Abstract

Refractive indices of congruent LiNbO3 crystals codoped with 0.5mol% Er2O3 and 05.0   mol% MgO were measured at room temperature in a wavelength range from 473to1536nm using critical angle measurement and minimum deviation methods. For reference, measurements by the critical angle method were also performed on a congruent LiNbO3 and a congruent MgO (5mol%):LiNbO3. The measured data are compared with previously reported theoretical and/or experimental results of pure and MgO-doped LiNbO3, especially with the results predicted by the MgO content-related Sellmeier equation (SE) reported by Schlarb and Betzler. It is shown that the Schlarb and Betzler SE consistently predicts a lower index, by as much as 4×103, than what is actually measured by the authors for both congruent LiNbO3 and for MgO:LiNbO3, whether it is codoped with Er or not. To check the Er doping effect, measurements by the critical angle method were also performed on some congruent LiNbO3 crystals singly doped with 01.0mol% Er2O3. The results show that Er doping has no measurable effect. It is concluded that there may be a systematic error as one uses the Schlarb and Betzler SE to predict the index of the undoped, only MgO-doped, and ErMg-codoped crystals. The Schlarb and Betzler SE parameters are refined to fit our experimental data. The corrected version of the SE suitable for MgO:LiNbO3 with or without Er doping is given.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Brinkmann, W. Sohler, and H. Suche, “Continuous-wave erbium-diffused LiNbO3 waveguide laser,” Electron. Lett. 27, 415-417 (1991).
    [CrossRef]
  2. Ch. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiberg, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 101-113 (2000).
    [CrossRef]
  3. W. Sohler and H. Suche, “Erbium-Doped Lithium Niobate Waveguide Lasers,” in Integrated Optical Circuits and Components: Design and Application, E.J.Murphy, ed. (Marcel Dekker, Inc., 1999), Chap. 6, pp. 127-159.
  4. J. Amin, J. A. Aust, and N. A. Sanford, “Z-propagating waveguide lasers in rare-earth-doped Ti:LiNbO3,” Appl. Phys. Lett. 69, 3785-3787 (1996).
    [CrossRef]
  5. S. Helmfrid, G. Arvidsson, J. Webjorn, M. Linnarsson, and T. Pihl, “Stimulated emission in Er:Ti:LiNbO3 waveguides close to 1.53 μm transition,” Electron. Lett. 27, 913-914 (1991).
    [CrossRef]
  6. C. H. Huang and L. McCaughan, “980-nm-pumped Er-doped LiNbO3 waveguide amplifiers: a comparison with 1484-nm pumping,” IEEE J. Sel. Top. Quantum Electron. 2, 367-372 (1996).
    [CrossRef]
  7. E. Cantelar, G. A. Torchia, J. A. Sanz-Garcia, P. L. Pernas, G. Lifante, and F. Cusso, “Red, green, and blue simultaneous generation in aperiodically poled Zn-diffused LiNbO3:Er3+/Yb3+ nonlinear channel waveguides,” Appl. Phys. Lett. 83, 2991-2993 (2003).
    [CrossRef]
  8. B. K. Das, R. Ricken, and W. Sohler, “Integrated optical distributed feedback laser with Ti:Fe:Er:LiNbO3 waveguide,” Appl. Phys. Lett. 83, 1515-1517 (2003).
    [CrossRef]
  9. B. K. Das, R. Ricken, V. Quiring, H. Suche, and W. Sohler, “Distributed feedback-distributed Bragg reflector coupled cavity laser with a Ti:(Fe:)Er:LiNbO3 waveguide,” Opt. Lett. 29, 165-167 (2004).
    [CrossRef] [PubMed]
  10. G. Schreiber, D. Hofmann, W. Grundkotter, Y. L. Lee, H. Suche, V. Quiring, R. Ricken, and W. Sohler, “Nonlinear integrated optical frequency conversion in periodically poled Ti:LiNbO3 waveguides,” in Proc. SPIE 4277, 144-160 (2001).
  11. G. G. Zhong, J. Jin, and Z. K. Wu, “Measurements of optically induced refractive-index damage of lithium niobate doped with different concentrations of MgO,” in 11th International Quantum Electronics Conference, Vol. 70 of OSA Proceedings Series (Optical Society of America, 1980), p. 631.
  12. D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44, 847-849 (1984).
    [CrossRef]
  13. Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77, 2494-2496 (2000).
    [CrossRef]
  14. Á. Péter, K. Polgár, L. Kovács, and K. Lengyel, “Threshold concentration of MgO in near-stoichiometric LiNbO3 crystals,” J. Cryst. Growth 284, 149-155 (2005).
    [CrossRef]
  15. W. S. Yang, D. H. Yoon, and H. Y. Lee, “Growth and optical properties of Er:MgO:LiNbO3 single crystal by the micro-pulling-down method,” Proc. SPIE 4905, 446-449 (2002).
  16. H. Y. Shen, H. Xu, Z. D. Zeng, W. X. Lin, R. F. Wu, and G. F. Xu, “Measurement of refractive indices and thermal refractive-index coefficients of LiNbO3 crystal doped with 5 mol.% MgO,” Appl. Opt. 31, 6695-6697 (1992).
    [CrossRef] [PubMed]
  17. D. E. Zelmon, D. L. Small, and D. H. Jundt, “Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol.% magnesium oxide-doped lithium niobate,” J. Opt. Soc. Am. B 14, 3319-3322 (1997).
    [CrossRef]
  18. O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L'Huillier, “Temperature-dependent Sellmeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3,” Appl. Phys. B: Lasers Opt. 86, 111-115 (2007).
  19. U. Schlarb and K. Betzler, “Influence of the defect structure on the refractive indices of undoped and Mg-doped lithium niobate,” Phys. Rev. B 50, 751-757 (1994).
    [CrossRef]
  20. E. Cantelar, J. A. Sanz-García, and F. Cussó, “Growth of LiNbO3 co-doped with Er3+/Yb3+,” J. Cryst. Growth 205, 196-201 (1999).
    [CrossRef]
  21. Metricon Corporation, http://www.metricon.com/appli5.htm#anchor480218.
  22. U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: a generalized fit,” Phys. Rev. B 48, 15613-15620 (1993).
    [CrossRef]
  23. S. L. Li, K. M. Wang, F. Chen, X. L. Wang, and G. Fu, “Monomode optical waveguide excited at 1540 nm in LiNbO3 formed by MeV carbon ion implantation at low doses,” Opt. Express 12, 747-752 (2004).
    [CrossRef] [PubMed]
  24. D. F. Nelson and R. M. Mikulyak, “Refractive indices of congruently melting lithium niobate,” J. Appl. Phys. 45, 3688-3689 (1974).
    [CrossRef]
  25. D. S. Smith, H. D. Riccius, and R. P. Edwin, “Refractive indices of lithium niobate,” Opt. Commun. 17, 332-335 (1976).
    [CrossRef]
  26. D. S. Smith, H. D. Riccius, and R. P. Edwin, “Refractive indices of lithium niobate,” Opt. Commun. 20, 188 (1977) (Errata).
  27. S. Miyazawa, R. Guglielmi, and A. Carenco, “A simple technique for suppressing Li2O out-diffusion in Ti:LiNbO3 optical waveguides,” Appl. Phys. Lett. 31, 742-744 (1977).
    [CrossRef]
  28. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 14, 1553-1555 (1997).
    [CrossRef]
  29. From data sheet of LiNbO3 crystal provided by Crystal Technology, Inc. http://www.crystaltechnology.com/docs/LNopt.pdf.
  30. G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373-374 (1984).
    [CrossRef]
  31. W. L. Bond, “Measurement of the refractive indices of several crystals,” J. Appl. Phys. 36, 1674-1677 (1965).
    [CrossRef]

