Abstract

We theoretically investigate the temporal dynamics of nuclear spin induced by short laser pulses. To realize ultrafast nuclear spin polarization, we coherently excite the hyperfine manifolds and let it evolve in time. An appropriate choice of the state with large hyperfine splittings allows us to realize ultrafast nuclear spin polarization. As specific examples, we consider the various isotopes of Mg and Ca with different values of nuclear spin (12, 32, 52, and 72) and show that 89%, 76%, 49%, and 36% of nuclear spin polarization can be achieved, respectively, within a few nanoseconds, which is at least 2 to 3 orders of magnitude shorter than the time needed for any known optical methods. Because of its ultrafast nature, our scheme would be very effective not only for stable nuclei but also unstable nuclei with a lifetime as short as 1 μs.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Kessler, Polarized Electrons, 2nd Ed., (Springer-Verlag, 1985).
  2. T. Maruyama, E. L. Garwin, R. Prepost, G. H. Zapalac, J. S. Smith, and J. D. Walker, “Observation of strain-enhanced electron-spin polarization in photoemission from InGaAs,” Phys. Rev. Lett. 66, 2376-2379 (1991).
    [CrossRef] [PubMed]
  3. T. Nakanishi, H. Aoyagi, H. Horinaka, Y. Kamiya, T. Kato, S. Nakamura, T. Saka, and M. Tsubata, “Large enhancement of spin polarization observed by photoelectrons from a strained GaAs layer,” Phys. Lett. A 158, 345-349 (1991).
    [CrossRef]
  4. D. Fick, G. Grawert, and I. M. Turkiewicz, “Nuclear physics with polarized heavy ions,” Phys. Rep. 214, 1-111 (1992).
    [CrossRef]
  5. N. B. Delone, B. A. Zon, and M. V. Fedorov, “Polarization of nuclei in resonance ionization of atoms,” Sov. Phys. JETP 49, 255 (1979).
  6. J. T. Cusma and L. W. Anderson, “Polarization of an atomic sodium beam by laser optical pumping,” Phys. Rev. A 28, 1195-1197 (1983).
    [CrossRef]
  7. G. D. Cates, D. R. Benton, M. Gatzke, W. Happer, K. C. Hasson, and N. R. Newbury, “Laser production of large nuclear-spin polarization in frozen xenon,” Phys. Rev. Lett. 65, 2591-2594 (1990).
    [CrossRef] [PubMed]
  8. H. Reich and H. J. Jänsch, “Nuclear spin polarized alkali beams (Na,Li): Optical pumping with electro-optically modulated laser beam,” Nucl. Instrum. Methods Phys. Res. A 288, 349-353 (1990).
    [CrossRef]
  9. A. N. Zelenskii, K. Jayamanna, C. D. P. Levy, M. McDonald, R. Ruegg, and P. W. Schmor, “Optimization studies of proton polarization in the TRIUMF optically pumped polarized H− ion source,” Nucl. Instrum. Methods Phys. Res. A 334, 285-293 (1993).
    [CrossRef]
  10. C. D. P. Levy, R. Baartman, J. A. Behr, R. F. Kiefl, M. Pearson, R. Poutissou, A. Hatakeyama, and Y. Hirayama, “The collinear laser beam line at ISAC,” Nucl. Phys. A 746, 206C-209C (2004).
    [CrossRef]
  11. T. Nakajima and N. Yonekura, “Electron spin-polarized alkaline-earth ions produced by multiphoton ionization,” J. Chem. Phys. 117, 2112-2119 (2002).
    [CrossRef]
  12. T. Nakajima, N. Yonekura, Y. Matsuo, T. Kobayashi, and Y. Fukuyama, “Simultaneous production of spin-polarized ions/electrons based on two-photon ionization of laser-ablated metallic atoms,” Appl. Phys. Lett. 83, 2103-2105 (2003).
    [CrossRef]
  13. N. Yonekura, T. Nakajima, Y. Matsuo, T. Kobayashi, and Y. Fukuyama, “Electron-spin polarization of photoions produced through photoionization from the laser-excited triplet state of Sr,” J. Chem. Phys. 120, 1806-1812 (2004).
    [CrossRef] [PubMed]
  14. E. Sokell, S. Zamith, M. A. Bouchene, and B. Girard, “Polarization-dependent pump-probe studies in atomic fine-structure levels: towards the production of spin-polarized electrons,” J. Phys. B 33, 2005-2015 (2000).
    [CrossRef]
  15. M. A. Bouchene, S. Zamith, and B. Girard, “Spin-polarized electrons produced by a sequence of two femtosecond pulses. Calculation of differential and global polarization rates,” J. Phys. B 34, 1497-1512 (2001).
    [CrossRef]
  16. T. Nakajima, “Control of the spin-polarization of photoelectrons/photoions using short laser pulses,” Appl. Phys. Lett. 84, 3786-3788 (2004).
    [CrossRef]
  17. T. Nakajima, “Effects of laser intensity and applied electric field on coherent control of spin polarization by short laser pulses,” Appl. Phys. Lett. 88, 111105 (2006).
    [CrossRef]
  18. T. Nakajima, Y. Matsuo, and T. Kobayashi, “All-optical control and direct detection of ultrafast spin polarization in a multi-valence-electron system,” Phys. Rev. A 77, 063404 (2008).
    [CrossRef]
  19. D. J. Tannor and S. A. Rice, “Control of selectivity of chemical-reaction via control of wave packet evolution,” J. Chem. Phys. 83, 5013-5018 (1985).
    [CrossRef]
  20. H. J. Andra, H. J. Plohn, A. Gaupp, and R. Frohling, “Nuclear-spin polarization produced by ion-beam-surface-interaction, its optical detection and use in an atomic quantum-beat experiment,” Z. Phys. A 281, 15-20 (1977).
    [CrossRef]
  21. C. Fabre, M. Gross, and S. Haroche, “Determination by quantum beat spectroscopy of fine-structure intervals in a series of highly excited sodium D states,” Opt. Commun. 13, 393 (1975).
    [CrossRef]
  22. J. S. Deech, R. Luypaert, and G. W. Series, “Determination of lifetimes and hyperfine structures of 8, 9 and 10 D3/22 states of Cs133 by quantum-beat spectroscopy,” J. Phys. B 8, 1406-1414 (1975).
    [CrossRef]
  23. T. Nakajima, “Investigation of ultrafast nuclear spin polarization induced by short laser pulses,” Phys. Rev. Lett. 99, 024801 (2007).
    [CrossRef] [PubMed]
  24. M. E. Hayden and E. W. Otten, “Comment on 'Investigation of ultrafast nuclear spin polarization induced by short laser pulses',” Phys. Rev. Lett. 101, 189501 (2008).
    [CrossRef] [PubMed]
  25. T. Nakajima, “Nakajima replies,” Phys. Rev. Lett. 101, 189502 (2008).
    [CrossRef]
  26. R. D. Cowan, The Theory of Atomic Structure and Spectra, (U. California Press, 1981).
  27. A. Lurio, “Hyerpfine structure of the P3 states of Zn67 and Mg25,” Phys. Rev. 126, 1768-1773 (1962).
    [CrossRef]
  28. G. Olsson and S. Salomonson, “Analysis of the hyperfine structure of the 4s4p configuration in Ca and the nuclear quadrupole moment of Ca43,” Z. Phys. A 307, 99-107 (1982).
    [CrossRef]
  29. A. Mortensen, J. J. T. Lindballe, I. S. Jensen, P. Staanum, D. Voigt, and M. Drewsen, “Isotope shifts of the 4s2S01-->4s5P11 transition and hyperfine splitting of the 4s5pP11 state in calcium,” Phys. Rev. A 69, 042502 (2004).
    [CrossRef]
  30. T. Nakajima and G. Buica, “Above-threshold ionization of Mg by linearly and circularly polarized laser pulses: Origin of the subpeaks in the photoelectron energy spectra,” Phys. Rev. A 74, 023411 (2006).
    [CrossRef]

