Abstract

Micro-Raman spectroscopy was used to study silicone-based hydrogel polymers after being modified by 800nm, 27fs laser pulses from a Ti:sapphire oscillator at 93MHz repetition rate. When the irradiation conditions were below the optical breakdown threshold of the polymers, no significant changes in the Raman spectra and background fluorescence were observed even when refractive index changes as large as +0.06±0.005 were observed. On the other hand, changes in the Raman spectra and fluorescence were easily detected when higher pulse energy was employed to induce visible optical damage in the hydrogel polymers. These results show that a significant refractive index modification, below the optical breakdown threshold in silicone-based hydrogel polymers, can be realized in the absence of any significant change in the Raman spectrum of polymer composition. A thermal model is presented to explain these results. It shows that high-repetition-rate laser pulses cause significant heat accumulation, which can induce additional cross-linking and densification in the polymer network, resulting in locally increased refractive index.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729-1731 (1996).
    [CrossRef] [PubMed]
  2. D. Homoelle, S. Wielandy, A. L. Gaeta, N. F. Borrelli, and C. Smith, “Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses,” Opt. Lett. 24, 1311-1313 (1999).
    [CrossRef]
  3. A. M. Streltsov and N. F. Borrelli, “Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses,” Opt. Lett. 26, 42-43 (2001).
    [CrossRef]
  4. C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26, 93-95 (2001).
    [CrossRef]
  5. K. Minoshima, A. M. Kowalevicz, I. Hartl, E. P. Ippen, and J. G. Fujimoto, “Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator,” Opt. Lett. 26, 1516-1518 (2001).
    [CrossRef]
  6. S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13, 4708-4716 (2005).
    [CrossRef] [PubMed]
  7. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T. H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett. 21, 2023-2025 (1996).
    [CrossRef] [PubMed]
  8. Y. Li, K. Itoh, W. Watanabe, K. Yamada, D. Kuroda, J. Nishii, and Y. Jiang, “Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses,” Opt. Lett. 26, 1912-1914 (2001).
    [CrossRef]
  9. D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys. A 79, 605-612 (2004).
    [CrossRef]
  10. L. Ding, R. Blackwell, J. F. Künzler, and W. H. Knox, “Large refractive index change in silicone-based and non-silicone-based hydrogel polymers induced by femtosecond laser micromachining,” Opt. Express 14, 11901-11909 (2006).
    [CrossRef] [PubMed]
  11. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22, 132-134 (1997).
    [CrossRef] [PubMed]
  12. G. Witzgall, R. Vrigen, E. Yablonovitch, V. Doan, and B. J. Schwartz, “Single-shot two-photon exposure of commercial photoresist for the production of three-dimensional structures,” Opt. Lett. 23, 1745-1747 (1998).
    [CrossRef]
  13. A. Zoubir, C. Lopez, M. Richardson, and K. Richardson, “Femtosecond laser fabrication of tubular waveguides in poly(methyl methacrylate),” Opt. Lett. 29, 1840-1842 (2004).
    [CrossRef] [PubMed]
  14. S. Sowa, W. Watanabe, T. Tamaki, J. Nishii, and K. Itoh, “Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses,” Opt. Express 14, 291-297 (2006).
    [CrossRef] [PubMed]
  15. G. Zhou, M. J. Ventura, M. R. Vanner, and M. Gu, “Use of ultrafast-laser-driven microexplosion for fabricating three-dimensional void-based diamond-lattice photonic crystals in a solid polymer material,” Opt. Lett. 29, 2240-2242 (2004).
    [CrossRef] [PubMed]
  16. D. Day and M. Gu, “Microchannel fabrication in PMMA based on localized heating by nanojoule high repetition rate femtosecond pulses,” Opt. Express 13, 5939-5946 (2005).
    [CrossRef] [PubMed]
  17. C. R. Mendonca, L. R. Cerami, T. Shih, R. W. Tilghman, T. Baldacchini, and E. Mazur, “Femtosecond laser waveguide micromachining of PMMA films with azoaromatic chromophores,” Opt. Express 16, 200-206 (2008).
    [CrossRef] [PubMed]
  18. C. C. S. Karlgard, D. K. Sarkar, L. W. Jones, C. Moresoli, and K. T. Leung, “Drying methods for XPS analysis of PureVisiontrade, Focusreg Night&Daytrade and conventional hydrogel contact lens,” Appl. Surf. Sci. 230, 106-114 (2004).