2007 (1)

O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L'Huillier, “Temperature-dependent Sellmeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3,” Appl. Phys. B: Lasers Opt. 86, 111-115 (2007).

2005 (1)

Á. Péter, K. Polgár, L. Kovács, and K. Lengyel, “Threshold concentration of MgO in near-stoichiometric LiNbO3 crystals,” J. Cryst. Growth 284, 149-155 (2005).
[CrossRef]

2004 (2)

2003 (2)

E. Cantelar, G. A. Torchia, J. A. Sanz-Garcia, P. L. Pernas, G. Lifante, and F. Cusso, “Red, green, and blue simultaneous generation in aperiodically poled Zn-diffused LiNbO3:Er3+/Yb3+ nonlinear channel waveguides,” Appl. Phys. Lett. 83, 2991-2993 (2003).
[CrossRef]

B. K. Das, R. Ricken, and W. Sohler, “Integrated optical distributed feedback laser with Ti:Fe:Er:LiNbO3 waveguide,” Appl. Phys. Lett. 83, 1515-1517 (2003).
[CrossRef]

2002 (1)

W. S. Yang, D. H. Yoon, and H. Y. Lee, “Growth and optical properties of Er:MgO:LiNbO3 single crystal by the micro-pulling-down method,” Proc. SPIE 4905, 446-449 (2002).

2001 (1)

G. Schreiber, D. Hofmann, W. Grundkotter, Y. L. Lee, H. Suche, V. Quiring, R. Ricken, and W. Sohler, “Nonlinear integrated optical frequency conversion in periodically poled Ti:LiNbO3 waveguides,” in Proc. SPIE 4277, 144-160 (2001).

2000 (2)

Ch. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiberg, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 101-113 (2000).
[CrossRef]

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77, 2494-2496 (2000).
[CrossRef]

1999 (2)

W. Sohler and H. Suche, “Erbium-Doped Lithium Niobate Waveguide Lasers,” in Integrated Optical Circuits and Components: Design and Application, E.J.Murphy, ed. (Marcel Dekker, Inc., 1999), Chap. 6, pp. 127-159.

E. Cantelar, J. A. Sanz-García, and F. Cussó, “Growth of LiNbO3 co-doped with Er3+/Yb3+,” J. Cryst. Growth 205, 196-201 (1999).
[CrossRef]

1997 (2)

1996 (2)

J. Amin, J. A. Aust, and N. A. Sanford, “Z-propagating waveguide lasers in rare-earth-doped Ti:LiNbO3,” Appl. Phys. Lett. 69, 3785-3787 (1996).
[CrossRef]

C. H. Huang and L. McCaughan, “980-nm-pumped Er-doped LiNbO3 waveguide amplifiers: a comparison with 1484-nm pumping,” IEEE J. Sel. Top. Quantum Electron. 2, 367-372 (1996).
[CrossRef]

1994 (1)