2008

T. Nakajima, Y. Matsuo, and T. Kobayashi, “All-optical control and direct detection of ultrafast spin polarization in a multi-valence-electron system,” Phys. Rev. A 77, 063404 (2008).
[CrossRef]

M. E. Hayden and E. W. Otten, “Comment on 'Investigation of ultrafast nuclear spin polarization induced by short laser pulses',” Phys. Rev. Lett. 101, 189501 (2008).
[CrossRef] [PubMed]

T. Nakajima, “Nakajima replies,” Phys. Rev. Lett. 101, 189502 (2008).
[CrossRef]

2007

T. Nakajima, “Investigation of ultrafast nuclear spin polarization induced by short laser pulses,” Phys. Rev. Lett. 99, 024801 (2007).
[CrossRef] [PubMed]

2006

T. Nakajima, “Effects of laser intensity and applied electric field on coherent control of spin polarization by short laser pulses,” Appl. Phys. Lett. 88, 111105 (2006).
[CrossRef]

T. Nakajima and G. Buica, “Above-threshold ionization of Mg by linearly and circularly polarized laser pulses: Origin of the subpeaks in the photoelectron energy spectra,” Phys. Rev. A 74, 023411 (2006).
[CrossRef]

2004

A. Mortensen, J. J. T. Lindballe, I. S. Jensen, P. Staanum, D. Voigt, and M. Drewsen, “Isotope shifts of the 4s2S01-->4s5P11 transition and hyperfine splitting of the 4s5pP11 state in calcium,” Phys. Rev. A 69, 042502 (2004).
[CrossRef]