    [CrossRef]
  19. C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A 76, 351-354 (2003).
    [CrossRef]
  20. A. M. Streltsov and N. F. Borrelli, “Study of femtosecond-laser-written waveguides in glasses,” J. Opt. Soc. Am. B 19, 2496-2504 (2002).
    [CrossRef]
  21. A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81, 1015-1047 (2005).
    [CrossRef]
  22. C. B. Schaffer, N. Nishimura, E. N. Glezer, A. Kim, and E. Mazur, “Dynamic of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express 10, 196-203 (2002).
    [PubMed]
  23. J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett. 26, 1726-1728 (2001).
    [CrossRef]
  24. J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys. A 76, 367-372 (2003).
    [CrossRef]
  25. W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99, 123112 (2006).
    [CrossRef]
  26. B. Yu, B. Chen, X. Y. Yang, J. R. Qiu, X. W. Jiang, C. S. Zhu, and K. Hirao, “Study of crystal formation in borate, niobate, and titanate glasses irradiated by femtosecond laser pulses,” J. Opt. Soc. Am. B 21, 83-87 (2004).
    [CrossRef]
  27. D. K. Y. Low, H. Xie, Z. Xiong, and G. C. Lim, “Femtosecond laser direct writing of embedded optical waveguides in aluminosilicate glass,” Appl. Phys. A 81, 1633-1638 (2005).
    [CrossRef]
  28. B. Zhu, Y. Dai, H. Ma, S. Zhang, G. Lin, and J. Qiu, “Femtosecond laser induced space-selective precipitation of nonlinear optical crystals in rare-earth-doped glasses,” Opt. Express 15, 6069-6074 (2007).
    [CrossRef] [PubMed]
  29. M. S. Amer, M. A. El-Ashry, L. R. Dosser, K. E. Hix, J. F. Maguire, and B. Irwin, “Femtosecond versus nanosecond laser machining: comparison of induced stresses and structural changes in silicon wafers,” Appl. Surf. Sci. 242, 162-167 (2005).
    [CrossRef]
  30. G. J. Lee, J. Park, E. K. Kim, Y. P. Lee, K. M. Kim, H. Cheong, C. S. Yoon, Y. D. Son, and J. Jang, “Microstructure of femtosecond laser-induced grating in amorphous silicon,” Opt. Express 13, 6445-6453 (2005).
    [CrossRef] [PubMed]
  31. A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Ho, and R. Valle, “Direct femtosecond laser writing of waveguides in As2S3 thin films,” Opt. Lett. 29, 748-750 (2004).
    [CrossRef] [PubMed]
  32. S. Kuper, S. Modaressi, and M. Stuke, “Photofragmentation pathways of a PMMA model-compound under UV excimer laser ablation conditions,” J. Phys. Chem. 94, 7514-7518 (1990).
    [CrossRef]
  33. A. Baum, P. J. Scully, M. Basanta, C. L. P. Thomas, P. R. Fielden, N. J. Goddard, W. Perrie, and P. R. Chalker, “Photochemistry of refractive index structures in poly(methyl methacrylate) by femtosecond laser irradiation,” Opt. Lett. 32, 190-192 (2007).
    [CrossRef]
  34. D. Lin-Vien, N. B. Colthup, W. G. Fateley, and J. G. Grasselli, The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules (Academic, 1991).
  35. G. Socrates, Infrared Characteristic Group Frequencies (Wiley, 1997).
  36. C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784-1794 (2001).
    [CrossRef]
  37. K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Cryst. Solids 239, 91-95 (1998).
    [CrossRef]
  38. N. Takeshima, Y. Kuroiwa, Y. Narita, S. Tanaka, and K. Hirao, “Fabrication of a periodic structure with a high refractive-index difference by femtosecond laser pulses,” Opt. Express 12, 4019-4024 (2004).
    [CrossRef] [PubMed]
  39. N. Takeshima, Y. Narita, S. Tanaka, Y. Kuroiwa, and K. Hirao, “Fabrication of high-efficiency diffraction gratings in glass,” Opt. Lett. 30, 352-354 (2005).
    [CrossRef] [PubMed]
  40. Y. Jaluria and K. E. Torrance, Computational Heat Transfer (Taylor & Francis, 2003).
  41. A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100, 038102 (2008).
    [CrossRef] [PubMed]
  42. L. Ding, R. I. Blackwell, J. F. Kunzler, and W. H. Knox, “Femtosecond laser micromachining of waveguides in silicone-based hydrogel polymers,” Appl. Opt. 47, 3100-3108 (2008).
    [CrossRef] [PubMed]
  43. J. S. Koo, P. G. R. Smith, R. B. Williams, C. Riziotis, and M. C. Grossel, “UV written waveguides using crosslinkable PMMA-based copolymers,” Opt. Mater. 23, 583-592 (2003).
    [CrossRef]

