Abstract

A scheme is proposed to generate multiatom entanglement among remote nodes connected by noisy channels. The noisy parameters are independent of the fidelity of the intended maximal entangled state. We show that those nonmaximal entangled states prepared in the present scheme can be used to implement quantum communication. Moreover, the scheme can be generalized to generate entanglement in N quantum nodes.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895-1899 (1993).
    [Crossref] [PubMed]
  2. C. H. Bennett and G. Brassard, in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (IEEE, 1984), p. 175.
  3. H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932-5935 (1998).
    [Crossref]
  4. C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881-2884 (1992).
    [Crossref] [PubMed]
  5. Q. A. Turchette, C. S. Wood, B. E. King, C. J. Myatt, D. Leibfried, W. M. Itano, C. Monroe, and D.J. Wineland, “Deterministic entanglement of two trapped ions,” Phys. Rev. Lett. 81, 3631-3634 (1998).
    [Crossref]
  6. J. Hong and H. W. Lee, “Quasideterministic generation of entangled atoms in a cavity,” Phys. Rev. Lett. 89, 237901 (2002).
    [Crossref] [PubMed]
  7. R. G. Unanyan and M. Fleischhauer, “Decoherence-free generation of many-particle entanglement by adiabatic ground-state transitions,” Phys. Rev. Lett. 90, 133601 (2003).
    [Crossref] [PubMed]
  8. W. Lange and H. J. Kimble, “Dynamic generation of maximally entangled photon multiplets by adiabatic passage,” Phys. Rev. A 61, 063817 (2000).
    [Crossref]
  9. E. Hagley, X. Maitre, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Hroche, “Generation of Einstein-Podolsky-Rosen pairs of atoms,” Phys. Rev. Lett. 79, 1 (1997).
    [Crossref]
  10. Q. A. Turchette, C. S. Wood, B. E. King, C. J. Myatt, D. Leibfried, W. M. Itano, C. Monroe, and D. J. Wineland, “Deterministic entanglement of two trapped ions,” Phys. Rev. Lett. 81, 3631-3634 (1998).
    [Crossref]
  11. W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A 62, 062314 (2000).
    [Crossref]
  12. C. Thiel, J. von Zanthier, T. Bastin, E. Solano, and G. S. Agarwal, “Generation of symmetric Dicke states of remote qubits with linear optics,” Phys. Rev. Lett. 99, 193602 (2007).
    [Crossref]
  13. T. Bastin, C. Thiel, J. von Zanthier, L. Lamata, E. Solano, and G. S. Agarwal, “Operational monitoring of multi-qubit entanglement classes via tuning of local operations,” http://xxx.lanl.gov/abs/0710.3720.
  14. S. B. Zheng and G. C. Guo, “Teleportation of atomic states within cavities in thermal states,” Phys. Rev. A 63, 044302 (2001).
    [Crossref]
  15. S. B. Zheng, “One-step synthesis of multiatom Greenberger-Horne-Zeilinger states,” Phys. Rev. Lett. 87, 230402 (2001).
    [Crossref]
  16. X. Wang, M. Feng, and B. C. Sanders, “Multipartite entangled states in coupled quantum dots and cavity QED,” Phys. Rev. A 67, 022302 (2003).
    [Crossref]
  17. C. Marr, A. Beige, and G. Rempe, “Entangled-state preparation via dissipation-assisted adiabatic passages,” Phys. Rev. A 68, 033817 (2003).
    [Crossref]
  18. Z. J. Deng, M. Feng, and K. L. Gao, “Simple scheme for generating an n-qubit W state in cavity QED,” Phys. Rev. A 73, 014302 (2006).
    [Crossref]
  19. A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Step-by-step engineered multiparticle entanglement,” Science 288, 2024-2028 (2000).
    [Crossref] [PubMed]
  20. L. M. Duan and H. J. Kimble, “Efficient engineering of multiatom entanglement through single-photon detections,” Phys. Rev. Lett. 90, 253601 (2003).
    [Crossref] [PubMed]
  21. D. E. Browne, M. B. Plenio, and S. F. Huelga, “Robust creation of entanglement between ions in spatially separate cavities,” Phys. Rev. Lett. 91, 067901 (2003).
    [Crossref] [PubMed]
  22. T. Pellizzari, “Quantum networking with optical fibers,” Phys. Rev. Lett. 79, 5242-5245 (1997).
    [Crossref]
  23. A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
    [Crossref] [PubMed]
  24. Z. Q. Yin and F. L. Li, “Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber,” Phys. Rev. A 75, 012324 (2007).
    [Crossref]
  25. P. Peng and F. L. Li, “Entangling two atoms in spatially separated cavities through both photon emission and absorption processes,” Phys. Rev. A 75, 062320 (2007).
    [Crossref]
  26. J. Song, Y. Xia, and H. S. Song, “Entangled state generation via adiabatic passage in two distant cavities,” J. Phys. B 40, 4503 (2007).
    [Crossref]
  27. C. S. Yu, X. X. Yi, H. S. Song, and D. Mei, “Robust preparation of Greenberger-Horne-Zeilinger and W states of three distant atoms,” Phys. Rev. A 75, 044301 (2007).
    [Crossref]
  28. T. Yamamoto, J. Shimamura, S. K. Zdemir, M. Koashi, and N. Imoto, “Faithful qubit distribution assisted by one additional qubit against collective noise,” Phys. Rev. Lett. 95, 040503 (2005).
    [Crossref] [PubMed]
  29. X. H. Li, F. G. Deng, and H. Y. Zhou, “Faithful qubit transmission against collective noise without ancillary qubits,” Appl. Phys. Lett. 91, 144101 (2007).
    [Crossref]
  30. J. Song, Y. Xia, and H. S. Song, “Quantum nodes for W-state generation in noisy channels,” Phys. Rev. A 78, 024302 (2008).
    [Crossref]
  31. V. Coffman, J. Kundu, and W. K. Wootters, “Distributed entanglement,” Phys. Rev. A 61, 052306 (2000).
    [Crossref]
  32. M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “A calcium ion in a cavity as a controlled single-photon source,” New J. Phys. 6, 95 (2004).
    [Crossref]
  33. G. Nogues, A. Rauschenbeutel, S. Osnaghi, M. Brune, J. M. Raimond, and S. Haroche, “Seeing a single photon without destroying it,” Nature (London) 400,239-242 (1999).
    [Crossref]
  34. P. Grangier, J. A. Levenson, and J. P. Poizat, “Quantum non-demolition measurements in optics,” Nature (London) 396, 537-542 (1998).
    [Crossref]
  35. S. Gleyzes, S. Kuhr, C. Guerlin, J. Bernu, S. Delglise, U. B. Hoff, M. Brune, J. M. Raimond, and S. Haroche, “Quantum jumps of light recording the birth and death of a photon in a cavity,” Nature (London) 446, 297-300 (2007).
    [Crossref]