U. Schlarb and K. Betzler, “Influence of the defect structure on the refractive indices of undoped and Mg-doped lithium niobate,” Phys. Rev. B 50, 751-757 (1994).
[CrossRef]

1993 (1)

U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: a generalized fit,” Phys. Rev. B 48, 15613-15620 (1993).
[CrossRef]

1992 (1)

1991 (2)

R. Brinkmann, W. Sohler, and H. Suche, “Continuous-wave erbium-diffused LiNbO3 waveguide laser,” Electron. Lett. 27, 415-417 (1991).
[CrossRef]

S. Helmfrid, G. Arvidsson, J. Webjorn, M. Linnarsson, and T. Pihl, “Stimulated emission in Er:Ti:LiNbO3 waveguides close to 1.53 μm transition,” Electron. Lett. 27, 913-914 (1991).
[CrossRef]

1984 (2)

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44, 847-849 (1984).
[CrossRef]

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373-374 (1984).
[CrossRef]

1980 (1)

G. G. Zhong, J. Jin, and Z. K. Wu, “Measurements of optically induced refractive-index damage of lithium niobate doped with different concentrations of MgO,” in 11th International Quantum Electronics Conference, Vol. 70 of OSA Proceedings Series (Optical Society of America, 1980), p. 631.

1977 (2)

D. S. Smith, H. D. Riccius, and R. P. Edwin, “Refractive indices of lithium niobate,” Opt. Commun. 20, 188 (1977) (Errata).

S. Miyazawa, R. Guglielmi, and A. Carenco, “A simple technique for suppressing Li2O out-diffusion in Ti:LiNbO3 optical waveguides,” Appl. Phys. Lett. 31, 742-744 (1977).
[CrossRef]

1976 (1)

D. S. Smith, H. D. Riccius, and R. P. Edwin, “Refractive indices of lithium niobate,” Opt. Commun. 17, 332-335 (1976).
[CrossRef]

1974 (1)

D. F. Nelson and R. M. Mikulyak, “Refractive indices of congruently melting lithium niobate,” J. Appl. Phys. 45, 3688-3689 (1974).
[CrossRef]

1965 (1)

W. L. Bond, “Measurement of the refractive indices of several crystals,” J. Appl. Phys. 36, 1674-1677 (1965).
[CrossRef]

Amin, J.

J. Amin, J. A. Aust, and N. A. Sanford, “Z-propagating waveguide lasers in rare-earth-doped Ti:LiNbO3,” Appl. Phys. Lett. 69, 3785-3787 (1996).
[CrossRef]

Anstett, G.

O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L'Huillier, “Temperature-dependent Sellmeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3,” Appl. Phys. B: Lasers Opt. 86, 111-115 (2007).

Arvidsson, G.

S. Helmfrid, G. Arvidsson, J. Webjorn, M. Linnarsson, and T. Pihl, “Stimulated emission in Er:Ti:LiNbO3 waveguides close to 1.53 μm transition,” Electron. Lett. 27, 913-914 (1991).
[CrossRef]

Aust, J. A.

J. Amin, J. A. Aust, and N. A. Sanford, “Z-propagating waveguide lasers in rare-earth-doped Ti:LiNbO3,” Appl. Phys. Lett. 69, 3785-3787 (1996).
[CrossRef]

Balsamo, S.

Ch. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiberg, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 101-113 (2000).
[CrossRef]

Bartschke, J.

O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L'Huillier, “Temperature-dependent Sellmeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3,” Appl. Phys. B: Lasers Opt. 86, 111-115 (2007).

Bauer, T.

O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L'Huillier, “Temperature-dependent Sellmeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3,” Appl. Phys. B: Lasers Opt. 86, 111-115 (2007).

Becker, Ch.

Ch. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiberg, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 101-113 (2000).
[CrossRef]

Betzler, K.

U. Schlarb and K. Betzler, “Influence of the defect structure on the refractive indices of undoped and Mg-doped lithium niobate,” Phys. Rev. B 50, 751-757 (1994).
[CrossRef]

U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: a generalized fit,” Phys. Rev. B 48, 15613-15620 (1993).
[CrossRef]

Bond, W. L.

W. L. Bond, “Measurement of the refractive indices of several crystals,” J. Appl. Phys. 36, 1674-1677 (1965).
[CrossRef]

Brinkmann, R.

R. Brinkmann, W. Sohler, and H. Suche, “Continuous-wave erbium-diffused LiNbO3 waveguide laser,” Electron. Lett. 27, 415-417 (1991).
[CrossRef]

Bryan, D. A.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44, 847-849 (1984).
[CrossRef]

Cantelar, E.

E. Cantelar, G. A. Torchia, J. A. Sanz-Garcia, P. L. Pernas, G. Lifante, and F. Cusso, “Red, green, and blue simultaneous generation in aperiodically poled Zn-diffused LiNbO3:Er3+/Yb3+ nonlinear channel waveguides,” Appl. Phys. Lett. 83, 2991-2993 (2003).
[CrossRef]

E. Cantelar, J. A. Sanz-García, and F. Cussó, “Growth of LiNbO3 co-doped with Er3+/Yb3+,” J. Cryst. Growth 205, 196-201 (1999).
[CrossRef]

Carenco, A.

S. Miyazawa, R. Guglielmi, and A. Carenco, “A simple technique for suppressing Li2O out-diffusion in Ti:LiNbO3 optical waveguides,” Appl. Phys. Lett. 31, 742-744 (1977).
[CrossRef]

Chen, F.