2008 (3)

2007 (2)

2006 (3)

2005 (7)

2004 (7)

N. Takeshima, Y. Kuroiwa, Y. Narita, S. Tanaka, and K. Hirao, “Fabrication of a periodic structure with a high refractive-index difference by femtosecond laser pulses,” Opt. Express 12, 4019-4024 (2004).
[CrossRef] [PubMed]

A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Ho, and R. Valle, “Direct femtosecond laser writing of waveguides in As2S3 thin films,” Opt. Lett. 29, 748-750 (2004).
[CrossRef] [PubMed]

G. Zhou, M. J. Ventura, M. R. Vanner, and M. Gu, “Use of ultrafast-laser-driven microexplosion for fabricating three-dimensional void-based diamond-lattice photonic crystals in a solid polymer material,” Opt. Lett. 29, 2240-2242 (2004).
[CrossRef] [PubMed]

B. Yu, B. Chen, X. Y. Yang, J. R. Qiu, X. W. Jiang, C. S. Zhu, and K. Hirao, “Study of crystal formation in borate, niobate, and titanate glasses irradiated by femtosecond laser pulses,” J. Opt. Soc. Am. B 21, 83-87 (2004).
[CrossRef]

D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys. A 79, 605-612 (2004).
[CrossRef]

A. Zoubir, C. Lopez, M. Richardson, and K. Richardson, “Femtosecond laser fabrication of tubular waveguides in poly(methyl methacrylate),” Opt. Lett. 29, 1840-1842 (2004).
[CrossRef] [PubMed]

C. C. S. Karlgard, D. K. Sarkar, L. W. Jones, C. Moresoli, and K. T. Leung, “Drying methods for XPS analysis of PureVisiontrade, Focusreg Night&Daytrade and conventional hydrogel contact lens,” Appl. Surf. Sci. 230, 106-114 (2004).
[CrossRef]

2003 (4)

C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A 76, 351-354 (2003).
[CrossRef]

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys. A 76, 367-372 (2003).
[CrossRef]

J. S. Koo, P. G. R. Smith, R. B. Williams, C. Riziotis, and M. C. Grossel, “UV written waveguides using crosslinkable PMMA-based copolymers,” Opt. Mater. 23, 583-592 (2003).
[CrossRef]

Y. Jaluria and K. E. Torrance, Computational Heat Transfer (Taylor & Francis, 2003).

2002 (2)

2001 (6)

1999 (1)

1998 (2)

1997 (2)

1996 (2)

1991 (1)

D. Lin-Vien, N. B. Colthup, W. G. Fateley, and J. G. Grasselli, The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules (Academic, 1991).

1990 (1)

S. Kuper, S. Modaressi, and M. Stuke, “Photofragmentation pathways of a PMMA model-compound under UV excimer laser ablation conditions,” J. Phys. Chem. 94, 7514-7518 (1990).
[CrossRef]

Amer, M. S.

M. S. Amer, M. A. El-Ashry, L. R. Dosser, K. E. Hix, J. F. Maguire, and B. Irwin, “Femtosecond versus nanosecond laser machining: comparison of induced stresses and structural changes in silicon wafers,” Appl. Surf. Sci. 242, 162-167 (2005).
[CrossRef]

Arai, A.

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99, 123112 (2006).
[CrossRef]

Arai, A. Y.

Baldacchini, T.

Basanta, M.

Baum, A.

Blackwell, R.

Blackwell, R. I.

Borrelli, N. F.

Bovatsek, J.

Brodeur, A.

C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26, 93-95 (2001).
[CrossRef]

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784-1794 (2001).
[CrossRef]

Callan, J. P.

Cerami, L. R.

Chalker, P. R.

Chan, J. W.

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys. A 76, 367-372 (2003).
[CrossRef]

J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett. 26, 1726-1728 (2001).
[CrossRef]

Chen, B.

Cheong, H.

Choi, T. Y.

D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys. A 79, 605-612 (2004).
[CrossRef]

Colthup, N. B.

D. Lin-Vien, N. B. Colthup, W. G. Fateley, and J. G. Grasselli, The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules (Academic, 1991).

Dai, Y.

Davis, K. M.

Day, D.

Ding, L.

Doan, V.

Dosser, L. R.