2008 (1)

J. Song, Y. Xia, and H. S. Song, “Quantum nodes for W-state generation in noisy channels,” Phys. Rev. A 78, 024302 (2008).
[Crossref]

2007 (7)

S. Gleyzes, S. Kuhr, C. Guerlin, J. Bernu, S. Delglise, U. B. Hoff, M. Brune, J. M. Raimond, and S. Haroche, “Quantum jumps of light recording the birth and death of a photon in a cavity,” Nature (London) 446, 297-300 (2007).
[Crossref]

Z. Q. Yin and F. L. Li, “Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber,” Phys. Rev. A 75, 012324 (2007).
[Crossref]

P. Peng and F. L. Li, “Entangling two atoms in spatially separated cavities through both photon emission and absorption processes,” Phys. Rev. A 75, 062320 (2007).
[Crossref]

J. Song, Y. Xia, and H. S. Song, “Entangled state generation via adiabatic passage in two distant cavities,” J. Phys. B 40, 4503 (2007).
[Crossref]

C. S. Yu, X. X. Yi, H. S. Song, and D. Mei, “Robust preparation of Greenberger-Horne-Zeilinger and W states of three distant atoms,” Phys. Rev. A 75, 044301 (2007).
[Crossref]

X. H. Li, F. G. Deng, and H. Y. Zhou, “Faithful qubit transmission against collective noise without ancillary qubits,” Appl. Phys. Lett. 91, 144101 (2007).
[Crossref]

C. Thiel, J. von Zanthier, T. Bastin, E. Solano, and G. S. Agarwal, “Generation of symmetric Dicke states of remote qubits with linear optics,” Phys. Rev. Lett. 99, 193602 (2007).
[Crossref]

2006 (2)

Z. J. Deng, M. Feng, and K. L. Gao, “Simple scheme for generating an n-qubit W state in cavity QED,” Phys. Rev. A 73, 014302 (2006).
[Crossref]

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[Crossref] [PubMed]

2005 (1)

T. Yamamoto, J. Shimamura, S. K. Zdemir, M. Koashi, and N. Imoto, “Faithful qubit distribution assisted by one additional qubit against collective noise,” Phys. Rev. Lett. 95, 040503 (2005).
[Crossref] [PubMed]

2004 (1)

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “A calcium ion in a cavity as a controlled single-photon source,” New J. Phys. 6, 95 (2004).
[Crossref]

2003 (5)

L. M. Duan and H. J. Kimble, “Efficient engineering of multiatom entanglement through single-photon detections,” Phys. Rev. Lett. 90, 253601 (2003).
[Crossref] [PubMed]

D. E. Browne, M. B. Plenio, and S. F. Huelga, “Robust creation of entanglement between ions in spatially separate cavities,” Phys. Rev. Lett. 91, 067901 (2003).
[Crossref] [PubMed]

X. Wang, M. Feng, and B. C. Sanders, “Multipartite entangled states in coupled quantum dots and cavity QED,” Phys. Rev. A 67, 022302 (2003).
[Crossref]

C. Marr, A. Beige, and G. Rempe, “Entangled-state preparation via dissipation-assisted adiabatic passages,” Phys. Rev. A 68, 033817 (2003).
[Crossref]

R. G. Unanyan and M. Fleischhauer, “Decoherence-free generation of many-particle entanglement by adiabatic ground-state transitions,” Phys. Rev. Lett. 90, 133601 (2003).
[Crossref] [PubMed]

2002 (1)

J. Hong and H. W. Lee, “Quasideterministic generation of entangled atoms in a cavity,” Phys. Rev. Lett. 89, 237901 (2002).
[Crossref] [PubMed]

2001 (2)

S. B. Zheng and G. C. Guo, “Teleportation of atomic states within cavities in thermal states,” Phys. Rev. A 63, 044302 (2001).
[Crossref]

S. B. Zheng, “One-step synthesis of multiatom Greenberger-Horne-Zeilinger states,” Phys. Rev. Lett. 87, 230402 (2001).
[Crossref]

2000 (4)

W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A 62, 062314 (2000).
[Crossref]

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Step-by-step engineered multiparticle entanglement,” Science 288, 2024-2028 (2000).
[Crossref] [PubMed]

W. Lange and H. J. Kimble, “Dynamic generation of maximally entangled photon multiplets by adiabatic passage,” Phys. Rev. A 61, 063817 (2000).
[Crossref]

V. Coffman, J. Kundu, and W. K. Wootters, “Distributed entanglement,” Phys. Rev. A 61, 052306 (2000).
[Crossref]

1999 (1)

G. Nogues, A. Rauschenbeutel, S. Osnaghi, M. Brune, J. M. Raimond, and S. Haroche, “Seeing a single photon without destroying it,” Nature (London) 400,239-242 (1999).
[Crossref]

1998 (4)

P. Grangier, J. A. Levenson, and J. P. Poizat, “Quantum non-demolition measurements in optics,” Nature (London) 396, 537-542 (1998).
[Crossref]

Q. A. Turchette, C. S. Wood, B. E. King, C. J. Myatt, D. Leibfried, W. M. Itano, C. Monroe, and D.J. Wineland, “Deterministic entanglement of two trapped ions,” Phys. Rev. Lett. 81, 3631-3634 (1998).
[Crossref]

H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932-5935 (1998).
[Crossref]

Q. A. Turchette, C. S. Wood, B. E. King, C. J. Myatt, D. Leibfried, W. M. Itano, C. Monroe, and D. J. Wineland, “Deterministic entanglement of two trapped ions,” Phys. Rev. Lett. 81, 3631-3634 (1998).
[Crossref]

1997 (2)

E. Hagley, X. Maitre, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Hroche, “Generation of Einstein-Podolsky-Rosen pairs of atoms,” Phys. Rev. Lett. 79, 1 (1997).
[Crossref]

T. Pellizzari, “Quantum networking with optical fibers,” Phys. Rev. Lett. 79, 5242-5245 (1997).
[Crossref]

1993 (1)

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895-1899 (1993).
[Crossref] [PubMed]

1992 (1)

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881-2884 (1992).
[Crossref] [PubMed]

1984 (1)

C. H. Bennett and G. Brassard, in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (IEEE, 1984), p. 175.

Agarwal, G. S.

