Abstract

We proposed a new double-resonant cavity four-channel add–drop filter based on the in-plane type two-dimensional (2D) photonic crystal with square lattice. Through this novel double-resonant cavity, WDM signals can be coupled in or out of the bus waveguide with 100% add–drop efficiency while completely prohibiting cross talk between the bus and the add–drop waveguides for all other wavelengths. This device could be used as an optical add–drop multiplexer (OADM) in coarse wavelength division multiplexing (CWDM) applications.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonvitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987).
    [CrossRef]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2489 (1987).
    [CrossRef] [PubMed]
  3. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature (London) 386, 143-149 (1997).
    [CrossRef]
  4. D. Dai and S. He, “Design of a polarization-insensitive arrayed waveguide grating demultiplexer based on silicon photonic wires,” Opt. Lett. 31, 1988-1990 (2006).
    [CrossRef] [PubMed]
  5. K. Takiguchi, K. Okamoto, and A. Sugita, “Arrayed-waveguide grating with uniform loss properties over the entire range of wavelength channels,” Opt. Lett. 31, 459-461 (2006).
    [CrossRef] [PubMed]
  6. M. E. Marhic, “Hybrid transversal-lattice optical filters,” Opt. Express 10, 1190-1194 (2002).
    [PubMed]
  7. S. Kamei, M. Oguma, M. Kohtoku, T. Shibata, and Y. Inoue, “Low-loss athermal silica-based lattice-form interleave filter with silicone-filled grooves,” IEEE Photonics Technol. Lett. 17, 798-800 (2005).
    [CrossRef]
  8. T. L. White, J. Zhang, B. J. Koch, and M. Haase, “Universal coupling between metal-clad waveguide and optical ring resonators,” Opt. Express 15, 646-651 (2007).
    [CrossRef] [PubMed]
  9. D. X. Xu, A. Densmore, P. Waldron, J. Lapointe, E. Post, A. Delâge, S. Janz, P. Cheben, J. H. Schmid, and B. Lamontagne, “High bandwidth SOI photonic wire ring resonators using MMI couplers,” Opt. Express 15, 3149-3155 (2007).
    [CrossRef] [PubMed]
  10. T. Yanagimachi, H. Oguri, J. Nayyer, S. Ishihara, and J. Minowa, “High-performance and highly stable 0.3-nm full width at half-maximum interference optical filters,” Appl. Opt. 33, 3513-3517 (1994).
    [CrossRef] [PubMed]
  11. B. Li, S. Y. Zhang, J. C. Jiang, B. Fan, and F. S. Zhang, “Improving low-temperature performance of infrared thin-film interference filters utilizing the intrinsic properties of IV-VI narrow-gap semiconductors,” Opt. Express 12, 401-404 (2004).
    [CrossRef] [PubMed]
  12. Y.-D. Wu, K.-W. Hsu, and T.-T. Shih, “Thirty-two-channel dense-wavelength-division multiplexer based on cascade two-dimensional photonic crystal waveguide structure,” J. Opt. Soc. Am. B 24, 2075-2800 (2007).
    [CrossRef]
  13. A. Chutinan, M. Mochizuki, M. Imada, and S. Noda, “Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 79, 2690-2692 (2001).
    [CrossRef]
  14. Y. Akahane, M. Mochizuki, T. Asano, Y. Tanaka, and S. Noda, “Design of a channel drop filter by using a donor-type cavity with high-quality factor in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 82, 1341-1343 (2003).
    [CrossRef]
  15. T. Asano, B. S. Song, Y. Tanaka, and S. Noda, “Investigation of a channel-add/drop-filtering device using acceptor-type point defects in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 83, 407-409 (2003).
    [CrossRef]
  16. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 83, 1512-1514 (2003).
    [CrossRef]