M. S. Amer, M. A. El-Ashry, L. R. Dosser, K. E. Hix, J. F. Maguire, and B. Irwin, “Femtosecond versus nanosecond laser machining: comparison of induced stresses and structural changes in silicon wafers,” Appl. Surf. Sci. 242, 162-167 (2005).
[CrossRef]

Eaton, S. M.

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99, 123112 (2006).
[CrossRef]

S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13, 4708-4716 (2005).
[CrossRef] [PubMed]

El-Ashry, M. A.

M. S. Amer, M. A. El-Ashry, L. R. Dosser, K. E. Hix, J. F. Maguire, and B. Irwin, “Femtosecond versus nanosecond laser machining: comparison of induced stresses and structural changes in silicon wafers,” Appl. Surf. Sci. 242, 162-167 (2005).
[CrossRef]

Fateley, W. G.

D. Lin-Vien, N. B. Colthup, W. G. Fateley, and J. G. Grasselli, The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules (Academic, 1991).

Fielden, P. R.

Finlay, R. J.

Freidank, S.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100, 038102 (2008).
[CrossRef] [PubMed]

Fujimoto, J. G.

Gaeta, A. L.

Garcia, J. F.

C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A 76, 351-354 (2003).
[CrossRef]

C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26, 93-95 (2001).
[CrossRef]

Glezer, E. N.

Goddard, N. J.

Grasselli, J. G.

D. Lin-Vien, N. B. Colthup, W. G. Fateley, and J. G. Grasselli, The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules (Academic, 1991).

Grigoropoulos, C. P.

D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys. A 79, 605-612 (2004).
[CrossRef]

Grossel, M. C.

J. S. Koo, P. G. R. Smith, R. B. Williams, C. Riziotis, and M. C. Grossel, “UV written waveguides using crosslinkable PMMA-based copolymers,” Opt. Mater. 23, 583-592 (2003).
[CrossRef]

Gu, M.

Hartl, I.

Her, T. H.

Herman, P. R.

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99, 123112 (2006).
[CrossRef]

S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13, 4708-4716 (2005).
[CrossRef] [PubMed]

Hirao, K.

Hix, K. E.

M. S. Amer, M. A. El-Ashry, L. R. Dosser, K. E. Hix, J. F. Maguire, and B. Irwin, “Femtosecond versus nanosecond laser machining: comparison of induced stresses and structural changes in silicon wafers,” Appl. Surf. Sci. 242, 162-167 (2005).
[CrossRef]

Ho, N.

Homoelle, D.

Huang, L.

Huser, T.

Huser, T. R.

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys. A 76, 367-372 (2003).
[CrossRef]

Huttman, G.

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81, 1015-1047 (2005).
[CrossRef]

Hwang, D. J.

D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys. A 79, 605-612 (2004).
[CrossRef]

Ippen, E. P.

Irwin, B.

M. S. Amer, M. A. El-Ashry, L. R. Dosser, K. E. Hix, J. F. Maguire, and B. Irwin, “Femtosecond versus nanosecond laser machining: comparison of induced stresses and structural changes in silicon wafers,” Appl. Surf. Sci. 242, 162-167 (2005).
[CrossRef]

Itoh, K.

Jaluria, Y.

Y. Jaluria and K. E. Torrance, Computational Heat Transfer (Taylor & Francis, 2003).

Jang, J.

Jiang, X. W.

Jiang, Y.

Jones, L. W.

C. C. S. Karlgard, D. K. Sarkar, L. W. Jones, C. Moresoli, and K. T. Leung, “Drying methods for XPS analysis of PureVisiontrade, Focusreg Night&Daytrade and conventional hydrogel contact lens,” Appl. Surf. Sci. 230, 106-114 (2004).
[CrossRef]

Karlgard, C. C. S.

C. C. S. Karlgard, D. K. Sarkar, L. W. Jones, C. Moresoli, and K. T. Leung, “Drying methods for XPS analysis of PureVisiontrade, Focusreg Night&Daytrade and conventional hydrogel contact lens,” Appl. Surf. Sci. 230, 106-114 (2004).
[CrossRef]

Kawata, S.

Kim, A.

Kim, E. K.

Kim, K. M.

Knox, W. H.

Koo, J. S.

J. S. Koo, P. G. R. Smith, R. B. Williams, C. Riziotis, and M. C. Grossel, “UV written waveguides using crosslinkable PMMA-based copolymers,” Opt. Mater. 23, 583-592 (2003).
[CrossRef]

Kowalevicz, A. M.

Krol, D. M.

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99, 123112 (2006).
[CrossRef]

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys. A 76, 367-372 (2003).
[CrossRef]

J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett. 26, 1726-1728 (2001).
[CrossRef]

Kunzler, J. F.