Cusso, F.

E. Cantelar, G. A. Torchia, J. A. Sanz-Garcia, P. L. Pernas, G. Lifante, and F. Cusso, “Red, green, and blue simultaneous generation in aperiodically poled Zn-diffused LiNbO3:Er3+/Yb3+ nonlinear channel waveguides,” Appl. Phys. Lett. 83, 2991-2993 (2003).
[CrossRef]

Cussó, F.

E. Cantelar, J. A. Sanz-García, and F. Cussó, “Growth of LiNbO3 co-doped with Er3+/Yb3+,” J. Cryst. Growth 205, 196-201 (1999).
[CrossRef]

Das, B. K.

B. K. Das, R. Ricken, V. Quiring, H. Suche, and W. Sohler, “Distributed feedback-distributed Bragg reflector coupled cavity laser with a Ti:(Fe:)Er:LiNbO3 waveguide,” Opt. Lett. 29, 165-167 (2004).
[CrossRef] [PubMed]

B. K. Das, R. Ricken, and W. Sohler, “Integrated optical distributed feedback laser with Ti:Fe:Er:LiNbO3 waveguide,” Appl. Phys. Lett. 83, 1515-1517 (2003).
[CrossRef]

Edwards, G. J.

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373-374 (1984).
[CrossRef]

Edwin, R. P.

D. S. Smith, H. D. Riccius, and R. P. Edwin, “Refractive indices of lithium niobate,” Opt. Commun. 20, 188 (1977) (Errata).

D. S. Smith, H. D. Riccius, and R. P. Edwin, “Refractive indices of lithium niobate,” Opt. Commun. 17, 332-335 (1976).
[CrossRef]

Fu, G.

Furukawa, Y.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77, 2494-2496 (2000).
[CrossRef]

Gerson, R.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44, 847-849 (1984).
[CrossRef]

Grundkotter, W.

G. Schreiber, D. Hofmann, W. Grundkotter, Y. L. Lee, H. Suche, V. Quiring, R. Ricken, and W. Sohler, “Nonlinear integrated optical frequency conversion in periodically poled Ti:LiNbO3 waveguides,” in Proc. SPIE 4277, 144-160 (2001).

Guglielmi, R.

S. Miyazawa, R. Guglielmi, and A. Carenco, “A simple technique for suppressing Li2O out-diffusion in Ti:LiNbO3 optical waveguides,” Appl. Phys. Lett. 31, 742-744 (1977).
[CrossRef]

Helmfrid, S.

S. Helmfrid, G. Arvidsson, J. Webjorn, M. Linnarsson, and T. Pihl, “Stimulated emission in Er:Ti:LiNbO3 waveguides close to 1.53 μm transition,” Electron. Lett. 27, 913-914 (1991).
[CrossRef]

Hofmann, D.

G. Schreiber, D. Hofmann, W. Grundkotter, Y. L. Lee, H. Suche, V. Quiring, R. Ricken, and W. Sohler, “Nonlinear integrated optical frequency conversion in periodically poled Ti:LiNbO3 waveguides,” in Proc. SPIE 4277, 144-160 (2001).

Huang, C. H.

C. H. Huang and L. McCaughan, “980-nm-pumped Er-doped LiNbO3 waveguide amplifiers: a comparison with 1484-nm pumping,” IEEE J. Sel. Top. Quantum Electron. 2, 367-372 (1996).
[CrossRef]

Jin, J.

G. G. Zhong, J. Jin, and Z. K. Wu, “Measurements of optically induced refractive-index damage of lithium niobate doped with different concentrations of MgO,” in 11th International Quantum Electronics Conference, Vol. 70 of OSA Proceedings Series (Optical Society of America, 1980), p. 631.

Jundt, D. H.

Kitamura, K.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77, 2494-2496 (2000).
[CrossRef]

Kovács, L.

Á. Péter, K. Polgár, L. Kovács, and K. Lengyel, “Threshold concentration of MgO in near-stoichiometric LiNbO3 crystals,” J. Cryst. Growth 284, 149-155 (2005).
[CrossRef]

Lawrence, M.

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373-374 (1984).
[CrossRef]

Lee, H. Y.

W. S. Yang, D. H. Yoon, and H. Y. Lee, “Growth and optical properties of Er:MgO:LiNbO3 single crystal by the micro-pulling-down method,” Proc. SPIE 4905, 446-449 (2002).

Lee, Y. L.

G. Schreiber, D. Hofmann, W. Grundkotter, Y. L. Lee, H. Suche, V. Quiring, R. Ricken, and W. Sohler, “Nonlinear integrated optical frequency conversion in periodically poled Ti:LiNbO3 waveguides,” in Proc. SPIE 4277, 144-160 (2001).

Lengyel, K.

Á. Péter, K. Polgár, L. Kovács, and K. Lengyel, “Threshold concentration of MgO in near-stoichiometric LiNbO3 crystals,” J. Cryst. Growth 284, 149-155 (2005).
[CrossRef]

L'Huillier, J. A.

O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L'Huillier, “Temperature-dependent Sellmeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3,” Appl. Phys. B: Lasers Opt. 86, 111-115 (2007).

Li, S. L.

Lifante, G.