  17. S. Noda, M. Imada, M. Okano, S. Ogawa, M. Mochizuki, and A. Chutinan, “Semiconductor three-dimensional and two-dimensional photonic crystals and devices,” IEEE J. Quantum Electron. 38, 726-735 (2002).
    [CrossRef]
  18. M. Imada, S. Noda, A. Chutinan, M. Mochizuki, and T. Tanaka, “Channel drop filter using a single defect in a 2-D photonic crystal slab waveguide,” J. Lightwave Technol. 20, 873-878 (2002).
    [CrossRef]
  19. C.-W. Kuo, C.-F. Chang, M.-H. Chen, S.-Y. Chen, and Y.-D. Wu, “A new approach of planar multi-channel wavelength division multiplexing system using asymmetric super-cell photonic crystal structures,” Opt. Express 15, 198-206 (2007).
    [CrossRef] [PubMed]
  20. H. Ren, C. Jiang, W. Hu, M. Gao, Y. Qu, and F. Wang, “Channel drop filter in two-dimensional triangular lattice photonic crystals,” J. Opt. Soc. Am. A 24, A7-A11 (2007).
    [CrossRef]
  21. M. Qiu and B. Jaskorzynska, “Design of a channel drop filter in a two-dimensional triangular photonic crystal,” Appl. Phys. Lett. 83, 1074-1076 (2003).
    [CrossRef]
  22. H. Takano, B.-S. Song, T. Asano, and S. Noda, “Highly efficient in-plane channel drop filter in a two-dimensional heterophotonic crystal,” Appl. Phys. Lett. 86, 241101 (2005).
    [CrossRef]
  23. P. Kohli, C. Christensen, J. Muehlmeier, R. Biswas, G. Tuttle, and K.-M. Ho, “Add-drop filters in three-dimensional layer-by-layer photonic crystals using waveguides and resonant cavities,” Appl. Phys. Lett. 89, 231103 (2006).
    [CrossRef]
  24. N. I. Florous, K. Saitoh, and M. Koshiba, “Low-temperature-sensitivity heterostructure photonic-crystal wavelength-selective filter based on ultralow-refractive-index metamaterials,” Appl. Phys. Lett. 88, 121107 (2006).
    [CrossRef]
  25. M. Koshiba, “Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers,” J. Lightwave Technol. 19, 1970-1975 (2001).
    [CrossRef]
  26. S. Kim, I. Park, and H. Lim, “Highly efficient photonic crystal-based multichannel drop filters of three-port system with reflection feedback,” Opt. Express 12, 5518-5525 (2004).
    [CrossRef] [PubMed]
  27. J. Romero-Vivas, D. Chigrin, A. Lavrinenko, and C. S. Torres, “Resonant add-drop filter based on a photonic quasi-crystal,” Opt. Express 13, 826-835 (2005).
    [CrossRef] [PubMed]
  28. Z. Zhang and M. Qiu, “Compact in-plane channel drop filter design using a single cavity with two degenerate modes in 2D photonic crystal slabs,” Opt. Express 13, 2596-2604 (2005).
    [CrossRef] [PubMed]
  29. H. Ren, C. Jiang, W. Hu, M. Gao, and J. Wang, “Photonic crystal channel drop filter with a wavelength-selective reflection micro-cavity,” Opt. Express 14, 2446-2458 (2006).
    [CrossRef] [PubMed]
  30. H. Takano, B.-S. Song, T. Asano, and S. Noda, “Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal,” Opt. Express 14, 3491-3496 (2006).
    [CrossRef] [PubMed]
  31. A. Shinya, S. Mitsugi, E. Kuramochi, and M. Notomi, “Ultrasmall multi-port channel drop filter in two-dimensional photonic crystal on silicon-on-insulator substrate,” Opt. Express 14, 12394-12400 (2006).
    [CrossRef] [PubMed]
  32. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis,” Opt. Express 8, 173-190 (2001).
    [CrossRef] [PubMed]
  33. A. Taflove, “Application of the finite-difference time-domain method to sinusoidal steady electromagnetic-penetration problems,” IEEE Trans. Electromagn. Compat. 22, 191-202, (1980).
    [CrossRef]
  34. S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80, 960-963 (1998).
    [CrossRef]