C. Thiel, J. von Zanthier, T. Bastin, E. Solano, and G. S. Agarwal, “Generation of symmetric Dicke states of remote qubits with linear optics,” Phys. Rev. Lett. 99, 193602 (2007).
[Crossref]

T. Bastin, C. Thiel, J. von Zanthier, L. Lamata, E. Solano, and G. S. Agarwal, “Operational monitoring of multi-qubit entanglement classes via tuning of local operations,” http://xxx.lanl.gov/abs/0710.3720.

Bastin, T.

C. Thiel, J. von Zanthier, T. Bastin, E. Solano, and G. S. Agarwal, “Generation of symmetric Dicke states of remote qubits with linear optics,” Phys. Rev. Lett. 99, 193602 (2007).
[Crossref]

T. Bastin, C. Thiel, J. von Zanthier, L. Lamata, E. Solano, and G. S. Agarwal, “Operational monitoring of multi-qubit entanglement classes via tuning of local operations,” http://xxx.lanl.gov/abs/0710.3720.

Beige, A.

C. Marr, A. Beige, and G. Rempe, “Entangled-state preparation via dissipation-assisted adiabatic passages,” Phys. Rev. A 68, 033817 (2003).
[Crossref]

Bennett, C. H.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895-1899 (1993).
[Crossref] [PubMed]

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881-2884 (1992).
[Crossref] [PubMed]

C. H. Bennett and G. Brassard, in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (IEEE, 1984), p. 175.

Bernu, J.

S. Gleyzes, S. Kuhr, C. Guerlin, J. Bernu, S. Delglise, U. B. Hoff, M. Brune, J. M. Raimond, and S. Haroche, “Quantum jumps of light recording the birth and death of a photon in a cavity,” Nature (London) 446, 297-300 (2007).
[Crossref]

Bertet, P.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Step-by-step engineered multiparticle entanglement,” Science 288, 2024-2028 (2000).
[Crossref] [PubMed]

Bose, S.

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[Crossref] [PubMed]

Brassard, G.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895-1899 (1993).
[Crossref] [PubMed]

C. H. Bennett and G. Brassard, in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (IEEE, 1984), p. 175.

Briegel, H. J.

H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932-5935 (1998).
[Crossref]

Browne, D. E.

D. E. Browne, M. B. Plenio, and S. F. Huelga, “Robust creation of entanglement between ions in spatially separate cavities,” Phys. Rev. Lett. 91, 067901 (2003).
[Crossref] [PubMed]

Brune, M.

S. Gleyzes, S. Kuhr, C. Guerlin, J. Bernu, S. Delglise, U. B. Hoff, M. Brune, J. M. Raimond, and S. Haroche, “Quantum jumps of light recording the birth and death of a photon in a cavity,” Nature (London) 446, 297-300 (2007).
[Crossref]

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Step-by-step engineered multiparticle entanglement,” Science 288, 2024-2028 (2000).
[Crossref] [PubMed]

G. Nogues, A. Rauschenbeutel, S. Osnaghi, M. Brune, J. M. Raimond, and S. Haroche, “Seeing a single photon without destroying it,” Nature (London) 400,239-242 (1999).
[Crossref]

E. Hagley, X. Maitre, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Hroche, “Generation of Einstein-Podolsky-Rosen pairs of atoms,” Phys. Rev. Lett. 79, 1 (1997).
[Crossref]

Cirac, J. I.

W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A 62, 062314 (2000).
[Crossref]

H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932-5935 (1998).
[Crossref]

Coffman, V.

V. Coffman, J. Kundu, and W. K. Wootters, “Distributed entanglement,” Phys. Rev. A 61, 052306 (2000).
[Crossref]

Crepeau, C.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895-1899 (1993).
[Crossref] [PubMed]

Delglise, S.

S. Gleyzes, S. Kuhr, C. Guerlin, J. Bernu, S. Delglise, U. B. Hoff, M. Brune, J. M. Raimond, and S. Haroche, “Quantum jumps of light recording the birth and death of a photon in a cavity,” Nature (London) 446, 297-300 (2007).
[Crossref]

Deng, F. G.

X. H. Li, F. G. Deng, and H. Y. Zhou, “Faithful qubit transmission against collective noise without ancillary qubits,” Appl. Phys. Lett. 91, 144101 (2007).
[Crossref]

Deng, Z. J.

Z. J. Deng, M. Feng, and K. L. Gao, “Simple scheme for generating an n-qubit W state in cavity QED,” Phys. Rev. A 73, 014302 (2006).
[Crossref]

Duan, L. M.

L. M. Duan and H. J. Kimble, “Efficient engineering of multiatom entanglement through single-photon detections,” Phys. Rev. Lett. 90, 253601 (2003).
[Crossref] [PubMed]

Dür, W.

W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A 62, 062314 (2000).
[Crossref]

H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932-5935 (1998).
[Crossref]

Feng, M.

Z. J. Deng, M. Feng, and K. L. Gao, “Simple scheme for generating an n-qubit W state in cavity QED,” Phys. Rev. A 73, 014302 (2006).
[Crossref]

X. Wang, M. Feng, and B. C. Sanders, “Multipartite entangled states in coupled quantum dots and cavity QED,” Phys. Rev. A 67, 022302 (2003).
[Crossref]

Fleischhauer, M.

R. G. Unanyan and M. Fleischhauer, “Decoherence-free generation of many-particle entanglement by adiabatic ground-state transitions,” Phys. Rev. Lett. 90, 133601 (2003).
[Crossref] [PubMed]

Gao, K. L.

Z. J. Deng, M. Feng, and K. L. Gao, “Simple scheme for generating an n-qubit W state in cavity QED,” Phys. Rev. A 73, 014302 (2006).
[Crossref]

Gleyzes, S.