C. D. P. Levy, R. Baartman, J. A. Behr, R. F. Kiefl, M. Pearson, R. Poutissou, A. Hatakeyama, and Y. Hirayama, “The collinear laser beam line at ISAC,” Nucl. Phys. A 746, 206C-209C (2004).
[CrossRef]

N. Yonekura, T. Nakajima, Y. Matsuo, T. Kobayashi, and Y. Fukuyama, “Electron-spin polarization of photoions produced through photoionization from the laser-excited triplet state of Sr,” J. Chem. Phys. 120, 1806-1812 (2004).
[CrossRef] [PubMed]

T. Nakajima, “Control of the spin-polarization of photoelectrons/photoions using short laser pulses,” Appl. Phys. Lett. 84, 3786-3788 (2004).
[CrossRef]

2003

T. Nakajima, N. Yonekura, Y. Matsuo, T. Kobayashi, and Y. Fukuyama, “Simultaneous production of spin-polarized ions/electrons based on two-photon ionization of laser-ablated metallic atoms,” Appl. Phys. Lett. 83, 2103-2105 (2003).
[CrossRef]

2002

T. Nakajima and N. Yonekura, “Electron spin-polarized alkaline-earth ions produced by multiphoton ionization,” J. Chem. Phys. 117, 2112-2119 (2002).
[CrossRef]

2001

M. A. Bouchene, S. Zamith, and B. Girard, “Spin-polarized electrons produced by a sequence of two femtosecond pulses. Calculation of differential and global polarization rates,” J. Phys. B 34, 1497-1512 (2001).
[CrossRef]

2000

E. Sokell, S. Zamith, M. A. Bouchene, and B. Girard, “Polarization-dependent pump-probe studies in atomic fine-structure levels: towards the production of spin-polarized electrons,” J. Phys. B 33, 2005-2015 (2000).
[CrossRef]

1993

A. N. Zelenskii, K. Jayamanna, C. D. P. Levy, M. McDonald, R. Ruegg, and P. W. Schmor, “Optimization studies of proton polarization in the TRIUMF optically pumped polarized H− ion source,” Nucl. Instrum. Methods Phys. Res. A 334, 285-293 (1993).
[CrossRef]

1992

D. Fick, G. Grawert, and I. M. Turkiewicz, “Nuclear physics with polarized heavy ions,” Phys. Rep. 214, 1-111 (1992).
[CrossRef]

1991

T. Maruyama, E. L. Garwin, R. Prepost, G. H. Zapalac, J. S. Smith, and J. D. Walker, “Observation of strain-enhanced electron-spin polarization in photoemission from InGaAs,” Phys. Rev. Lett. 66, 2376-2379 (1991).
[CrossRef] [PubMed]

T. Nakanishi, H. Aoyagi, H. Horinaka, Y. Kamiya, T. Kato, S. Nakamura, T. Saka, and M. Tsubata, “Large enhancement of spin polarization observed by photoelectrons from a strained GaAs layer,” Phys. Lett. A 158, 345-349 (1991).
[CrossRef]

1990

G. D. Cates, D. R. Benton, M. Gatzke, W. Happer, K. C. Hasson, and N. R. Newbury, “Laser production of large nuclear-spin polarization in frozen xenon,” Phys. Rev. Lett. 65, 2591-2594 (1990).
[CrossRef] [PubMed]

H. Reich and H. J. Jänsch, “Nuclear spin polarized alkali beams (Na,Li): Optical pumping with electro-optically modulated laser beam,” Nucl. Instrum. Methods Phys. Res. A 288, 349-353 (1990).
[CrossRef]

1985

J. Kessler, Polarized Electrons, 2nd Ed., (Springer-Verlag, 1985).

D. J. Tannor and S. A. Rice, “Control of selectivity of chemical-reaction via control of wave packet evolution,” J. Chem. Phys. 83, 5013-5018 (1985).
[CrossRef]

1983

J. T. Cusma and L. W. Anderson, “Polarization of an atomic sodium beam by laser optical pumping,” Phys. Rev. A 28, 1195-1197 (1983).
[CrossRef]

1982

G. Olsson and S. Salomonson, “Analysis of the hyperfine structure of the 4s4p configuration in Ca and the nuclear quadrupole moment of Ca43,” Z. Phys. A 307, 99-107 (1982).
[CrossRef]

1981

R. D. Cowan, The Theory of Atomic Structure and Spectra, (U. California Press, 1981).

1979

N. B. Delone, B. A. Zon, and M. V. Fedorov, “Polarization of nuclei in resonance ionization of atoms,” Sov. Phys. JETP 49, 255 (1979).