2007

2006

2005

S. Kamei, M. Oguma, M. Kohtoku, T. Shibata, and Y. Inoue, “Low-loss athermal silica-based lattice-form interleave filter with silicone-filled grooves,” IEEE Photonics Technol. Lett. 17, 798-800 (2005).
[CrossRef]

H. Takano, B.-S. Song, T. Asano, and S. Noda, “Highly efficient in-plane channel drop filter in a two-dimensional heterophotonic crystal,” Appl. Phys. Lett. 86, 241101 (2005).
[CrossRef]

J. Romero-Vivas, D. Chigrin, A. Lavrinenko, and C. S. Torres, “Resonant add-drop filter based on a photonic quasi-crystal,” Opt. Express 13, 826-835 (2005).
[CrossRef] [PubMed]

Z. Zhang and M. Qiu, “Compact in-plane channel drop filter design using a single cavity with two degenerate modes in 2D photonic crystal slabs,” Opt. Express 13, 2596-2604 (2005).
[CrossRef] [PubMed]

2004

2003

Y. Akahane, M. Mochizuki, T. Asano, Y. Tanaka, and S. Noda, “Design of a channel drop filter by using a donor-type cavity with high-quality factor in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 82, 1341-1343 (2003).
[CrossRef]

T. Asano, B. S. Song, Y. Tanaka, and S. Noda, “Investigation of a channel-add/drop-filtering device using acceptor-type point defects in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 83, 407-409 (2003).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 83, 1512-1514 (2003).
[CrossRef]

M. Qiu and B. Jaskorzynska, “Design of a channel drop filter in a two-dimensional triangular photonic crystal,” Appl. Phys. Lett. 83, 1074-1076 (2003).
[CrossRef]

2002

S. Noda, M. Imada, M. Okano, S. Ogawa, M. Mochizuki, and A. Chutinan, “Semiconductor three-dimensional and two-dimensional photonic crystals and devices,” IEEE J. Quantum Electron. 38, 726-735 (2002).
[CrossRef]

M. Imada, S. Noda, A. Chutinan, M. Mochizuki, and T. Tanaka, “Channel drop filter using a single defect in a 2-D photonic crystal slab waveguide,” J. Lightwave Technol. 20, 873-878 (2002).
[CrossRef]

M. E. Marhic, “Hybrid transversal-lattice optical filters,” Opt. Express 10, 1190-1194 (2002).
[PubMed]

2001

1998

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80, 960-963 (1998).
[CrossRef]

1997

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature (London) 386, 143-149 (1997).
[CrossRef]

1994

1987

E. Yablonvitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

1980

A. Taflove, “Application of the finite-difference time-domain method to sinusoidal steady electromagnetic-penetration problems,” IEEE Trans. Electromagn. Compat. 22, 191-202, (1980).
[CrossRef]

Akahane, Y.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 83, 1512-1514 (2003).
[CrossRef]

Y. Akahane, M. Mochizuki, T. Asano, Y. Tanaka, and S. Noda, “Design of a channel drop filter by using a donor-type cavity with high-quality factor in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 82, 1341-1343 (2003).
[CrossRef]

Asano, T.

H. Takano, B.-S. Song, T. Asano, and S. Noda, “Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal,” Opt. Express 14, 3491-3496 (2006).
[CrossRef] [PubMed]

H. Takano, B.-S. Song, T. Asano, and S. Noda, “Highly efficient in-plane channel drop filter in a two-dimensional heterophotonic crystal,” Appl. Phys. Lett. 86, 241101 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 83, 1512-1514 (2003).
[CrossRef]

T. Asano, B. S. Song, Y. Tanaka, and S. Noda, “Investigation of a channel-add/drop-filtering device using acceptor-type point defects in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 83, 407-409 (2003).
[CrossRef]

Y. Akahane, M. Mochizuki, T. Asano, Y. Tanaka, and S. Noda, “Design of a channel drop filter by using a donor-type cavity with high-quality factor in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 82, 1341-1343 (2003).
[CrossRef]

Biswas, R.

P. Kohli, C. Christensen, J. Muehlmeier, R. Biswas, G. Tuttle, and K.-M. Ho, “Add-drop filters in three-dimensional layer-by-layer photonic crystals using waveguides and resonant cavities,” Appl. Phys. Lett. 89, 231103 (2006).
[CrossRef]

Chang, C.-F.

Cheben, P.

Chen, M.-H.

Chen, S.-Y.

Chigrin, D.

Christensen, C.

P. Kohli, C. Christensen, J. Muehlmeier, R. Biswas, G. Tuttle, and K.-M. Ho, “Add-drop filters in three-dimensional layer-by-layer photonic crystals using waveguides and resonant cavities,” Appl. Phys. Lett. 89, 231103 (2006).
[CrossRef]

Chutinan, A.