S. Gleyzes, S. Kuhr, C. Guerlin, J. Bernu, S. Delglise, U. B. Hoff, M. Brune, J. M. Raimond, and S. Haroche, “Quantum jumps of light recording the birth and death of a photon in a cavity,” Nature (London) 446, 297-300 (2007).
[Crossref]

Grangier, P.

P. Grangier, J. A. Levenson, and J. P. Poizat, “Quantum non-demolition measurements in optics,” Nature (London) 396, 537-542 (1998).
[Crossref]

Guerlin, C.

S. Gleyzes, S. Kuhr, C. Guerlin, J. Bernu, S. Delglise, U. B. Hoff, M. Brune, J. M. Raimond, and S. Haroche, “Quantum jumps of light recording the birth and death of a photon in a cavity,” Nature (London) 446, 297-300 (2007).
[Crossref]

Guo, G. C.

S. B. Zheng and G. C. Guo, “Teleportation of atomic states within cavities in thermal states,” Phys. Rev. A 63, 044302 (2001).
[Crossref]

Hagley, E.

E. Hagley, X. Maitre, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Hroche, “Generation of Einstein-Podolsky-Rosen pairs of atoms,” Phys. Rev. Lett. 79, 1 (1997).
[Crossref]

Haroche, S.

S. Gleyzes, S. Kuhr, C. Guerlin, J. Bernu, S. Delglise, U. B. Hoff, M. Brune, J. M. Raimond, and S. Haroche, “Quantum jumps of light recording the birth and death of a photon in a cavity,” Nature (London) 446, 297-300 (2007).
[Crossref]

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Step-by-step engineered multiparticle entanglement,” Science 288, 2024-2028 (2000).
[Crossref] [PubMed]

G. Nogues, A. Rauschenbeutel, S. Osnaghi, M. Brune, J. M. Raimond, and S. Haroche, “Seeing a single photon without destroying it,” Nature (London) 400,239-242 (1999).
[Crossref]

Hayasaka, K.

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “A calcium ion in a cavity as a controlled single-photon source,” New J. Phys. 6, 95 (2004).
[Crossref]

Hoff, U. B.

S. Gleyzes, S. Kuhr, C. Guerlin, J. Bernu, S. Delglise, U. B. Hoff, M. Brune, J. M. Raimond, and S. Haroche, “Quantum jumps of light recording the birth and death of a photon in a cavity,” Nature (London) 446, 297-300 (2007).
[Crossref]

Hong, J.

J. Hong and H. W. Lee, “Quasideterministic generation of entangled atoms in a cavity,” Phys. Rev. Lett. 89, 237901 (2002).
[Crossref] [PubMed]

Hroche, S.

E. Hagley, X. Maitre, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Hroche, “Generation of Einstein-Podolsky-Rosen pairs of atoms,” Phys. Rev. Lett. 79, 1 (1997).
[Crossref]

Huelga, S. F.

D. E. Browne, M. B. Plenio, and S. F. Huelga, “Robust creation of entanglement between ions in spatially separate cavities,” Phys. Rev. Lett. 91, 067901 (2003).
[Crossref] [PubMed]

Imoto, N.

T. Yamamoto, J. Shimamura, S. K. Zdemir, M. Koashi, and N. Imoto, “Faithful qubit distribution assisted by one additional qubit against collective noise,” Phys. Rev. Lett. 95, 040503 (2005).
[Crossref] [PubMed]

Itano, W. M.

Q. A. Turchette, C. S. Wood, B. E. King, C. J. Myatt, D. Leibfried, W. M. Itano, C. Monroe, and D.J. Wineland, “Deterministic entanglement of two trapped ions,” Phys. Rev. Lett. 81, 3631-3634 (1998).
[Crossref]

Q. A. Turchette, C. S. Wood, B. E. King, C. J. Myatt, D. Leibfried, W. M. Itano, C. Monroe, and D. J. Wineland, “Deterministic entanglement of two trapped ions,” Phys. Rev. Lett. 81, 3631-3634 (1998).
[Crossref]

Jozsa, R.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895-1899 (1993).
[Crossref] [PubMed]

Keller, M.

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “A calcium ion in a cavity as a controlled single-photon source,” New J. Phys. 6, 95 (2004).
[Crossref]

Kimble, H. J.

L. M. Duan and H. J. Kimble, “Efficient engineering of multiatom entanglement through single-photon detections,” Phys. Rev. Lett. 90, 253601 (2003).
[Crossref] [PubMed]

W. Lange and H. J. Kimble, “Dynamic generation of maximally entangled photon multiplets by adiabatic passage,” Phys. Rev. A 61, 063817 (2000).
[Crossref]

King, B. E.

Q. A. Turchette, C. S. Wood, B. E. King, C. J. Myatt, D. Leibfried, W. M. Itano, C. Monroe, and D.J. Wineland, “Deterministic entanglement of two trapped ions,” Phys. Rev. Lett. 81, 3631-3634 (1998).
[Crossref]

Q. A. Turchette, C. S. Wood, B. E. King, C. J. Myatt, D. Leibfried, W. M. Itano, C. Monroe, and D. J. Wineland, “Deterministic entanglement of two trapped ions,” Phys. Rev. Lett. 81, 3631-3634 (1998).
[Crossref]

Koashi, M.

T. Yamamoto, J. Shimamura, S. K. Zdemir, M. Koashi, and N. Imoto, “Faithful qubit distribution assisted by one additional qubit against collective noise,” Phys. Rev. Lett. 95, 040503 (2005).
[Crossref] [PubMed]

Kuhr, S.

S. Gleyzes, S. Kuhr, C. Guerlin, J. Bernu, S. Delglise, U. B. Hoff, M. Brune, J. M. Raimond, and S. Haroche, “Quantum jumps of light recording the birth and death of a photon in a cavity,” Nature (London) 446, 297-300 (2007).
[Crossref]

Kundu, J.

V. Coffman, J. Kundu, and W. K. Wootters, “Distributed entanglement,” Phys. Rev. A 61, 052306 (2000).
[Crossref]

Lamata, L.

T. Bastin, C. Thiel, J. von Zanthier, L. Lamata, E. Solano, and G. S. Agarwal, “Operational monitoring of multi-qubit entanglement classes via tuning of local operations,” http://xxx.lanl.gov/abs/0710.3720.

Lange, B.