1977

H. J. Andra, H. J. Plohn, A. Gaupp, and R. Frohling, “Nuclear-spin polarization produced by ion-beam-surface-interaction, its optical detection and use in an atomic quantum-beat experiment,” Z. Phys. A 281, 15-20 (1977).
[CrossRef]

1975

C. Fabre, M. Gross, and S. Haroche, “Determination by quantum beat spectroscopy of fine-structure intervals in a series of highly excited sodium D states,” Opt. Commun. 13, 393 (1975).
[CrossRef]

J. S. Deech, R. Luypaert, and G. W. Series, “Determination of lifetimes and hyperfine structures of 8, 9 and 10 D3/22 states of Cs133 by quantum-beat spectroscopy,” J. Phys. B 8, 1406-1414 (1975).
[CrossRef]

1962

A. Lurio, “Hyerpfine structure of the P3 states of Zn67 and Mg25,” Phys. Rev. 126, 1768-1773 (1962).
[CrossRef]

Anderson, L. W.

J. T. Cusma and L. W. Anderson, “Polarization of an atomic sodium beam by laser optical pumping,” Phys. Rev. A 28, 1195-1197 (1983).
[CrossRef]

Andra, H. J.

H. J. Andra, H. J. Plohn, A. Gaupp, and R. Frohling, “Nuclear-spin polarization produced by ion-beam-surface-interaction, its optical detection and use in an atomic quantum-beat experiment,” Z. Phys. A 281, 15-20 (1977).
[CrossRef]

Aoyagi, H.

T. Nakanishi, H. Aoyagi, H. Horinaka, Y. Kamiya, T. Kato, S. Nakamura, T. Saka, and M. Tsubata, “Large enhancement of spin polarization observed by photoelectrons from a strained GaAs layer,” Phys. Lett. A 158, 345-349 (1991).
[CrossRef]

Baartman, R.

C. D. P. Levy, R. Baartman, J. A. Behr, R. F. Kiefl, M. Pearson, R. Poutissou, A. Hatakeyama, and Y. Hirayama, “The collinear laser beam line at ISAC,” Nucl. Phys. A 746, 206C-209C (2004).
[CrossRef]

Behr, J. A.

C. D. P. Levy, R. Baartman, J. A. Behr, R. F. Kiefl, M. Pearson, R. Poutissou, A. Hatakeyama, and Y. Hirayama, “The collinear laser beam line at ISAC,” Nucl. Phys. A 746, 206C-209C (2004).
[CrossRef]

Benton, D. R.

G. D. Cates, D. R. Benton, M. Gatzke, W. Happer, K. C. Hasson, and N. R. Newbury, “Laser production of large nuclear-spin polarization in frozen xenon,” Phys. Rev. Lett. 65, 2591-2594 (1990).
[CrossRef] [PubMed]

Bouchene, M. A.

M. A. Bouchene, S. Zamith, and B. Girard, “Spin-polarized electrons produced by a sequence of two femtosecond pulses. Calculation of differential and global polarization rates,” J. Phys. B 34, 1497-1512 (2001).
[CrossRef]

E. Sokell, S. Zamith, M. A. Bouchene, and B. Girard, “Polarization-dependent pump-probe studies in atomic fine-structure levels: towards the production of spin-polarized electrons,” J. Phys. B 33, 2005-2015 (2000).
[CrossRef]

Buica, G.

T. Nakajima and G. Buica, “Above-threshold ionization of Mg by linearly and circularly polarized laser pulses: Origin of the subpeaks in the photoelectron energy spectra,” Phys. Rev. A 74, 023411 (2006).
[CrossRef]

Cates, G. D.

G. D. Cates, D. R. Benton, M. Gatzke, W. Happer, K. C. Hasson, and N. R. Newbury, “Laser production of large nuclear-spin polarization in frozen xenon,” Phys. Rev. Lett. 65, 2591-2594 (1990).
[CrossRef] [PubMed]

Cowan, R. D.

R. D. Cowan, The Theory of Atomic Structure and Spectra, (U. California Press, 1981).

Cusma, J. T.

J. T. Cusma and L. W. Anderson, “Polarization of an atomic sodium beam by laser optical pumping,” Phys. Rev. A 28, 1195-1197 (1983).
[CrossRef]

Deech, J. S.

J. S. Deech, R. Luypaert, and G. W. Series, “Determination of lifetimes and hyperfine structures of 8, 9 and 10 D3/22 states of Cs133 by quantum-beat spectroscopy,” J. Phys. B 8, 1406-1414 (1975).
[CrossRef]

Delone, N. B.

N. B. Delone, B. A. Zon, and M. V. Fedorov, “Polarization of nuclei in resonance ionization of atoms,” Sov. Phys. JETP 49, 255 (1979).

Drewsen, M.

A. Mortensen, J. J. T. Lindballe, I. S. Jensen, P. Staanum, D. Voigt, and M. Drewsen, “Isotope shifts of the 4s2S01-->4s5P11 transition and hyperfine splitting of the 4s5pP11 state in calcium,” Phys. Rev. A 69, 042502 (2004).
[CrossRef]

Fabre, C.