Künzler, J. F.

Kuper, S.

S. Kuper, S. Modaressi, and M. Stuke, “Photofragmentation pathways of a PMMA model-compound under UV excimer laser ablation conditions,” J. Phys. Chem. 94, 7514-7518 (1990).
[CrossRef]

Kuroda, D.

Kuroiwa, Y.

Lee, G. J.

Lee, Y. P.

Leung, K. T.

C. C. S. Karlgard, D. K. Sarkar, L. W. Jones, C. Moresoli, and K. T. Leung, “Drying methods for XPS analysis of PureVisiontrade, Focusreg Night&Daytrade and conventional hydrogel contact lens,” Appl. Surf. Sci. 230, 106-114 (2004).
[CrossRef]

Li, Y.

Lim, G. C.

D. K. Y. Low, H. Xie, Z. Xiong, and G. C. Lim, “Femtosecond laser direct writing of embedded optical waveguides in aluminosilicate glass,” Appl. Phys. A 81, 1633-1638 (2005).
[CrossRef]

Lin, G.

Lin-Vien, D.

D. Lin-Vien, N. B. Colthup, W. G. Fateley, and J. G. Grasselli, The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules (Academic, 1991).

Linz, N.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100, 038102 (2008).
[CrossRef] [PubMed]

Lopez, C.

Low, D. K. Y.

D. K. Y. Low, H. Xie, Z. Xiong, and G. C. Lim, “Femtosecond laser direct writing of embedded optical waveguides in aluminosilicate glass,” Appl. Phys. A 81, 1633-1638 (2005).
[CrossRef]

Ma, H.

Maguire, J. F.

M. S. Amer, M. A. El-Ashry, L. R. Dosser, K. E. Hix, J. F. Maguire, and B. Irwin, “Femtosecond versus nanosecond laser machining: comparison of induced stresses and structural changes in silicon wafers,” Appl. Surf. Sci. 242, 162-167 (2005).
[CrossRef]

Maruo, S.

Mazur, E.

Mendonca, C. R.

Milosavljevic, M.

Minoshima, K.

Miura, K.

K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Cryst. Solids 239, 91-95 (1998).
[CrossRef]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729-1731 (1996).
[CrossRef] [PubMed]

Modaressi, S.

S. Kuper, S. Modaressi, and M. Stuke, “Photofragmentation pathways of a PMMA model-compound under UV excimer laser ablation conditions,” J. Phys. Chem. 94, 7514-7518 (1990).
[CrossRef]

Moresoli, C.

C. C. S. Karlgard, D. K. Sarkar, L. W. Jones, C. Moresoli, and K. T. Leung, “Drying methods for XPS analysis of PureVisiontrade, Focusreg Night&Daytrade and conventional hydrogel contact lens,” Appl. Surf. Sci. 230, 106-114 (2004).
[CrossRef]

Nakamura, O.

Narita, Y.

Nishii, J.

Nishimura, N.

Noack, J.

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81, 1015-1047 (2005).
[CrossRef]

Paltauf, G.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100, 038102 (2008).
[CrossRef] [PubMed]

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81, 1015-1047 (2005).
[CrossRef]

Park, J.

Perrie, W.

Qiu, J.

Qiu, J. R.

Reichman, W. J.

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99, 123112 (2006).
[CrossRef]

Richardson, K.

Richardson, M.

Risbud, S.

Risbud, S. H.

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys. A 76, 367-372 (2003).
[CrossRef]

Rivero, C.

Riziotis, C.

J. S. Koo, P. G. R. Smith, R. B. Williams, C. Riziotis, and M. C. Grossel, “UV written waveguides using crosslinkable PMMA-based copolymers,” Opt. Mater. 23, 583-592 (2003).
[CrossRef]

Sarkar, D. K.

C. C. S. Karlgard, D. K. Sarkar, L. W. Jones, C. Moresoli, and K. T. Leung, “Drying methods for XPS analysis of PureVisiontrade, Focusreg Night&Daytrade and conventional hydrogel contact lens,” Appl. Surf. Sci. 230, 106-114 (2004).
[CrossRef]

Schaffer, C. B.

C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A 76, 351-354 (2003).
[CrossRef]

C. B. Schaffer, N. Nishimura, E. N. Glezer, A. Kim, and E. Mazur, “Dynamic of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express 10, 196-203 (2002).
[PubMed]

C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26, 93-95 (2001).
[CrossRef]

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784-1794 (2001).
[CrossRef]

Schulte, A.

Schwartz, B. J.

Scully, P. J.

Shah, L.