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “A calcium ion in a cavity as a controlled single-photon source,” New J. Phys. 6, 95 (2004).
[Crossref]

Lange, W.

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “A calcium ion in a cavity as a controlled single-photon source,” New J. Phys. 6, 95 (2004).
[Crossref]

W. Lange and H. J. Kimble, “Dynamic generation of maximally entangled photon multiplets by adiabatic passage,” Phys. Rev. A 61, 063817 (2000).
[Crossref]

Lee, H. W.

J. Hong and H. W. Lee, “Quasideterministic generation of entangled atoms in a cavity,” Phys. Rev. Lett. 89, 237901 (2002).
[Crossref] [PubMed]

Leibfried, D.

Q. A. Turchette, C. S. Wood, B. E. King, C. J. Myatt, D. Leibfried, W. M. Itano, C. Monroe, and D.J. Wineland, “Deterministic entanglement of two trapped ions,” Phys. Rev. Lett. 81, 3631-3634 (1998).
[Crossref]

Q. A. Turchette, C. S. Wood, B. E. King, C. J. Myatt, D. Leibfried, W. M. Itano, C. Monroe, and D. J. Wineland, “Deterministic entanglement of two trapped ions,” Phys. Rev. Lett. 81, 3631-3634 (1998).
[Crossref]

Levenson, J. A.

P. Grangier, J. A. Levenson, and J. P. Poizat, “Quantum non-demolition measurements in optics,” Nature (London) 396, 537-542 (1998).
[Crossref]

Li, F. L.

Z. Q. Yin and F. L. Li, “Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber,” Phys. Rev. A 75, 012324 (2007).
[Crossref]

P. Peng and F. L. Li, “Entangling two atoms in spatially separated cavities through both photon emission and absorption processes,” Phys. Rev. A 75, 062320 (2007).
[Crossref]

Li, X. H.

X. H. Li, F. G. Deng, and H. Y. Zhou, “Faithful qubit transmission against collective noise without ancillary qubits,” Appl. Phys. Lett. 91, 144101 (2007).
[Crossref]

Maitre, X.

E. Hagley, X. Maitre, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Hroche, “Generation of Einstein-Podolsky-Rosen pairs of atoms,” Phys. Rev. Lett. 79, 1 (1997).
[Crossref]

Mancini, S.

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[Crossref] [PubMed]

Marr, C.

C. Marr, A. Beige, and G. Rempe, “Entangled-state preparation via dissipation-assisted adiabatic passages,” Phys. Rev. A 68, 033817 (2003).
[Crossref]

Mei, D.

C. S. Yu, X. X. Yi, H. S. Song, and D. Mei, “Robust preparation of Greenberger-Horne-Zeilinger and W states of three distant atoms,” Phys. Rev. A 75, 044301 (2007).
[Crossref]

Monroe, C.

Q. A. Turchette, C. S. Wood, B. E. King, C. J. Myatt, D. Leibfried, W. M. Itano, C. Monroe, and D.J. Wineland, “Deterministic entanglement of two trapped ions,” Phys. Rev. Lett. 81, 3631-3634 (1998).
[Crossref]

Q. A. Turchette, C. S. Wood, B. E. King, C. J. Myatt, D. Leibfried, W. M. Itano, C. Monroe, and D. J. Wineland, “Deterministic entanglement of two trapped ions,” Phys. Rev. Lett. 81, 3631-3634 (1998).
[Crossref]

Myatt, C. J.

Q. A. Turchette, C. S. Wood, B. E. King, C. J. Myatt, D. Leibfried, W. M. Itano, C. Monroe, and D. J. Wineland, “Deterministic entanglement of two trapped ions,” Phys. Rev. Lett. 81, 3631-3634 (1998).
[Crossref]

Q. A. Turchette, C. S. Wood, B. E. King, C. J. Myatt, D. Leibfried, W. M. Itano, C. Monroe, and D.J. Wineland, “Deterministic entanglement of two trapped ions,” Phys. Rev. Lett. 81, 3631-3634 (1998).
[Crossref]

Nogues, G.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Step-by-step engineered multiparticle entanglement,” Science 288, 2024-2028 (2000).
[Crossref] [PubMed]

G. Nogues, A. Rauschenbeutel, S. Osnaghi, M. Brune, J. M. Raimond, and S. Haroche, “Seeing a single photon without destroying it,” Nature (London) 400,239-242 (1999).
[Crossref]

E. Hagley, X. Maitre, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Hroche, “Generation of Einstein-Podolsky-Rosen pairs of atoms,” Phys. Rev. Lett. 79, 1 (1997).
[Crossref]

Osnaghi, S.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Step-by-step engineered multiparticle entanglement,” Science 288, 2024-2028 (2000).
[Crossref] [PubMed]

G. Nogues, A. Rauschenbeutel, S. Osnaghi, M. Brune, J. M. Raimond, and S. Haroche, “Seeing a single photon without destroying it,” Nature (London) 400,239-242 (1999).
[Crossref]

Pellizzari, T.

T. Pellizzari, “Quantum networking with optical fibers,” Phys. Rev. Lett. 79, 5242-5245 (1997).
[Crossref]

Peng, P.

P. Peng and F. L. Li, “Entangling two atoms in spatially separated cavities through both photon emission and absorption processes,” Phys. Rev. A 75, 062320 (2007).
[Crossref]

Peres, A.

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895-1899 (1993).
[Crossref] [PubMed]

Plenio, M. B.

D. E. Browne, M. B. Plenio, and S. F. Huelga, “Robust creation of entanglement between ions in spatially separate cavities,” Phys. Rev. Lett. 91, 067901 (2003).
[Crossref] [PubMed]

Poizat, J. P.

P. Grangier, J. A. Levenson, and J. P. Poizat, “Quantum non-demolition measurements in optics,” Nature (London) 396, 537-542 (1998).
[Crossref]

Raimond, J. M.

S. Gleyzes, S. Kuhr, C. Guerlin, J. Bernu, S. Delglise, U. B. Hoff, M. Brune, J. M. Raimond, and S. Haroche, “Quantum jumps of light recording the birth and death of a photon in a cavity,” Nature (London) 446, 297-300 (2007).
[Crossref]

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Step-by-step engineered multiparticle entanglement,” Science 288, 2024-2028 (2000).
[Crossref] [PubMed]

G. Nogues, A. Rauschenbeutel, S. Osnaghi, M. Brune, J. M. Raimond, and S. Haroche, “Seeing a single photon without destroying it,” Nature (London) 400,239-242 (1999).
[Crossref]

E. Hagley, X. Maitre, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Hroche, “Generation of Einstein-Podolsky-Rosen pairs of atoms,” Phys. Rev. Lett. 79, 1 (1997).
[Crossref]

Rauschenbeutel, A.