C. Fabre, M. Gross, and S. Haroche, “Determination by quantum beat spectroscopy of fine-structure intervals in a series of highly excited sodium D states,” Opt. Commun. 13, 393 (1975).
[CrossRef]

Fedorov, M. V.

N. B. Delone, B. A. Zon, and M. V. Fedorov, “Polarization of nuclei in resonance ionization of atoms,” Sov. Phys. JETP 49, 255 (1979).

Fick, D.

D. Fick, G. Grawert, and I. M. Turkiewicz, “Nuclear physics with polarized heavy ions,” Phys. Rep. 214, 1-111 (1992).
[CrossRef]

Frohling, R.

H. J. Andra, H. J. Plohn, A. Gaupp, and R. Frohling, “Nuclear-spin polarization produced by ion-beam-surface-interaction, its optical detection and use in an atomic quantum-beat experiment,” Z. Phys. A 281, 15-20 (1977).
[CrossRef]

Fukuyama, Y.

N. Yonekura, T. Nakajima, Y. Matsuo, T. Kobayashi, and Y. Fukuyama, “Electron-spin polarization of photoions produced through photoionization from the laser-excited triplet state of Sr,” J. Chem. Phys. 120, 1806-1812 (2004).
[CrossRef] [PubMed]

T. Nakajima, N. Yonekura, Y. Matsuo, T. Kobayashi, and Y. Fukuyama, “Simultaneous production of spin-polarized ions/electrons based on two-photon ionization of laser-ablated metallic atoms,” Appl. Phys. Lett. 83, 2103-2105 (2003).
[CrossRef]

Garwin, E. L.

T. Maruyama, E. L. Garwin, R. Prepost, G. H. Zapalac, J. S. Smith, and J. D. Walker, “Observation of strain-enhanced electron-spin polarization in photoemission from InGaAs,” Phys. Rev. Lett. 66, 2376-2379 (1991).
[CrossRef] [PubMed]

Gatzke, M.

G. D. Cates, D. R. Benton, M. Gatzke, W. Happer, K. C. Hasson, and N. R. Newbury, “Laser production of large nuclear-spin polarization in frozen xenon,” Phys. Rev. Lett. 65, 2591-2594 (1990).
[CrossRef] [PubMed]

Gaupp, A.

H. J. Andra, H. J. Plohn, A. Gaupp, and R. Frohling, “Nuclear-spin polarization produced by ion-beam-surface-interaction, its optical detection and use in an atomic quantum-beat experiment,” Z. Phys. A 281, 15-20 (1977).
[CrossRef]

Girard, B.

M. A. Bouchene, S. Zamith, and B. Girard, “Spin-polarized electrons produced by a sequence of two femtosecond pulses. Calculation of differential and global polarization rates,” J. Phys. B 34, 1497-1512 (2001).
[CrossRef]

E. Sokell, S. Zamith, M. A. Bouchene, and B. Girard, “Polarization-dependent pump-probe studies in atomic fine-structure levels: towards the production of spin-polarized electrons,” J. Phys. B 33, 2005-2015 (2000).
[CrossRef]

Grawert, G.

D. Fick, G. Grawert, and I. M. Turkiewicz, “Nuclear physics with polarized heavy ions,” Phys. Rep. 214, 1-111 (1992).
[CrossRef]

Gross, M.

C. Fabre, M. Gross, and S. Haroche, “Determination by quantum beat spectroscopy of fine-structure intervals in a series of highly excited sodium D states,” Opt. Commun. 13, 393 (1975).
[CrossRef]

Happer, W.

G. D. Cates, D. R. Benton, M. Gatzke, W. Happer, K. C. Hasson, and N. R. Newbury, “Laser production of large nuclear-spin polarization in frozen xenon,” Phys. Rev. Lett. 65, 2591-2594 (1990).
[CrossRef] [PubMed]

Haroche, S.

C. Fabre, M. Gross, and S. Haroche, “Determination by quantum beat spectroscopy of fine-structure intervals in a series of highly excited sodium D states,” Opt. Commun. 13, 393 (1975).
[CrossRef]

Hasson, K. C.

G. D. Cates, D. R. Benton, M. Gatzke, W. Happer, K. C. Hasson, and N. R. Newbury, “Laser production of large nuclear-spin polarization in frozen xenon,” Phys. Rev. Lett. 65, 2591-2594 (1990).
[CrossRef] [PubMed]

Hatakeyama, A.

C. D. P. Levy, R. Baartman, J. A. Behr, R. F. Kiefl, M. Pearson, R. Poutissou, A. Hatakeyama, and Y. Hirayama, “The collinear laser beam line at ISAC,” Nucl. Phys. A 746, 206C-209C (2004).
[CrossRef]

Hayden, M. E.