S. Noda, M. Imada, M. Okano, S. Ogawa, M. Mochizuki, and A. Chutinan, “Semiconductor three-dimensional and two-dimensional photonic crystals and devices,” IEEE J. Quantum Electron. 38, 726-735 (2002).
[CrossRef]

M. Imada, S. Noda, A. Chutinan, M. Mochizuki, and T. Tanaka, “Channel drop filter using a single defect in a 2-D photonic crystal slab waveguide,” J. Lightwave Technol. 20, 873-878 (2002).
[CrossRef]

A. Chutinan, M. Mochizuki, M. Imada, and S. Noda, “Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 79, 2690-2692 (2001).
[CrossRef]

Dai, D.

Delâge, A.

Densmore, A.

Fan, B.

Fan, S.

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80, 960-963 (1998).
[CrossRef]

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature (London) 386, 143-149 (1997).
[CrossRef]

Florous, N. I.

N. I. Florous, K. Saitoh, and M. Koshiba, “Low-temperature-sensitivity heterostructure photonic-crystal wavelength-selective filter based on ultralow-refractive-index metamaterials,” Appl. Phys. Lett. 88, 121107 (2006).
[CrossRef]

Gao, M.

Haase, M.

He, S.

Ho, K.-M.

P. Kohli, C. Christensen, J. Muehlmeier, R. Biswas, G. Tuttle, and K.-M. Ho, “Add-drop filters in three-dimensional layer-by-layer photonic crystals using waveguides and resonant cavities,” Appl. Phys. Lett. 89, 231103 (2006).
[CrossRef]

Hsu, K.-W.

Hu, W.

Imada, M.

M. Imada, S. Noda, A. Chutinan, M. Mochizuki, and T. Tanaka, “Channel drop filter using a single defect in a 2-D photonic crystal slab waveguide,” J. Lightwave Technol. 20, 873-878 (2002).
[CrossRef]

S. Noda, M. Imada, M. Okano, S. Ogawa, M. Mochizuki, and A. Chutinan, “Semiconductor three-dimensional and two-dimensional photonic crystals and devices,” IEEE J. Quantum Electron. 38, 726-735 (2002).
[CrossRef]

A. Chutinan, M. Mochizuki, M. Imada, and S. Noda, “Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 79, 2690-2692 (2001).
[CrossRef]

Inoue, Y.

S. Kamei, M. Oguma, M. Kohtoku, T. Shibata, and Y. Inoue, “Low-loss athermal silica-based lattice-form interleave filter with silicone-filled grooves,” IEEE Photonics Technol. Lett. 17, 798-800 (2005).
[CrossRef]

Ishihara, S.

Janz, S.

Jaskorzynska, B.

M. Qiu and B. Jaskorzynska, “Design of a channel drop filter in a two-dimensional triangular photonic crystal,” Appl. Phys. Lett. 83, 1074-1076 (2003).
[CrossRef]

Jiang, C.

Jiang, J. C.

Joannopoulos, J. D.

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis,” Opt. Express 8, 173-190 (2001).
[CrossRef] [PubMed]

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80, 960-963 (1998).
[CrossRef]

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature (London) 386, 143-149 (1997).
[CrossRef]

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

Johnson, S. G.

Kamei, S.

S. Kamei, M. Oguma, M. Kohtoku, T. Shibata, and Y. Inoue, “Low-loss athermal silica-based lattice-form interleave filter with silicone-filled grooves,” IEEE Photonics Technol. Lett. 17, 798-800 (2005).
[CrossRef]

Kim, S.

Koch, B. J.

Kohli, P.

P. Kohli, C. Christensen, J. Muehlmeier, R. Biswas, G. Tuttle, and K.-M. Ho, “Add-drop filters in three-dimensional layer-by-layer photonic crystals using waveguides and resonant cavities,” Appl. Phys. Lett. 89, 231103 (2006).
[CrossRef]

Kohtoku, M.

S. Kamei, M. Oguma, M. Kohtoku, T. Shibata, and Y. Inoue, “Low-loss athermal silica-based lattice-form interleave filter with silicone-filled grooves,” IEEE Photonics Technol. Lett. 17, 798-800 (2005).
[CrossRef]

Koshiba, M.

N. I. Florous, K. Saitoh, and M. Koshiba, “Low-temperature-sensitivity heterostructure photonic-crystal wavelength-selective filter based on ultralow-refractive-index metamaterials,” Appl. Phys. Lett. 88, 121107 (2006).
[CrossRef]

M. Koshiba, “Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers,” J. Lightwave Technol. 19, 1970-1975 (2001).
[CrossRef]

Kuo, C.-W.