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Step-by-step engineered multiparticle entanglement,” Science 288, 2024-2028 (2000).
[Crossref] [PubMed]

G. Nogues, A. Rauschenbeutel, S. Osnaghi, M. Brune, J. M. Raimond, and S. Haroche, “Seeing a single photon without destroying it,” Nature (London) 400,239-242 (1999).
[Crossref]

Rempe, G.

C. Marr, A. Beige, and G. Rempe, “Entangled-state preparation via dissipation-assisted adiabatic passages,” Phys. Rev. A 68, 033817 (2003).
[Crossref]

Sanders, B. C.

X. Wang, M. Feng, and B. C. Sanders, “Multipartite entangled states in coupled quantum dots and cavity QED,” Phys. Rev. A 67, 022302 (2003).
[Crossref]

Serafini, A.

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[Crossref] [PubMed]

Shimamura, J.

T. Yamamoto, J. Shimamura, S. K. Zdemir, M. Koashi, and N. Imoto, “Faithful qubit distribution assisted by one additional qubit against collective noise,” Phys. Rev. Lett. 95, 040503 (2005).
[Crossref] [PubMed]

Solano, E.

C. Thiel, J. von Zanthier, T. Bastin, E. Solano, and G. S. Agarwal, “Generation of symmetric Dicke states of remote qubits with linear optics,” Phys. Rev. Lett. 99, 193602 (2007).
[Crossref]

T. Bastin, C. Thiel, J. von Zanthier, L. Lamata, E. Solano, and G. S. Agarwal, “Operational monitoring of multi-qubit entanglement classes via tuning of local operations,” http://xxx.lanl.gov/abs/0710.3720.

Song, H. S.

J. Song, Y. Xia, and H. S. Song, “Quantum nodes for W-state generation in noisy channels,” Phys. Rev. A 78, 024302 (2008).
[Crossref]

J. Song, Y. Xia, and H. S. Song, “Entangled state generation via adiabatic passage in two distant cavities,” J. Phys. B 40, 4503 (2007).
[Crossref]

C. S. Yu, X. X. Yi, H. S. Song, and D. Mei, “Robust preparation of Greenberger-Horne-Zeilinger and W states of three distant atoms,” Phys. Rev. A 75, 044301 (2007).
[Crossref]

Song, J.

J. Song, Y. Xia, and H. S. Song, “Quantum nodes for W-state generation in noisy channels,” Phys. Rev. A 78, 024302 (2008).
[Crossref]

J. Song, Y. Xia, and H. S. Song, “Entangled state generation via adiabatic passage in two distant cavities,” J. Phys. B 40, 4503 (2007).
[Crossref]

Thiel, C.

C. Thiel, J. von Zanthier, T. Bastin, E. Solano, and G. S. Agarwal, “Generation of symmetric Dicke states of remote qubits with linear optics,” Phys. Rev. Lett. 99, 193602 (2007).
[Crossref]

T. Bastin, C. Thiel, J. von Zanthier, L. Lamata, E. Solano, and G. S. Agarwal, “Operational monitoring of multi-qubit entanglement classes via tuning of local operations,” http://xxx.lanl.gov/abs/0710.3720.

Turchette, Q. A.

Q. A. Turchette, C. S. Wood, B. E. King, C. J. Myatt, D. Leibfried, W. M. Itano, C. Monroe, and D. J. Wineland, “Deterministic entanglement of two trapped ions,” Phys. Rev. Lett. 81, 3631-3634 (1998).
[Crossref]

Q. A. Turchette, C. S. Wood, B. E. King, C. J. Myatt, D. Leibfried, W. M. Itano, C. Monroe, and D.J. Wineland, “Deterministic entanglement of two trapped ions,” Phys. Rev. Lett. 81, 3631-3634 (1998).
[Crossref]

Unanyan, R. G.

R. G. Unanyan and M. Fleischhauer, “Decoherence-free generation of many-particle entanglement by adiabatic ground-state transitions,” Phys. Rev. Lett. 90, 133601 (2003).
[Crossref] [PubMed]

Vidal, G.

W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A 62, 062314 (2000).
[Crossref]

von Zanthier, J.

C. Thiel, J. von Zanthier, T. Bastin, E. Solano, and G. S. Agarwal, “Generation of symmetric Dicke states of remote qubits with linear optics,” Phys. Rev. Lett. 99, 193602 (2007).
[Crossref]

T. Bastin, C. Thiel, J. von Zanthier, L. Lamata, E. Solano, and G. S. Agarwal, “Operational monitoring of multi-qubit entanglement classes via tuning of local operations,” http://xxx.lanl.gov/abs/0710.3720.

Walther, H.

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “A calcium ion in a cavity as a controlled single-photon source,” New J. Phys. 6, 95 (2004).
[Crossref]

Wang, X.

X. Wang, M. Feng, and B. C. Sanders, “Multipartite entangled states in coupled quantum dots and cavity QED,” Phys. Rev. A 67, 022302 (2003).
[Crossref]

Wiesner, S. J.

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881-2884 (1992).
[Crossref] [PubMed]

Wineland, D. J.

Q. A. Turchette, C. S. Wood, B. E. King, C. J. Myatt, D. Leibfried, W. M. Itano, C. Monroe, and D.J. Wineland, “Deterministic entanglement of two trapped ions,” Phys. Rev. Lett. 81, 3631-3634 (1998).
[Crossref]

Q. A. Turchette, C. S. Wood, B. E. King, C. J. Myatt, D. Leibfried, W. M. Itano, C. Monroe, and D. J. Wineland, “Deterministic entanglement of two trapped ions,” Phys. Rev. Lett. 81, 3631-3634 (1998).
[Crossref]

Wood, C. S.