M. E. Hayden and E. W. Otten, “Comment on 'Investigation of ultrafast nuclear spin polarization induced by short laser pulses',” Phys. Rev. Lett. 101, 189501 (2008).
[CrossRef] [PubMed]

Hirayama, Y.

C. D. P. Levy, R. Baartman, J. A. Behr, R. F. Kiefl, M. Pearson, R. Poutissou, A. Hatakeyama, and Y. Hirayama, “The collinear laser beam line at ISAC,” Nucl. Phys. A 746, 206C-209C (2004).
[CrossRef]

Horinaka, H.

T. Nakanishi, H. Aoyagi, H. Horinaka, Y. Kamiya, T. Kato, S. Nakamura, T. Saka, and M. Tsubata, “Large enhancement of spin polarization observed by photoelectrons from a strained GaAs layer,” Phys. Lett. A 158, 345-349 (1991).
[CrossRef]

Jänsch, H. J.

H. Reich and H. J. Jänsch, “Nuclear spin polarized alkali beams (Na,Li): Optical pumping with electro-optically modulated laser beam,” Nucl. Instrum. Methods Phys. Res. A 288, 349-353 (1990).
[CrossRef]

Jayamanna, K.

A. N. Zelenskii, K. Jayamanna, C. D. P. Levy, M. McDonald, R. Ruegg, and P. W. Schmor, “Optimization studies of proton polarization in the TRIUMF optically pumped polarized H− ion source,” Nucl. Instrum. Methods Phys. Res. A 334, 285-293 (1993).
[CrossRef]

Jensen, I. S.

A. Mortensen, J. J. T. Lindballe, I. S. Jensen, P. Staanum, D. Voigt, and M. Drewsen, “Isotope shifts of the 4s2S01-->4s5P11 transition and hyperfine splitting of the 4s5pP11 state in calcium,” Phys. Rev. A 69, 042502 (2004).
[CrossRef]

Kamiya, Y.

T. Nakanishi, H. Aoyagi, H. Horinaka, Y. Kamiya, T. Kato, S. Nakamura, T. Saka, and M. Tsubata, “Large enhancement of spin polarization observed by photoelectrons from a strained GaAs layer,” Phys. Lett. A 158, 345-349 (1991).
[CrossRef]

Kato, T.

T. Nakanishi, H. Aoyagi, H. Horinaka, Y. Kamiya, T. Kato, S. Nakamura, T. Saka, and M. Tsubata, “Large enhancement of spin polarization observed by photoelectrons from a strained GaAs layer,” Phys. Lett. A 158, 345-349 (1991).
[CrossRef]

Kessler, J.

J. Kessler, Polarized Electrons, 2nd Ed., (Springer-Verlag, 1985).

Kiefl, R. F.

C. D. P. Levy, R. Baartman, J. A. Behr, R. F. Kiefl, M. Pearson, R. Poutissou, A. Hatakeyama, and Y. Hirayama, “The collinear laser beam line at ISAC,” Nucl. Phys. A 746, 206C-209C (2004).
[CrossRef]

Kobayashi, T.

T. Nakajima, Y. Matsuo, and T. Kobayashi, “All-optical control and direct detection of ultrafast spin polarization in a multi-valence-electron system,” Phys. Rev. A 77, 063404 (2008).
[CrossRef]

N. Yonekura, T. Nakajima, Y. Matsuo, T. Kobayashi, and Y. Fukuyama, “Electron-spin polarization of photoions produced through photoionization from the laser-excited triplet state of Sr,” J. Chem. Phys. 120, 1806-1812 (2004).
[CrossRef] [PubMed]

T. Nakajima, N. Yonekura, Y. Matsuo, T. Kobayashi, and Y. Fukuyama, “Simultaneous production of spin-polarized ions/electrons based on two-photon ionization of laser-ablated metallic atoms,” Appl. Phys. Lett. 83, 2103-2105 (2003).
[CrossRef]

Levy, C. D. P.

C. D. P. Levy, R. Baartman, J. A. Behr, R. F. Kiefl, M. Pearson, R. Poutissou, A. Hatakeyama, and Y. Hirayama, “The collinear laser beam line at ISAC,” Nucl. Phys. A 746, 206C-209C (2004).
[CrossRef]

A. N. Zelenskii, K. Jayamanna, C. D. P. Levy, M. McDonald, R. Ruegg, and P. W. Schmor, “Optimization studies of proton polarization in the TRIUMF optically pumped polarized H− ion source,” Nucl. Instrum. Methods Phys. Res. A 334, 285-293 (1993).
[CrossRef]

Lindballe, J. J. T.

A. Mortensen, J. J. T. Lindballe, I. S. Jensen, P. Staanum, D. Voigt, and M. Drewsen, “Isotope shifts of the 4s2S01-->4s5P11 transition and hyperfine splitting of the 4s5pP11 state in calcium,” Phys. Rev. A 69, 042502 (2004).
[CrossRef]

Lurio, A.