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99, 123112 (2006).
[CrossRef]

S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13, 4708-4716 (2005).
[CrossRef] [PubMed]

Shih, T.

Smith, C.

Smith, P. G. R.

J. S. Koo, P. G. R. Smith, R. B. Williams, C. Riziotis, and M. C. Grossel, “UV written waveguides using crosslinkable PMMA-based copolymers,” Opt. Mater. 23, 583-592 (2003).
[CrossRef]

Socrates, G.

G. Socrates, Infrared Characteristic Group Frequencies (Wiley, 1997).

Son, Y. D.

Sowa, S.

Streltsov, A. M.

Stuke, M.

S. Kuper, S. Modaressi, and M. Stuke, “Photofragmentation pathways of a PMMA model-compound under UV excimer laser ablation conditions,” J. Phys. Chem. 94, 7514-7518 (1990).
[CrossRef]

Sugimoto, N.

Takeshima, N.

Tamaki, T.

Tanaka, S.

Thomas, C. L. P.

Tilghman, R. W.

Torrance, K. E.

Y. Jaluria and K. E. Torrance, Computational Heat Transfer (Taylor & Francis, 2003).

Valle, R.

Vanner, M. R.

Ventura, M. J.

Vogel, A.

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100, 038102 (2008).
[CrossRef] [PubMed]

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81, 1015-1047 (2005).
[CrossRef]

Vrigen, R.

Watanabe, W.

Wielandy, S.

Williams, R. B.

J. S. Koo, P. G. R. Smith, R. B. Williams, C. Riziotis, and M. C. Grossel, “UV written waveguides using crosslinkable PMMA-based copolymers,” Opt. Mater. 23, 583-592 (2003).
[CrossRef]

Witzgall, G.

Xie, H.

D. K. Y. Low, H. Xie, Z. Xiong, and G. C. Lim, “Femtosecond laser direct writing of embedded optical waveguides in aluminosilicate glass,” Appl. Phys. A 81, 1633-1638 (2005).
[CrossRef]

Xiong, Z.

D. K. Y. Low, H. Xie, Z. Xiong, and G. C. Lim, “Femtosecond laser direct writing of embedded optical waveguides in aluminosilicate glass,” Appl. Phys. A 81, 1633-1638 (2005).
[CrossRef]

Yablonovitch, E.

Yamada, K.

Yang, X. Y.

Yoon, C. S.

Yoshino, F.

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99, 123112 (2006).
[CrossRef]

S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13, 4708-4716 (2005).
[CrossRef] [PubMed]

Yu, B.

Zhang, H.

Zhang, S.

Zhou, G.

Zhu, B.

Zhu, C. S.

Zoubir, A.

Appl. Opt. (1)

Appl. Phys. A (4)

D. J. Hwang, T. Y. Choi, and C. P. Grigoropoulos, “Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass,” Appl. Phys. A 79, 605-612 (2004).
[CrossRef]

C. B. Schaffer, J. F. Garcia, and E. Mazur, “Bulk heating of transparent materials using a high-repetition-rate femtosecond laser,” Appl. Phys. A 76, 351-354 (2003).
[CrossRef]

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys. A 76, 367-372 (2003).
[CrossRef]

D. K. Y. Low, H. Xie, Z. Xiong, and G. C. Lim, “Femtosecond laser direct writing of embedded optical waveguides in aluminosilicate glass,” Appl. Phys. A 81, 1633-1638 (2005).
[CrossRef]

Appl. Phys. B (1)

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81, 1015-1047 (2005).
[CrossRef]

Appl. Surf. Sci. (2)

M. S. Amer, M. A. El-Ashry, L. R. Dosser, K. E. Hix, J. F. Maguire, and B. Irwin, “Femtosecond versus nanosecond laser machining: comparison of induced stresses and structural changes in silicon wafers,” Appl. Surf. Sci. 242, 162-167 (2005).
[CrossRef]

C. C. S. Karlgard, D. K. Sarkar, L. W. Jones, C. Moresoli, and K. T. Leung, “Drying methods for XPS analysis of PureVisiontrade, Focusreg Night&Daytrade and conventional hydrogel contact lens,” Appl. Surf. Sci. 230, 106-114 (2004).
[CrossRef]

J. Appl. Phys. (1)

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99, 123112 (2006).
[CrossRef]

J. Non-Cryst. Solids (1)

K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Cryst. Solids 239, 91-95 (1998).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. (1)

S. Kuper, S. Modaressi, and M. Stuke, “Photofragmentation pathways of a PMMA model-compound under UV excimer laser ablation conditions,” J. Phys. Chem. 94, 7514-7518 (1990).
[CrossRef]