Q. A. Turchette, C. S. Wood, B. E. King, C. J. Myatt, D. Leibfried, W. M. Itano, C. Monroe, and D. J. Wineland, “Deterministic entanglement of two trapped ions,” Phys. Rev. Lett. 81, 3631-3634 (1998).
[Crossref]

Q. A. Turchette, C. S. Wood, B. E. King, C. J. Myatt, D. Leibfried, W. M. Itano, C. Monroe, and D.J. Wineland, “Deterministic entanglement of two trapped ions,” Phys. Rev. Lett. 81, 3631-3634 (1998).
[Crossref]

Wootters, W. K.

V. Coffman, J. Kundu, and W. K. Wootters, “Distributed entanglement,” Phys. Rev. A 61, 052306 (2000).
[Crossref]

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895-1899 (1993).
[Crossref] [PubMed]

Wunderlich, C.

E. Hagley, X. Maitre, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Hroche, “Generation of Einstein-Podolsky-Rosen pairs of atoms,” Phys. Rev. Lett. 79, 1 (1997).
[Crossref]

Xia, Y.

J. Song, Y. Xia, and H. S. Song, “Quantum nodes for W-state generation in noisy channels,” Phys. Rev. A 78, 024302 (2008).
[Crossref]

J. Song, Y. Xia, and H. S. Song, “Entangled state generation via adiabatic passage in two distant cavities,” J. Phys. B 40, 4503 (2007).
[Crossref]

Yamamoto, T.

T. Yamamoto, J. Shimamura, S. K. Zdemir, M. Koashi, and N. Imoto, “Faithful qubit distribution assisted by one additional qubit against collective noise,” Phys. Rev. Lett. 95, 040503 (2005).
[Crossref] [PubMed]

Yi, X. X.

C. S. Yu, X. X. Yi, H. S. Song, and D. Mei, “Robust preparation of Greenberger-Horne-Zeilinger and W states of three distant atoms,” Phys. Rev. A 75, 044301 (2007).
[Crossref]

Yin, Z. Q.

Z. Q. Yin and F. L. Li, “Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber,” Phys. Rev. A 75, 012324 (2007).
[Crossref]

Yu, C. S.

C. S. Yu, X. X. Yi, H. S. Song, and D. Mei, “Robust preparation of Greenberger-Horne-Zeilinger and W states of three distant atoms,” Phys. Rev. A 75, 044301 (2007).
[Crossref]

Zdemir, S. K.

T. Yamamoto, J. Shimamura, S. K. Zdemir, M. Koashi, and N. Imoto, “Faithful qubit distribution assisted by one additional qubit against collective noise,” Phys. Rev. Lett. 95, 040503 (2005).
[Crossref] [PubMed]

Zheng, S. B.

S. B. Zheng, “One-step synthesis of multiatom Greenberger-Horne-Zeilinger states,” Phys. Rev. Lett. 87, 230402 (2001).
[Crossref]

S. B. Zheng and G. C. Guo, “Teleportation of atomic states within cavities in thermal states,” Phys. Rev. A 63, 044302 (2001).
[Crossref]

Zhou, H. Y.

X. H. Li, F. G. Deng, and H. Y. Zhou, “Faithful qubit transmission against collective noise without ancillary qubits,” Appl. Phys. Lett. 91, 144101 (2007).
[Crossref]

Zoller, P.

H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932-5935 (1998).
[Crossref]

Appl. Phys. Lett. (1)

X. H. Li, F. G. Deng, and H. Y. Zhou, “Faithful qubit transmission against collective noise without ancillary qubits,” Appl. Phys. Lett. 91, 144101 (2007).
[Crossref]

J. Phys. B (1)

J. Song, Y. Xia, and H. S. Song, “Entangled state generation via adiabatic passage in two distant cavities,” J. Phys. B 40, 4503 (2007).
[Crossref]

Nature (London) (3)

G. Nogues, A. Rauschenbeutel, S. Osnaghi, M. Brune, J. M. Raimond, and S. Haroche, “Seeing a single photon without destroying it,” Nature (London) 400,239-242 (1999).
[Crossref]

P. Grangier, J. A. Levenson, and J. P. Poizat, “Quantum non-demolition measurements in optics,” Nature (London) 396, 537-542 (1998).
[Crossref]

S. Gleyzes, S. Kuhr, C. Guerlin, J. Bernu, S. Delglise, U. B. Hoff, M. Brune, J. M. Raimond, and S. Haroche, “Quantum jumps of light recording the birth and death of a photon in a cavity,” Nature (London) 446, 297-300 (2007).
[Crossref]

New J. Phys. (1)

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “A calcium ion in a cavity as a controlled single-photon source,” New J. Phys. 6, 95 (2004).
[Crossref]

Phys. Rev. A (11)

J. Song, Y. Xia, and H. S. Song, “Quantum nodes for W-state generation in noisy channels,” Phys. Rev. A 78, 024302 (2008).
[Crossref]

V. Coffman, J. Kundu, and W. K. Wootters, “Distributed entanglement,” Phys. Rev. A 61, 052306 (2000).
[Crossref]

C. S. Yu, X. X. Yi, H. S. Song, and D. Mei, “Robust preparation of Greenberger-Horne-Zeilinger and W states of three distant atoms,” Phys. Rev. A 75, 044301 (2007).
[Crossref]

Z. Q. Yin and F. L. Li, “Multiatom and resonant interaction scheme for quantum state transfer and logical gates between two remote cavities via an optical fiber,” Phys. Rev. A 75, 012324 (2007).
[Crossref]

P. Peng and F. L. Li, “Entangling two atoms in spatially separated cavities through both photon emission and absorption processes,” Phys. Rev. A 75, 062320 (2007).
[Crossref]

W. Lange and H. J. Kimble, “Dynamic generation of maximally entangled photon multiplets by adiabatic passage,” Phys. Rev. A 61, 063817 (2000).
[Crossref]

W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A 62, 062314 (2000).
[Crossref]

S. B. Zheng and G. C. Guo, “Teleportation of atomic states within cavities in thermal states,” Phys. Rev. A 63, 044302 (2001).
[Crossref]

X. Wang, M. Feng, and B. C. Sanders, “Multipartite entangled states in coupled quantum dots and cavity QED,” Phys. Rev. A 67, 022302 (2003).
[Crossref]

C. Marr, A. Beige, and G. Rempe, “Entangled-state preparation via dissipation-assisted adiabatic passages,” Phys. Rev. A 68, 033817 (2003).
[Crossref]