A. Lurio, “Hyerpfine structure of the P3 states of Zn67 and Mg25,” Phys. Rev. 126, 1768-1773 (1962).
[CrossRef]

Luypaert, R.

J. S. Deech, R. Luypaert, and G. W. Series, “Determination of lifetimes and hyperfine structures of 8, 9 and 10 D3/22 states of Cs133 by quantum-beat spectroscopy,” J. Phys. B 8, 1406-1414 (1975).
[CrossRef]

Maruyama, T.

T. Maruyama, E. L. Garwin, R. Prepost, G. H. Zapalac, J. S. Smith, and J. D. Walker, “Observation of strain-enhanced electron-spin polarization in photoemission from InGaAs,” Phys. Rev. Lett. 66, 2376-2379 (1991).
[CrossRef] [PubMed]

Matsuo, Y.

T. Nakajima, Y. Matsuo, and T. Kobayashi, “All-optical control and direct detection of ultrafast spin polarization in a multi-valence-electron system,” Phys. Rev. A 77, 063404 (2008).
[CrossRef]

N. Yonekura, T. Nakajima, Y. Matsuo, T. Kobayashi, and Y. Fukuyama, “Electron-spin polarization of photoions produced through photoionization from the laser-excited triplet state of Sr,” J. Chem. Phys. 120, 1806-1812 (2004).
[CrossRef] [PubMed]

T. Nakajima, N. Yonekura, Y. Matsuo, T. Kobayashi, and Y. Fukuyama, “Simultaneous production of spin-polarized ions/electrons based on two-photon ionization of laser-ablated metallic atoms,” Appl. Phys. Lett. 83, 2103-2105 (2003).
[CrossRef]

McDonald, M.

A. N. Zelenskii, K. Jayamanna, C. D. P. Levy, M. McDonald, R. Ruegg, and P. W. Schmor, “Optimization studies of proton polarization in the TRIUMF optically pumped polarized H− ion source,” Nucl. Instrum. Methods Phys. Res. A 334, 285-293 (1993).
[CrossRef]

Mortensen, A.

A. Mortensen, J. J. T. Lindballe, I. S. Jensen, P. Staanum, D. Voigt, and M. Drewsen, “Isotope shifts of the 4s2S01-->4s5P11 transition and hyperfine splitting of the 4s5pP11 state in calcium,” Phys. Rev. A 69, 042502 (2004).
[CrossRef]

Nakajima, T.

T. Nakajima, “Nakajima replies,” Phys. Rev. Lett. 101, 189502 (2008).
[CrossRef]

T. Nakajima, Y. Matsuo, and T. Kobayashi, “All-optical control and direct detection of ultrafast spin polarization in a multi-valence-electron system,” Phys. Rev. A 77, 063404 (2008).
[CrossRef]

T. Nakajima, “Investigation of ultrafast nuclear spin polarization induced by short laser pulses,” Phys. Rev. Lett. 99, 024801 (2007).
[CrossRef] [PubMed]

T. Nakajima and G. Buica, “Above-threshold ionization of Mg by linearly and circularly polarized laser pulses: Origin of the subpeaks in the photoelectron energy spectra,” Phys. Rev. A 74, 023411 (2006).
[CrossRef]

T. Nakajima, “Effects of laser intensity and applied electric field on coherent control of spin polarization by short laser pulses,” Appl. Phys. Lett. 88, 111105 (2006).
[CrossRef]

T. Nakajima, “Control of the spin-polarization of photoelectrons/photoions using short laser pulses,” Appl. Phys. Lett. 84, 3786-3788 (2004).
[CrossRef]

N. Yonekura, T. Nakajima, Y. Matsuo, T. Kobayashi, and Y. Fukuyama, “Electron-spin polarization of photoions produced through photoionization from the laser-excited triplet state of Sr,” J. Chem. Phys. 120, 1806-1812 (2004).
[CrossRef] [PubMed]

T. Nakajima, N. Yonekura, Y. Matsuo, T. Kobayashi, and Y. Fukuyama, “Simultaneous production of spin-polarized ions/electrons based on two-photon ionization of laser-ablated metallic atoms,” Appl. Phys. Lett. 83, 2103-2105 (2003).
[CrossRef]

T. Nakajima and N. Yonekura, “Electron spin-polarized alkaline-earth ions produced by multiphoton ionization,” J. Chem. Phys. 117, 2112-2119 (2002).
[CrossRef]

Nakamura, S.

T. Nakanishi, H. Aoyagi, H. Horinaka, Y. Kamiya, T. Kato, S. Nakamura, T. Saka, and M. Tsubata, “Large enhancement of spin polarization observed by photoelectrons from a strained GaAs layer,” Phys. Lett. A 158, 345-349 (1991).
[CrossRef]

Nakanishi, T.

