n .
ln C n = ln C Δ E κ Γ ( 0 ) n Γ Δ E + ( κ 1 ) ln n .

Metrics