Z. J. Deng, M. Feng, and K. L. Gao, “Simple scheme for generating an n-qubit W state in cavity QED,” Phys. Rev. A 73, 014302 (2006).
[Crossref]

Phys. Rev. Lett. (15)

S. B. Zheng, “One-step synthesis of multiatom Greenberger-Horne-Zeilinger states,” Phys. Rev. Lett. 87, 230402 (2001).
[Crossref]

C. Thiel, J. von Zanthier, T. Bastin, E. Solano, and G. S. Agarwal, “Generation of symmetric Dicke states of remote qubits with linear optics,” Phys. Rev. Lett. 99, 193602 (2007).
[Crossref]

E. Hagley, X. Maitre, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Hroche, “Generation of Einstein-Podolsky-Rosen pairs of atoms,” Phys. Rev. Lett. 79, 1 (1997).
[Crossref]

Q. A. Turchette, C. S. Wood, B. E. King, C. J. Myatt, D. Leibfried, W. M. Itano, C. Monroe, and D. J. Wineland, “Deterministic entanglement of two trapped ions,” Phys. Rev. Lett. 81, 3631-3634 (1998).
[Crossref]

C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895-1899 (1993).
[Crossref] [PubMed]

H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932-5935 (1998).
[Crossref]

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881-2884 (1992).
[Crossref] [PubMed]

Q. A. Turchette, C. S. Wood, B. E. King, C. J. Myatt, D. Leibfried, W. M. Itano, C. Monroe, and D.J. Wineland, “Deterministic entanglement of two trapped ions,” Phys. Rev. Lett. 81, 3631-3634 (1998).
[Crossref]

J. Hong and H. W. Lee, “Quasideterministic generation of entangled atoms in a cavity,” Phys. Rev. Lett. 89, 237901 (2002).
[Crossref] [PubMed]

R. G. Unanyan and M. Fleischhauer, “Decoherence-free generation of many-particle entanglement by adiabatic ground-state transitions,” Phys. Rev. Lett. 90, 133601 (2003).
[Crossref] [PubMed]

T. Yamamoto, J. Shimamura, S. K. Zdemir, M. Koashi, and N. Imoto, “Faithful qubit distribution assisted by one additional qubit against collective noise,” Phys. Rev. Lett. 95, 040503 (2005).
[Crossref] [PubMed]

L. M. Duan and H. J. Kimble, “Efficient engineering of multiatom entanglement through single-photon detections,” Phys. Rev. Lett. 90, 253601 (2003).
[Crossref] [PubMed]

D. E. Browne, M. B. Plenio, and S. F. Huelga, “Robust creation of entanglement between ions in spatially separate cavities,” Phys. Rev. Lett. 91, 067901 (2003).
[Crossref] [PubMed]

T. Pellizzari, “Quantum networking with optical fibers,” Phys. Rev. Lett. 79, 5242-5245 (1997).
[Crossref]

A. Serafini, S. Mancini, and S. Bose, “Distributed quantum computation via optical fibers,” Phys. Rev. Lett. 96, 010503 (2006).
[Crossref] [PubMed]

Science (1)

A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche, “Step-by-step engineered multiparticle entanglement,” Science 288, 2024-2028 (2000).
[Crossref] [PubMed]

Other (2)

T. Bastin, C. Thiel, J. von Zanthier, L. Lamata, E. Solano, and G. S. Agarwal, “Operational monitoring of multi-qubit entanglement classes via tuning of local operations,” http://xxx.lanl.gov/abs/0710.3720.

C. H. Bennett and G. Brassard, in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (IEEE, 1984), p. 175.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Atomic level configuration.

Fig. 2
Fig. 2

Schematic setup. The dotted lines denote four nodes–1, 2, 3, and 4–in a quantum network. In nodes 1, 2, and 3 there are three distant atoms trapped in different cavities. Nodes 1, 2, and 3 are linked with central node 4 by three noisy channels. D i ( i = 1 , 2 , 3 ) are single-photon detectors.

Fig. 3
Fig. 3

Three-tangle Γ versus noisy parameter δ 3 and the different Δ.

Fig. 4
Fig. 4

Schematic setup for generating the N qubit entangled state, where S i K i has the same structure as S 1 K 1 ( i = 2 , , n ) .

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

H i = k = 1 3 [ ( g a l , k e l , k g l , k + g a r , k e r , k g r , k + H.c. ) i 2 κ ( a l , k + a l , k + a r , k + a r , k ) i 2 γ ( e l , k e l , k + e r , k e r , k ) ] ,
Ψ 1 = e i H i t Ψ 0 .
P 1 = ( 4 g sin ( 1 4 16 g 2 ( κ γ ) 2 t 1 ) 16 g 2 ( κ γ ) 2 ) 6 .
Ψ 2 = k = 1 3 1 2 ( g l , k H k + g r , k V k ) .
Ψ 3 = k = 1 3 1 2 { ( g l , k H k , S + i g r , k H k , L ) k + ( g l , k H k , S i g r , k H k , L ) k } ,
H δ k H + η k V ,
δ k 2 + η k 2 = 1 ,
Ψ 4 = k = 1 3 1 2 [ g l , k ( δ k H k , S + η k V k , S ) + i g r , k ( δ k H k , L + η k V k , L ) ] .
Ψ 5 = k = 1 3 1 2 { g l , k [ δ k ( H k , S S v k + i V k , S L v k ) + η k ( V k , S S h k + i H k , S L h k ) ] + i g r , k [ δ k ( H k , L S v k + i V k , L L v k ) + η k ( V k , L S h k + i H k , L L h k ) ] } .
C D D D 3 = I Q D 2 = G D D 1 = C D D D 1 = G D Q D 2 = I Q D 3 = C J K D 4 = G J D 6 = I K D 5 = C J J D 6 = G J K D 5 = I K D 4 .
Ψ 6 = [ δ 1 2 ( D 3 g r , 1 + D 1 g l , 1 ) + η 1 2 ( D 4 g r , 1 + D 6 g l , 1 ) ] [ δ 2 2 ( D 1 g r , 2 + D 2 g l , 2 ) + η 2 2 ( D 6 g r , 2 + D 5 g l , 2 ) ] [ δ 3 2 ( D 2 g r , 3 + D 3 g l , 3 ) + η 3 2 ( D 5 g r , 3 + D 4 g l , 3 ) ] ,

Metrics