Kuramochi, E.

Lamontagne, B.

Lapointe, J.

Lavrinenko, A.

Li, B.

Lim, H.

Marhic, M. E.

Minowa, J.

Mitsugi, S.

Mochizuki, M.

Y. Akahane, M. Mochizuki, T. Asano, Y. Tanaka, and S. Noda, “Design of a channel drop filter by using a donor-type cavity with high-quality factor in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 82, 1341-1343 (2003).
[CrossRef]

S. Noda, M. Imada, M. Okano, S. Ogawa, M. Mochizuki, and A. Chutinan, “Semiconductor three-dimensional and two-dimensional photonic crystals and devices,” IEEE J. Quantum Electron. 38, 726-735 (2002).
[CrossRef]

M. Imada, S. Noda, A. Chutinan, M. Mochizuki, and T. Tanaka, “Channel drop filter using a single defect in a 2-D photonic crystal slab waveguide,” J. Lightwave Technol. 20, 873-878 (2002).
[CrossRef]

A. Chutinan, M. Mochizuki, M. Imada, and S. Noda, “Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 79, 2690-2692 (2001).
[CrossRef]

Muehlmeier, J.

P. Kohli, C. Christensen, J. Muehlmeier, R. Biswas, G. Tuttle, and K.-M. Ho, “Add-drop filters in three-dimensional layer-by-layer photonic crystals using waveguides and resonant cavities,” Appl. Phys. Lett. 89, 231103 (2006).
[CrossRef]

Nayyer, J.

Noda, S.

H. Takano, B.-S. Song, T. Asano, and S. Noda, “Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal,” Opt. Express 14, 3491-3496 (2006).
[CrossRef] [PubMed]

H. Takano, B.-S. Song, T. Asano, and S. Noda, “Highly efficient in-plane channel drop filter in a two-dimensional heterophotonic crystal,” Appl. Phys. Lett. 86, 241101 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 83, 1512-1514 (2003).
[CrossRef]

T. Asano, B. S. Song, Y. Tanaka, and S. Noda, “Investigation of a channel-add/drop-filtering device using acceptor-type point defects in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 83, 407-409 (2003).
[CrossRef]

Y. Akahane, M. Mochizuki, T. Asano, Y. Tanaka, and S. Noda, “Design of a channel drop filter by using a donor-type cavity with high-quality factor in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 82, 1341-1343 (2003).
[CrossRef]

S. Noda, M. Imada, M. Okano, S. Ogawa, M. Mochizuki, and A. Chutinan, “Semiconductor three-dimensional and two-dimensional photonic crystals and devices,” IEEE J. Quantum Electron. 38, 726-735 (2002).
[CrossRef]

M. Imada, S. Noda, A. Chutinan, M. Mochizuki, and T. Tanaka, “Channel drop filter using a single defect in a 2-D photonic crystal slab waveguide,” J. Lightwave Technol. 20, 873-878 (2002).
[CrossRef]

A. Chutinan, M. Mochizuki, M. Imada, and S. Noda, “Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 79, 2690-2692 (2001).
[CrossRef]

Notomi, M.

Ogawa, S.

S. Noda, M. Imada, M. Okano, S. Ogawa, M. Mochizuki, and A. Chutinan, “Semiconductor three-dimensional and two-dimensional photonic crystals and devices,” IEEE J. Quantum Electron. 38, 726-735 (2002).
[CrossRef]

Oguma, M.

S. Kamei, M. Oguma, M. Kohtoku, T. Shibata, and Y. Inoue, “Low-loss athermal silica-based lattice-form interleave filter with silicone-filled grooves,” IEEE Photonics Technol. Lett. 17, 798-800 (2005).
[CrossRef]

Oguri, H.

Okamoto, K.

Okano, M.

S. Noda, M. Imada, M. Okano, S. Ogawa, M. Mochizuki, and A. Chutinan, “Semiconductor three-dimensional and two-dimensional photonic crystals and devices,” IEEE J. Quantum Electron. 38, 726-735 (2002).
[CrossRef]

Park, I.

Post, E.

Qiu, M.