Meas. Sci. Technol. (1)

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784-1794 (2001).
[CrossRef]

Opt. Express (9)

N. Takeshima, Y. Kuroiwa, Y. Narita, S. Tanaka, and K. Hirao, “Fabrication of a periodic structure with a high refractive-index difference by femtosecond laser pulses,” Opt. Express 12, 4019-4024 (2004).
[CrossRef] [PubMed]

C. B. Schaffer, N. Nishimura, E. N. Glezer, A. Kim, and E. Mazur, “Dynamic of femtosecond laser-induced breakdown in water from femtoseconds to microseconds,” Opt. Express 10, 196-203 (2002).
[PubMed]

G. J. Lee, J. Park, E. K. Kim, Y. P. Lee, K. M. Kim, H. Cheong, C. S. Yoon, Y. D. Son, and J. Jang, “Microstructure of femtosecond laser-induced grating in amorphous silicon,” Opt. Express 13, 6445-6453 (2005).
[CrossRef] [PubMed]

B. Zhu, Y. Dai, H. Ma, S. Zhang, G. Lin, and J. Qiu, “Femtosecond laser induced space-selective precipitation of nonlinear optical crystals in rare-earth-doped glasses,” Opt. Express 15, 6069-6074 (2007).
[CrossRef] [PubMed]

D. Day and M. Gu, “Microchannel fabrication in PMMA based on localized heating by nanojoule high repetition rate femtosecond pulses,” Opt. Express 13, 5939-5946 (2005).
[CrossRef] [PubMed]

C. R. Mendonca, L. R. Cerami, T. Shih, R. W. Tilghman, T. Baldacchini, and E. Mazur, “Femtosecond laser waveguide micromachining of PMMA films with azoaromatic chromophores,” Opt. Express 16, 200-206 (2008).
[CrossRef] [PubMed]

S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13, 4708-4716 (2005).
[CrossRef] [PubMed]

S. Sowa, W. Watanabe, T. Tamaki, J. Nishii, and K. Itoh, “Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses,” Opt. Express 14, 291-297 (2006).
[CrossRef] [PubMed]

L. Ding, R. Blackwell, J. F. Künzler, and W. H. Knox, “Large refractive index change in silicone-based and non-silicone-based hydrogel polymers induced by femtosecond laser micromachining,” Opt. Express 14, 11901-11909 (2006).
[CrossRef] [PubMed]

Opt. Lett. (15)

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22, 132-134 (1997).
[CrossRef] [PubMed]

G. Witzgall, R. Vrigen, E. Yablonovitch, V. Doan, and B. J. Schwartz, “Single-shot two-photon exposure of commercial photoresist for the production of three-dimensional structures,” Opt. Lett. 23, 1745-1747 (1998).
[CrossRef]

A. Zoubir, C. Lopez, M. Richardson, and K. Richardson, “Femtosecond laser fabrication of tubular waveguides in poly(methyl methacrylate),” Opt. Lett. 29, 1840-1842 (2004).
[CrossRef] [PubMed]

K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, “Writing waveguides in glass with a femtosecond laser,” Opt. Lett. 21, 1729-1731 (1996).
[CrossRef] [PubMed]

D. Homoelle, S. Wielandy, A. L. Gaeta, N. F. Borrelli, and C. Smith, “Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses,” Opt. Lett. 24, 1311-1313 (1999).
[CrossRef]

A. M. Streltsov and N. F. Borrelli, “Fabrication and analysis of a directional coupler written in glass by nanojoule femtosecond laser pulses,” Opt. Lett. 26, 42-43 (2001).
[CrossRef]

C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, “Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy,” Opt. Lett. 26, 93-95 (2001).
[CrossRef]

K. Minoshima, A. M. Kowalevicz, I. Hartl, E. P. Ippen, and J. G. Fujimoto, “Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator,” Opt. Lett. 26, 1516-1518 (2001).
[CrossRef]

G. Zhou, M. J. Ventura, M. R. Vanner, and M. Gu, “Use of ultrafast-laser-driven microexplosion for fabricating three-dimensional void-based diamond-lattice photonic crystals in a solid polymer material,” Opt. Lett. 29, 2240-2242 (2004).
[CrossRef] [PubMed]

E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T. H. Her, J. P. Callan, and E. Mazur, “Three-dimensional optical storage inside transparent materials,” Opt. Lett. 21, 2023-2025 (1996).
[CrossRef] [PubMed]