E. Cantelar, G. A. Torchia, J. A. Sanz-Garcia, P. L. Pernas, G. Lifante, and F. Cusso, “Red, green, and blue simultaneous generation in aperiodically poled Zn-diffused LiNbO3:Er3+/Yb3+ nonlinear channel waveguides,” Appl. Phys. Lett. 83, 2991-2993 (2003).
[CrossRef]

Lin, W. X.

Linnarsson, M.

S. Helmfrid, G. Arvidsson, J. Webjorn, M. Linnarsson, and T. Pihl, “Stimulated emission in Er:Ti:LiNbO3 waveguides close to 1.53 μm transition,” Electron. Lett. 27, 913-914 (1991).
[CrossRef]

McCaughan, L.

C. H. Huang and L. McCaughan, “980-nm-pumped Er-doped LiNbO3 waveguide amplifiers: a comparison with 1484-nm pumping,” IEEE J. Sel. Top. Quantum Electron. 2, 367-372 (1996).
[CrossRef]

Mikulyak, R. M.

D. F. Nelson and R. M. Mikulyak, “Refractive indices of congruently melting lithium niobate,” J. Appl. Phys. 45, 3688-3689 (1974).
[CrossRef]

Miyamoto, A.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77, 2494-2496 (2000).
[CrossRef]

Miyazawa, S.

S. Miyazawa, R. Guglielmi, and A. Carenco, “A simple technique for suppressing Li2O out-diffusion in Ti:LiNbO3 optical waveguides,” Appl. Phys. Lett. 31, 742-744 (1977).
[CrossRef]

Montrosset, I.

Ch. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiberg, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 101-113 (2000).
[CrossRef]

Nelson, D. F.

D. F. Nelson and R. M. Mikulyak, “Refractive indices of congruently melting lithium niobate,” J. Appl. Phys. 45, 3688-3689 (1974).
[CrossRef]

Nittmann, M.

O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L'Huillier, “Temperature-dependent Sellmeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3,” Appl. Phys. B: Lasers Opt. 86, 111-115 (2007).

Oesselke, T.

Ch. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiberg, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 101-113 (2000).
[CrossRef]

Pandavenes, J.

Ch. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiberg, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 101-113 (2000).
[CrossRef]

Paul, O.

O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L'Huillier, “Temperature-dependent Sellmeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3,” Appl. Phys. B: Lasers Opt. 86, 111-115 (2007).

Pernas, P. L.

E. Cantelar, G. A. Torchia, J. A. Sanz-Garcia, P. L. Pernas, G. Lifante, and F. Cusso, “Red, green, and blue simultaneous generation in aperiodically poled Zn-diffused LiNbO3:Er3+/Yb3+ nonlinear channel waveguides,” Appl. Phys. Lett. 83, 2991-2993 (2003).
[CrossRef]

Péter, Á.

Á. Péter, K. Polgár, L. Kovács, and K. Lengyel, “Threshold concentration of MgO in near-stoichiometric LiNbO3 crystals,” J. Cryst. Growth 284, 149-155 (2005).
[CrossRef]

Pihl, T.

S. Helmfrid, G. Arvidsson, J. Webjorn, M. Linnarsson, and T. Pihl, “Stimulated emission in Er:Ti:LiNbO3 waveguides close to 1.53 μm transition,” Electron. Lett. 27, 913-914 (1991).
[CrossRef]

Polgár, K.

Á. Péter, K. Polgár, L. Kovács, and K. Lengyel, “Threshold concentration of MgO in near-stoichiometric LiNbO3 crystals,” J. Cryst. Growth 284, 149-155 (2005).
[CrossRef]

Quiring, V.

B. K. Das, R. Ricken, V. Quiring, H. Suche, and W. Sohler, “Distributed feedback-distributed Bragg reflector coupled cavity laser with a Ti:(Fe:)Er:LiNbO3 waveguide,” Opt. Lett. 29, 165-167 (2004).
[CrossRef] [PubMed]

G. Schreiber, D. Hofmann, W. Grundkotter, Y. L. Lee, H. Suche, V. Quiring, R. Ricken, and W. Sohler, “Nonlinear integrated optical frequency conversion in periodically poled Ti:LiNbO3 waveguides,” in Proc. SPIE 4277, 144-160 (2001).

Quosig, A.

O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L'Huillier, “Temperature-dependent Sellmeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3,” Appl. Phys. B: Lasers Opt. 86, 111-115 (2007).

Riccius, H. D.

D. S. Smith, H. D. Riccius, and R. P. Edwin, “Refractive indices of lithium niobate,” Opt. Commun. 20, 188 (1977) (Errata).

D. S. Smith, H. D. Riccius, and R. P. Edwin, “Refractive indices of lithium niobate,” Opt. Commun. 17, 332-335 (1976).
[CrossRef]

Ricken, R.

B. K. Das, R. Ricken, V. Quiring, H. Suche, and W. Sohler, “Distributed feedback-distributed Bragg reflector coupled cavity laser with a Ti:(Fe:)Er:LiNbO3 waveguide,” Opt. Lett. 29, 165-167 (2004).
[CrossRef] [PubMed]

B. K. Das, R. Ricken, and W. Sohler, “Integrated optical distributed feedback laser with Ti:Fe:Er:LiNbO3 waveguide,” Appl. Phys. Lett. 83, 1515-1517 (2003).
[CrossRef]

G. Schreiber, D. Hofmann, W. Grundkotter, Y. L. Lee, H. Suche, V. Quiring, R. Ricken, and W. Sohler, “Nonlinear integrated optical frequency conversion in periodically poled Ti:LiNbO3 waveguides,” in Proc. SPIE 4277, 144-160 (2001).