Z. Zhang and M. Qiu, “Compact in-plane channel drop filter design using a single cavity with two degenerate modes in 2D photonic crystal slabs,” Opt. Express 13, 2596-2604 (2005).
[CrossRef] [PubMed]

M. Qiu and B. Jaskorzynska, “Design of a channel drop filter in a two-dimensional triangular photonic crystal,” Appl. Phys. Lett. 83, 1074-1076 (2003).
[CrossRef]

Qu, Y.

Ren, H.

Romero-Vivas, J.

Saitoh, K.

N. I. Florous, K. Saitoh, and M. Koshiba, “Low-temperature-sensitivity heterostructure photonic-crystal wavelength-selective filter based on ultralow-refractive-index metamaterials,” Appl. Phys. Lett. 88, 121107 (2006).
[CrossRef]

Schmid, J. H.

Shibata, T.

S. Kamei, M. Oguma, M. Kohtoku, T. Shibata, and Y. Inoue, “Low-loss athermal silica-based lattice-form interleave filter with silicone-filled grooves,” IEEE Photonics Technol. Lett. 17, 798-800 (2005).
[CrossRef]

Shih, T.-T.

Shinya, A.

Song, B. S.

T. Asano, B. S. Song, Y. Tanaka, and S. Noda, “Investigation of a channel-add/drop-filtering device using acceptor-type point defects in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 83, 407-409 (2003).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 83, 1512-1514 (2003).
[CrossRef]

Song, B.-S.

H. Takano, B.-S. Song, T. Asano, and S. Noda, “Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal,” Opt. Express 14, 3491-3496 (2006).
[CrossRef] [PubMed]

H. Takano, B.-S. Song, T. Asano, and S. Noda, “Highly efficient in-plane channel drop filter in a two-dimensional heterophotonic crystal,” Appl. Phys. Lett. 86, 241101 (2005).
[CrossRef]

Sugita, A.

Taflove, A.

A. Taflove, “Application of the finite-difference time-domain method to sinusoidal steady electromagnetic-penetration problems,” IEEE Trans. Electromagn. Compat. 22, 191-202, (1980).
[CrossRef]

Takano, H.

H. Takano, B.-S. Song, T. Asano, and S. Noda, “Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal,” Opt. Express 14, 3491-3496 (2006).
[CrossRef] [PubMed]

H. Takano, B.-S. Song, T. Asano, and S. Noda, “Highly efficient in-plane channel drop filter in a two-dimensional heterophotonic crystal,” Appl. Phys. Lett. 86, 241101 (2005).
[CrossRef]

Takiguchi, K.

Tanaka, T.

M. Imada, S. Noda, A. Chutinan, M. Mochizuki, and T. Tanaka, “Channel drop filter using a single defect in a 2-D photonic crystal slab waveguide,” J. Lightwave Technol. 20, 873-878 (2002).
[CrossRef]

Tanaka, Y.

T. Asano, B. S. Song, Y. Tanaka, and S. Noda, “Investigation of a channel-add/drop-filtering device using acceptor-type point defects in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 83, 407-409 (2003).
[CrossRef]

Y. Akahane, M. Mochizuki, T. Asano, Y. Tanaka, and S. Noda, “Design of a channel drop filter by using a donor-type cavity with high-quality factor in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 82, 1341-1343 (2003).
[CrossRef]

Torres, C. S.

Tuttle, G.

P. Kohli, C. Christensen, J. Muehlmeier, R. Biswas, G. Tuttle, and K.-M. Ho, “Add-drop filters in three-dimensional layer-by-layer photonic crystals using waveguides and resonant cavities,” Appl. Phys. Lett. 89, 231103 (2006).
[CrossRef]

Villeneuve, P. R.

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80, 960-963 (1998).
[CrossRef]

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature (London) 386, 143-149 (1997).
[CrossRef]

Waldron, P.

Wang, F.

Wang, J.

White, T. L.

Wu, Y.-D.

Xu, D. X.

Yablonvitch, E.

E. Yablonvitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef]

Yanagimachi, T.

Zhang, F. S.

Zhang, J.

Zhang, S. Y.

Zhang, Z.

Appl. Opt.

Appl. Phys. Lett.