Y. Li, K. Itoh, W. Watanabe, K. Yamada, D. Kuroda, J. Nishii, and Y. Jiang, “Three-dimensional hole drilling of silica glass from the rear surface with femtosecond laser pulses,” Opt. Lett. 26, 1912-1914 (2001).
[CrossRef]

A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Ho, and R. Valle, “Direct femtosecond laser writing of waveguides in As2S3 thin films,” Opt. Lett. 29, 748-750 (2004).
[CrossRef] [PubMed]

J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett. 26, 1726-1728 (2001).
[CrossRef]

N. Takeshima, Y. Narita, S. Tanaka, Y. Kuroiwa, and K. Hirao, “Fabrication of high-efficiency diffraction gratings in glass,” Opt. Lett. 30, 352-354 (2005).
[CrossRef] [PubMed]

A. Baum, P. J. Scully, M. Basanta, C. L. P. Thomas, P. R. Fielden, N. J. Goddard, W. Perrie, and P. R. Chalker, “Photochemistry of refractive index structures in poly(methyl methacrylate) by femtosecond laser irradiation,” Opt. Lett. 32, 190-192 (2007).
[CrossRef]

Opt. Mater. (1)

J. S. Koo, P. G. R. Smith, R. B. Williams, C. Riziotis, and M. C. Grossel, “UV written waveguides using crosslinkable PMMA-based copolymers,” Opt. Mater. 23, 583-592 (2003).
[CrossRef]

Phys. Rev. Lett. (1)

A. Vogel, N. Linz, S. Freidank, and G. Paltauf, “Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery,” Phys. Rev. Lett. 100, 038102 (2008).
[CrossRef] [PubMed]

Other (3)

D. Lin-Vien, N. B. Colthup, W. G. Fateley, and J. G. Grasselli, The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules (Academic, 1991).

G. Socrates, Infrared Characteristic Group Frequencies (Wiley, 1997).

Y. Jaluria and K. E. Torrance, Computational Heat Transfer (Taylor & Francis, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Molecular structures of two major monomers polymerized in Balafilcon A, the TPVC (left-hand side) and NVP (right-hand side)

Fig. 2
Fig. 2

(a) DIC image of laser modified lines on the surface of Balafilcon A. Several Raman spectra were taken along the dashed line. (b) Confocal luminescence image of these lines (the wavelength detection window is 695 705 nm ).

Fig. 3
Fig. 3

One typical Raman spectrum of BBS solution indicates a broad fluorescence band without any obvious Raman peaks within the spectrum region from 500 to 3000 cm 1 .

Fig. 4
Fig. 4

(a) Raman spectra of the bulk Balafilcon A hydrogel in BBS solution with fluorescence background. (b) Raman spectra of the femtosecond laser modified refractive-index-change region with fluorescence background. (c) Raman spectra of the bulk region with baseline correction (removal of broad features), the inset is the cross section of the two modified lines in hydrogel while the confocal focus for the Raman signal measurement locates in the bulk. (d) Raman spectra of the machined region with background correction, the inset shows the confocal laser focus locates inside the machined line to detect its Raman spectra.

Fig. 5
Fig. 5

Bright field image of a damage spot in Balafilcon A with high femtosecond laser irradiance. Raman spectra of four points of the damage spot from its periphery (point 1) to its center (point 4) were measured.

Fig. 6
Fig. 6

(a)–(d) Raman spectra of the femtosecond laser modified regions from the periphery (point 1) to the center (point 4) of a damage spot. The acquisition time was 60 s for (a)–(c) and 10 s for (d). (e) shows the relative intensities of the Raman spectra at these four points.

Fig. 7
Fig. 7

Temperature increase at the laser focus induced by 800 nm , 27 fs laser pulses in water. The 93 MHz pulse train used in our experiment can create as high as a 150 ° C temperature increase. In the contrast, a 10 MHz pulse train can only provide about a 20 ° C temperature increase at the laser focus.

Fig. 8
Fig. 8

Refractive index changes of the hydrogel polymers as a function of laser scanning speed.

Fig. 9
Fig. 9

(a) Phase contrast image of damage lines micromachined by the femtosecond laser pulses inside a Balafilcon A elastomer sample containing no water. The same laser exposure conditions were employed, but the scanning speed was set to be much faster ( 50 μ m s ) to avoid gross damages and burning. (b) Bright field image of the damaged lines.

Tables (1)

Tables Icon

Table 1 Raman Assignments for the PV (Balafilcon A) Hydrogel [34, 35]

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

c p ρ t Δ T ( r , t ) k 2 Δ T ( r , t ) = 0 ,

Metrics