Ch. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiberg, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 101-113 (2000).
[CrossRef]

Rochhausen, K.

Ch. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiberg, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 101-113 (2000).
[CrossRef]

Sanford, N. A.

J. Amin, J. A. Aust, and N. A. Sanford, “Z-propagating waveguide lasers in rare-earth-doped Ti:LiNbO3,” Appl. Phys. Lett. 69, 3785-3787 (1996).
[CrossRef]

Sanz-Garcia, J. A.

E. Cantelar, G. A. Torchia, J. A. Sanz-Garcia, P. L. Pernas, G. Lifante, and F. Cusso, “Red, green, and blue simultaneous generation in aperiodically poled Zn-diffused LiNbO3:Er3+/Yb3+ nonlinear channel waveguides,” Appl. Phys. Lett. 83, 2991-2993 (2003).
[CrossRef]

Sanz-García, J. A.

E. Cantelar, J. A. Sanz-García, and F. Cussó, “Growth of LiNbO3 co-doped with Er3+/Yb3+,” J. Cryst. Growth 205, 196-201 (1999).
[CrossRef]

Schlarb, U.

U. Schlarb and K. Betzler, “Influence of the defect structure on the refractive indices of undoped and Mg-doped lithium niobate,” Phys. Rev. B 50, 751-757 (1994).
[CrossRef]

U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: a generalized fit,” Phys. Rev. B 48, 15613-15620 (1993).
[CrossRef]

Schreiber, G.

G. Schreiber, D. Hofmann, W. Grundkotter, Y. L. Lee, H. Suche, V. Quiring, R. Ricken, and W. Sohler, “Nonlinear integrated optical frequency conversion in periodically poled Ti:LiNbO3 waveguides,” in Proc. SPIE 4277, 144-160 (2001).

Schreiberg, G.

Ch. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiberg, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 101-113 (2000).
[CrossRef]

Sciancalepore, D.

Ch. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiberg, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 101-113 (2000).
[CrossRef]

Shen, H. Y.

Small, D. L.

Smith, D. S.

D. S. Smith, H. D. Riccius, and R. P. Edwin, “Refractive indices of lithium niobate,” Opt. Commun. 20, 188 (1977) (Errata).

D. S. Smith, H. D. Riccius, and R. P. Edwin, “Refractive indices of lithium niobate,” Opt. Commun. 17, 332-335 (1976).
[CrossRef]

Sohler, W.

B. K. Das, R. Ricken, V. Quiring, H. Suche, and W. Sohler, “Distributed feedback-distributed Bragg reflector coupled cavity laser with a Ti:(Fe:)Er:LiNbO3 waveguide,” Opt. Lett. 29, 165-167 (2004).
[CrossRef] [PubMed]

B. K. Das, R. Ricken, and W. Sohler, “Integrated optical distributed feedback laser with Ti:Fe:Er:LiNbO3 waveguide,” Appl. Phys. Lett. 83, 1515-1517 (2003).
[CrossRef]

G. Schreiber, D. Hofmann, W. Grundkotter, Y. L. Lee, H. Suche, V. Quiring, R. Ricken, and W. Sohler, “Nonlinear integrated optical frequency conversion in periodically poled Ti:LiNbO3 waveguides,” in Proc. SPIE 4277, 144-160 (2001).

Ch. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiberg, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 101-113 (2000).
[CrossRef]

W. Sohler and H. Suche, “Erbium-Doped Lithium Niobate Waveguide Lasers,” in Integrated Optical Circuits and Components: Design and Application, E.J.Murphy, ed. (Marcel Dekker, Inc., 1999), Chap. 6, pp. 127-159.

R. Brinkmann, W. Sohler, and H. Suche, “Continuous-wave erbium-diffused LiNbO3 waveguide laser,” Electron. Lett. 27, 415-417 (1991).
[CrossRef]

Suche, H.

B. K. Das, R. Ricken, V. Quiring, H. Suche, and W. Sohler, “Distributed feedback-distributed Bragg reflector coupled cavity laser with a Ti:(Fe:)Er:LiNbO3 waveguide,” Opt. Lett. 29, 165-167 (2004).
[CrossRef] [PubMed]

G. Schreiber, D. Hofmann, W. Grundkotter, Y. L. Lee, H. Suche, V. Quiring, R. Ricken, and W. Sohler, “Nonlinear integrated optical frequency conversion in periodically poled Ti:LiNbO3 waveguides,” in Proc. SPIE 4277, 144-160 (2001).

Ch. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiberg, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 101-113 (2000).
[CrossRef]

W. Sohler and H. Suche, “Erbium-Doped Lithium Niobate Waveguide Lasers,” in Integrated Optical Circuits and Components: Design and Application, E.J.Murphy, ed. (Marcel Dekker, Inc., 1999), Chap. 6, pp. 127-159.

R. Brinkmann, W. Sohler, and H. Suche, “Continuous-wave erbium-diffused LiNbO3 waveguide laser,” Electron. Lett. 27, 415-417 (1991).
[CrossRef]

Suda, N.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77, 2494-2496 (2000).
[CrossRef]

Takekawa, S.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77, 2494-2496 (2000).
[CrossRef]

Terao, M.

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77, 2494-2496 (2000).
[CrossRef]

Tomaschke, H. E.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44, 847-849 (1984).
[CrossRef]

Torchia, G. A.