A. Chutinan, M. Mochizuki, M. Imada, and S. Noda, “Surface-emitting channel drop filters using single defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 79, 2690-2692 (2001).
[CrossRef]

Y. Akahane, M. Mochizuki, T. Asano, Y. Tanaka, and S. Noda, “Design of a channel drop filter by using a donor-type cavity with high-quality factor in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 82, 1341-1343 (2003).
[CrossRef]

T. Asano, B. S. Song, Y. Tanaka, and S. Noda, “Investigation of a channel-add/drop-filtering device using acceptor-type point defects in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 83, 407-409 (2003).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Investigation of high-Q channel drop filters using donor-type defects in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 83, 1512-1514 (2003).
[CrossRef]

M. Qiu and B. Jaskorzynska, “Design of a channel drop filter in a two-dimensional triangular photonic crystal,” Appl. Phys. Lett. 83, 1074-1076 (2003).
[CrossRef]

H. Takano, B.-S. Song, T. Asano, and S. Noda, “Highly efficient in-plane channel drop filter in a two-dimensional heterophotonic crystal,” Appl. Phys. Lett. 86, 241101 (2005).
[CrossRef]

P. Kohli, C. Christensen, J. Muehlmeier, R. Biswas, G. Tuttle, and K.-M. Ho, “Add-drop filters in three-dimensional layer-by-layer photonic crystals using waveguides and resonant cavities,” Appl. Phys. Lett. 89, 231103 (2006).
[CrossRef]

N. I. Florous, K. Saitoh, and M. Koshiba, “Low-temperature-sensitivity heterostructure photonic-crystal wavelength-selective filter based on ultralow-refractive-index metamaterials,” Appl. Phys. Lett. 88, 121107 (2006).
[CrossRef]

IEEE J. Quantum Electron.

S. Noda, M. Imada, M. Okano, S. Ogawa, M. Mochizuki, and A. Chutinan, “Semiconductor three-dimensional and two-dimensional photonic crystals and devices,” IEEE J. Quantum Electron. 38, 726-735 (2002).
[CrossRef]

IEEE Photonics Technol. Lett.

S. Kamei, M. Oguma, M. Kohtoku, T. Shibata, and Y. Inoue, “Low-loss athermal silica-based lattice-form interleave filter with silicone-filled grooves,” IEEE Photonics Technol. Lett. 17, 798-800 (2005).
[CrossRef]

IEEE Trans. Electromagn. Compat.

A. Taflove, “Application of the finite-difference time-domain method to sinusoidal steady electromagnetic-penetration problems,” IEEE Trans. Electromagn. Compat. 22, 191-202, (1980).
[CrossRef]

J. Lightwave Technol.

M. Koshiba, “Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers,” J. Lightwave Technol. 19, 1970-1975 (2001).
[CrossRef]

M. Imada, S. Noda, A. Chutinan, M. Mochizuki, and T. Tanaka, “Channel drop filter using a single defect in a 2-D photonic crystal slab waveguide,” J. Lightwave Technol. 20, 873-878 (2002).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Nature (London)

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature (London) 386, 143-149 (1997).
[CrossRef]

Opt. Express

M. E. Marhic, “Hybrid transversal-lattice optical filters,” Opt. Express 10, 1190-1194 (2002).
[PubMed]

B. Li, S. Y. Zhang, J. C. Jiang, B. Fan, and F. S. Zhang, “Improving low-temperature performance of infrared thin-film interference filters utilizing the intrinsic properties of IV-VI narrow-gap semiconductors,” Opt. Express 12, 401-404 (2004).
[CrossRef] [PubMed]

S. Kim, I. Park, and H. Lim, “Highly efficient photonic crystal-based multichannel drop filters of three-port system with reflection feedback,” Opt. Express 12, 5518-5525 (2004).
[CrossRef] [PubMed]

J. Romero-Vivas, D. Chigrin, A. Lavrinenko, and C. S. Torres, “Resonant add-drop filter based on a photonic quasi-crystal,” Opt. Express 13, 826-835 (2005).
[CrossRef] [PubMed]

Z. Zhang and M. Qiu, “Compact in-plane channel drop filter design using a single cavity with two degenerate modes in 2D photonic crystal slabs,” Opt. Express 13, 2596-2604 (2005).
[CrossRef] [PubMed]

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis,” Opt. Express 8, 173-190 (2001).
[CrossRef] [PubMed]

H. Ren, C. Jiang, W. Hu, M. Gao, and J. Wang, “Photonic crystal channel drop filter with a wavelength-selective reflection micro-cavity,” Opt. Express 14, 2446-2458 (2006).
[CrossRef] [PubMed]