E. Cantelar, G. A. Torchia, J. A. Sanz-Garcia, P. L. Pernas, G. Lifante, and F. Cusso, “Red, green, and blue simultaneous generation in aperiodically poled Zn-diffused LiNbO3:Er3+/Yb3+ nonlinear channel waveguides,” Appl. Phys. Lett. 83, 2991-2993 (2003).
[CrossRef]

Wang, K. M.

Wang, X. L.

Webjorn, J.

S. Helmfrid, G. Arvidsson, J. Webjorn, M. Linnarsson, and T. Pihl, “Stimulated emission in Er:Ti:LiNbO3 waveguides close to 1.53 μm transition,” Electron. Lett. 27, 913-914 (1991).
[CrossRef]

Wessel, R.

Ch. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiberg, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 101-113 (2000).
[CrossRef]

Wu, R. F.

Wu, Z. K.

G. G. Zhong, J. Jin, and Z. K. Wu, “Measurements of optically induced refractive-index damage of lithium niobate doped with different concentrations of MgO,” in 11th International Quantum Electronics Conference, Vol. 70 of OSA Proceedings Series (Optical Society of America, 1980), p. 631.

Xu, G. F.

Xu, H.

Yang, W. S.

W. S. Yang, D. H. Yoon, and H. Y. Lee, “Growth and optical properties of Er:MgO:LiNbO3 single crystal by the micro-pulling-down method,” Proc. SPIE 4905, 446-449 (2002).

Yoon, D. H.

W. S. Yang, D. H. Yoon, and H. Y. Lee, “Growth and optical properties of Er:MgO:LiNbO3 single crystal by the micro-pulling-down method,” Proc. SPIE 4905, 446-449 (2002).

Zelmon, D. E.

Zeng, Z. D.

Zhong, G. G.

G. G. Zhong, J. Jin, and Z. K. Wu, “Measurements of optically induced refractive-index damage of lithium niobate doped with different concentrations of MgO,” in 11th International Quantum Electronics Conference, Vol. 70 of OSA Proceedings Series (Optical Society of America, 1980), p. 631.

Appl. Opt. (1)

Appl. Phys. B: Lasers Opt. (1)

O. Paul, A. Quosig, T. Bauer, M. Nittmann, J. Bartschke, G. Anstett, and J. A. L'Huillier, “Temperature-dependent Sellmeier equation in the MIR for the extraordinary refractive index of 5% MgO doped congruent LiNbO3,” Appl. Phys. B: Lasers Opt. 86, 111-115 (2007).

Appl. Phys. Lett. (6)

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44, 847-849 (1984).
[CrossRef]

Y. Furukawa, K. Kitamura, S. Takekawa, A. Miyamoto, M. Terao, and N. Suda, “Photorefraction in LiNbO3 as a function of [Li]/[Nb] and MgO concentrations,” Appl. Phys. Lett. 77, 2494-2496 (2000).
[CrossRef]

J. Amin, J. A. Aust, and N. A. Sanford, “Z-propagating waveguide lasers in rare-earth-doped Ti:LiNbO3,” Appl. Phys. Lett. 69, 3785-3787 (1996).
[CrossRef]

E. Cantelar, G. A. Torchia, J. A. Sanz-Garcia, P. L. Pernas, G. Lifante, and F. Cusso, “Red, green, and blue simultaneous generation in aperiodically poled Zn-diffused LiNbO3:Er3+/Yb3+ nonlinear channel waveguides,” Appl. Phys. Lett. 83, 2991-2993 (2003).
[CrossRef]

B. K. Das, R. Ricken, and W. Sohler, “Integrated optical distributed feedback laser with Ti:Fe:Er:LiNbO3 waveguide,” Appl. Phys. Lett. 83, 1515-1517 (2003).
[CrossRef]

S. Miyazawa, R. Guglielmi, and A. Carenco, “A simple technique for suppressing Li2O out-diffusion in Ti:LiNbO3 optical waveguides,” Appl. Phys. Lett. 31, 742-744 (1977).
[CrossRef]

Electron. Lett. (2)

S. Helmfrid, G. Arvidsson, J. Webjorn, M. Linnarsson, and T. Pihl, “Stimulated emission in Er:Ti:LiNbO3 waveguides close to 1.53 μm transition,” Electron. Lett. 27, 913-914 (1991).
[CrossRef]

R. Brinkmann, W. Sohler, and H. Suche, “Continuous-wave erbium-diffused LiNbO3 waveguide laser,” Electron. Lett. 27, 415-417 (1991).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

Ch. Becker, T. Oesselke, J. Pandavenes, R. Ricken, K. Rochhausen, G. Schreiberg, W. Sohler, H. Suche, R. Wessel, S. Balsamo, I. Montrosset, and D. Sciancalepore, “Advanced Ti:Er:LiNbO3 waveguide lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 101-113 (2000).
[CrossRef]

C. H. Huang and L. McCaughan, “980-nm-pumped Er-doped LiNbO3 waveguide amplifiers: a comparison with 1484-nm pumping,” IEEE J. Sel. Top. Quantum Electron. 2, 367-372 (1996).
[CrossRef]

J. Appl. Phys. (2)

D. F. Nelson and R. M. Mikulyak, “Refractive indices of congruently melting lithium niobate,” J. Appl. Phys. 45, 3688-3689 (1974).
[CrossRef]

W. L. Bond, “Measurement of the refractive indices of several crystals,” J. Appl. Phys. 36, 1674-1677 (1965).
[CrossRef]

J. Cryst. Growth (2)

E. Cantelar, J. A. Sanz-García, and F. Cussó, “Growth of LiNbO3 co-doped with Er3+/Yb3+,” J. Cryst. Growth 205, 196-201 (1999).
[CrossRef]

Á. Péter, K. Polgár, L. Kovács, and K. Lengyel, “Threshold concentration of MgO in near-stoichiometric LiNbO3 crystals,” J. Cryst. Growth 284, 149-155 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (2)

D. S. Smith, H. D. Riccius, and R. P. Edwin, “Refractive indices of lithium niobate,” Opt. Commun. 17, 332-335 (1976).
[CrossRef]

D. S. Smith, H. D. Riccius, and R. P. Edwin, “Refractive indices of lithium niobate,” Opt. Commun. 20, 188 (1977) (Errata).

Opt. Express (1)

Opt. Lett. (2)

D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 14, 1553-1555 (1997).
[CrossRef]

B. K. Das, R. Ricken, V. Quiring, H. Suche, and W. Sohler, “Distributed feedback-distributed Bragg reflector coupled cavity laser with a Ti:(Fe:)Er:LiNbO3 waveguide,” Opt. Lett. 29, 165-167 (2004).
[CrossRef] [PubMed]

Opt. Quantum Electron. (1)

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16, 373-374 (1984).
[CrossRef]

Phys. Rev. B (2)

U. Schlarb and K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength, and composition: a generalized fit,” Phys. Rev. B 48, 15613-15620 (1993).
[CrossRef]

U. Schlarb and K. Betzler, “Influence of the defect structure on the refractive indices of undoped and Mg-doped lithium niobate,” Phys. Rev. B 50, 751-757 (1994).
[CrossRef]

Other (6)

W. S. Yang, D. H. Yoon, and H. Y. Lee, “Growth and optical properties of Er:MgO:LiNbO3 single crystal by the micro-pulling-down method,” Proc. SPIE 4905, 446-449 (2002).

G. Schreiber, D. Hofmann, W. Grundkotter, Y. L. Lee, H. Suche, V. Quiring, R. Ricken, and W. Sohler, “Nonlinear integrated optical frequency conversion in periodically poled Ti:LiNbO3 waveguides,” in Proc. SPIE 4277, 144-160 (2001).

G. G. Zhong, J. Jin, and Z. K. Wu, “Measurements of optically induced refractive-index damage of lithium niobate doped with different concentrations of MgO,” in 11th International Quantum Electronics Conference, Vol. 70 of OSA Proceedings Series (Optical Society of America, 1980), p. 631.

W. Sohler and H. Suche, “Erbium-Doped Lithium Niobate Waveguide Lasers,” in Integrated Optical Circuits and Components: Design and Application, E.J.Murphy, ed. (Marcel Dekker, Inc., 1999), Chap. 6, pp. 127-159.

Metricon Corporation, http://www.metricon.com/appli5.htm#anchor480218.

From data sheet of LiNbO3 crystal provided by Crystal Technology, Inc. http://www.crystaltechnology.com/docs/LNopt.pdf.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Dependence of ordinary and extraordinary refractive indices at various wavelengths of Mg Er -codoped congruent Li Nb O 3 crystals on Mg content in crystal. Open circles represent the experimental results. The dotted curves are calculated from the SE reported in [19] and the solid curves are calculated from the corrected SE in this work.

Fig. 2
Fig. 2

Dependence of the ordinary and extraordinary refractive indices at wavelengths of 473, 632.8, and 1536 nm of Er-only doped congruent Li Nb O 3 on the Er doping level in melt.

Fig. 3
Fig. 3

Comparison of dispersion relations predicted by various SEs reported for congruent Mg O ( 5 mol % ) : Li Nb O 3 crystal. The insets show an expanded view in the wavelength region of 450 580 nm , where the index changes swiftly with the wavelength. In the inset in diagram (b) the dotted and dashed curves are completely overlapped.

Tables (3)

Tables Icon

Table 1 Measured or Calculated Ordinary ( n o ) and Extraordinary ( n e ) Refractive Indices (at Room Temperature) of Pure Congruent Li Nb O 3 Crystals at Wavelengths of 473, 632.8, and 1536 nm

Tables Icon

Table 2 Measured or Calculated Ordinary ( n o ) and Extraordinary ( n e ) Refractive Indices (at Room Temperature) of MgO ( 5 mol % ) -doped Congruent Li Nb O 3 Crystal at Wavelengths of 473, 632.8, and 1536 nm

Tables Icon

Table 3 Parameters of SE (1) with Data in Parentheses Showing the Corresponding Parameter Values from [19]

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n i 2 = A i ( c Li , c Mg ) λ i ( T ) 2 λ 2 A I R , i λ 2 + A U V ( i = o , e )
A i ( c Li , c Mg ) = A 0 , i + ( c thr c Mg ) A Nb Li , i + c Mg A Mg , i ,
λ i ( T ) = λ 0 , i + μ 0 , i [ f ( T ) f ( T 0 ) ] ,
f ( T ) = ( T + 273 ) 2 + 4.0238 × 10 5 [ coth ( 261.6 T + 273 ) 1 ] ,

Metrics