H. Takano, B.-S. Song, T. Asano, and S. Noda, “Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal,” Opt. Express 14, 3491-3496 (2006).
[CrossRef] [PubMed]

A. Shinya, S. Mitsugi, E. Kuramochi, and M. Notomi, “Ultrasmall multi-port channel drop filter in two-dimensional photonic crystal on silicon-on-insulator substrate,” Opt. Express 14, 12394-12400 (2006).
[CrossRef] [PubMed]

C.-W. Kuo, C.-F. Chang, M.-H. Chen, S.-Y. Chen, and Y.-D. Wu, “A new approach of planar multi-channel wavelength division multiplexing system using asymmetric super-cell photonic crystal structures,” Opt. Express 15, 198-206 (2007).
[CrossRef] [PubMed]

T. L. White, J. Zhang, B. J. Koch, and M. Haase, “Universal coupling between metal-clad waveguide and optical ring resonators,” Opt. Express 15, 646-651 (2007).
[CrossRef] [PubMed]

D. X. Xu, A. Densmore, P. Waldron, J. Lapointe, E. Post, A. Delâge, S. Janz, P. Cheben, J. H. Schmid, and B. Lamontagne, “High bandwidth SOI photonic wire ring resonators using MMI couplers,” Opt. Express 15, 3149-3155 (2007).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. Lett.

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Channel drop tunneling through localized states,” Phys. Rev. Lett. 80, 960-963 (1998).
[CrossRef]

E. Yablonvitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059-2062 (1987).
[CrossRef]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of channel drop filter in 2D square lattice pillars consisting of two waveguides and two cavities. The dielectric constant of the pillars, the radius of the pillars, and the radius of the two smaller pillars are 12.4, 0.1564 a , and 0.159 r , respectively, where the distance of two defects is 5 a , a is the lattice constant, and r is the radius of the pillars.

Fig. 2
Fig. 2

(a) Geometry of photonic crystal waveguide and computational super cell. (b) Dispersion of waveguide mode of a single photonic crystal waveguide; the solid curve represents the waveguide mode. A cross indicate the wave vector k 0.25 2 π a and corresponding normalized frequency 0.37864 a λ .

Fig. 3
Fig. 3

(a) Intensity spectra of the transmission signal, the forward drop signal, and the backward drop signal at 1550 nm . (b) Magnetic field distribution of the channel drop filter at the operating wavelength λ = 1550 nm .

Fig. 4
Fig. 4

Each section consists of one bus waveguide, forward waveguide, backward waveguide, and two smaller pillars. The parameters r 1 , r 2 , r 3 , r 4 are 0.1253 a , 0.1342 a , 0.1445 a , and 0.1564 a , and the corresponding radii of the smaller pillars are 0.2325 r 1 , 0.206 r 2 , 0.1785 r 3 , and 0.159 r 4 , where r 1 r 4 are radii of pillars of individual sections, and a is the lattice constant 586.88 μ m .

Fig. 5
Fig. 5

Schematic of four dispersion curves including four types of r a ratio, r 1 a 0.1253, r 2 a 0.1342, r 3 a 0.1445, and r 4 a 0.1564 using the PWE method. The corresponding normalized frequencies located at wave vector 0.25 ( 2 π a ) are 0.39388 a λ , 0.38865 a λ , 0.38357 a λ , and 0.37864 a λ shown in the right-side magnified diagram.

Fig. 6
Fig. 6

Schematic of intensity spectra for the transmission signal of the bus waveguide; the four forward drop signals at λ = 1490 nm , 1510 nm , 1530 nm , 1550 nm ; and the backward drop signals, respectively.

Fig. 7
Fig. 7

Oscillation of the steady-state field distribution at the resonant wavelength (a) 1550 nm , (b) 1530 nm , (c) 1510 nm (d) 1490 nm . Four waves enter the bottom of the bus waveguide and drop in the forward drop (FD) waveguide of each section for the structure, as shown in Fig. 4.

Fig. 8
Fig. 8

Oscillation of the steady-state field distribution at the resonant wavelength (a) 1550 nm , (b) 1530 nm , (c) 1510 nm , (d) 1490 nm . Four waves add to the individual backward drop (BD) waveguide of each section and transfer to the forward direction of the bus waveguide for the structure, as shown in Fig. 4.

Tables (1)

Tables Icon

Table 1 Cross Talk of Four-Channel Add–Drop Filters

Metrics