T. Nakanishi, H. Aoyagi, H. Horinaka, Y. Kamiya, T. Kato, S. Nakamura, T. Saka, and M. Tsubata, “Large enhancement of spin polarization observed by photoelectrons from a strained GaAs layer,” Phys. Lett. A 158, 345-349 (1991).
[CrossRef]

Newbury, N. R.

G. D. Cates, D. R. Benton, M. Gatzke, W. Happer, K. C. Hasson, and N. R. Newbury, “Laser production of large nuclear-spin polarization in frozen xenon,” Phys. Rev. Lett. 65, 2591-2594 (1990).
[CrossRef] [PubMed]

Olsson, G.

G. Olsson and S. Salomonson, “Analysis of the hyperfine structure of the 4s4p configuration in Ca and the nuclear quadrupole moment of Ca43,” Z. Phys. A 307, 99-107 (1982).
[CrossRef]

Otten, E. W.

M. E. Hayden and E. W. Otten, “Comment on 'Investigation of ultrafast nuclear spin polarization induced by short laser pulses',” Phys. Rev. Lett. 101, 189501 (2008).
[CrossRef] [PubMed]

Pearson, M.

C. D. P. Levy, R. Baartman, J. A. Behr, R. F. Kiefl, M. Pearson, R. Poutissou, A. Hatakeyama, and Y. Hirayama, “The collinear laser beam line at ISAC,” Nucl. Phys. A 746, 206C-209C (2004).
[CrossRef]

Plohn, H. J.

H. J. Andra, H. J. Plohn, A. Gaupp, and R. Frohling, “Nuclear-spin polarization produced by ion-beam-surface-interaction, its optical detection and use in an atomic quantum-beat experiment,” Z. Phys. A 281, 15-20 (1977).
[CrossRef]

Poutissou, R.

C. D. P. Levy, R. Baartman, J. A. Behr, R. F. Kiefl, M. Pearson, R. Poutissou, A. Hatakeyama, and Y. Hirayama, “The collinear laser beam line at ISAC,” Nucl. Phys. A 746, 206C-209C (2004).
[CrossRef]

Prepost, R.

T. Maruyama, E. L. Garwin, R. Prepost, G. H. Zapalac, J. S. Smith, and J. D. Walker, “Observation of strain-enhanced electron-spin polarization in photoemission from InGaAs,” Phys. Rev. Lett. 66, 2376-2379 (1991).
[CrossRef] [PubMed]

Reich, H.

H. Reich and H. J. Jänsch, “Nuclear spin polarized alkali beams (Na,Li): Optical pumping with electro-optically modulated laser beam,” Nucl. Instrum. Methods Phys. Res. A 288, 349-353 (1990).
[CrossRef]

Rice, S. A.

D. J. Tannor and S. A. Rice, “Control of selectivity of chemical-reaction via control of wave packet evolution,” J. Chem. Phys. 83, 5013-5018 (1985).
[CrossRef]

Ruegg, R.

A. N. Zelenskii, K. Jayamanna, C. D. P. Levy, M. McDonald, R. Ruegg, and P. W. Schmor, “Optimization studies of proton polarization in the TRIUMF optically pumped polarized H− ion source,” Nucl. Instrum. Methods Phys. Res. A 334, 285-293 (1993).
[CrossRef]

Saka, T.

T. Nakanishi, H. Aoyagi, H. Horinaka, Y. Kamiya, T. Kato, S. Nakamura, T. Saka, and M. Tsubata, “Large enhancement of spin polarization observed by photoelectrons from a strained GaAs layer,” Phys. Lett. A 158, 345-349 (1991).
[CrossRef]

Salomonson, S.

G. Olsson and S. Salomonson, “Analysis of the hyperfine structure of the 4s4p configuration in Ca and the nuclear quadrupole moment of Ca43,” Z. Phys. A 307, 99-107 (1982).
[CrossRef]

Schmor, P. W.

A. N. Zelenskii, K. Jayamanna, C. D. P. Levy, M. McDonald, R. Ruegg, and P. W. Schmor, “Optimization studies of proton polarization in the TRIUMF optically pumped polarized H− ion source,” Nucl. Instrum. Methods Phys. Res. A 334, 285-293 (1993).
[CrossRef]

Series, G. W.

J. S. Deech, R. Luypaert, and G. W. Series, “Determination of lifetimes and hyperfine structures of 8, 9 and 10 D3/22 states of Cs133 by quantum-beat spectroscopy,” J. Phys. B 8, 1406-1414 (1975).
[CrossRef]

Smith, J. S.

T. Maruyama, E. L. Garwin, R. Prepost, G. H. Zapalac, J. S. Smith, and J. D. Walker, “Observation of strain-enhanced electron-spin polarization in photoemission from InGaAs,” Phys. Rev. Lett. 66, 2376-2379 (1991).
[CrossRef] [PubMed]

Sokell, E.

E. Sokell, S. Zamith, M. A. Bouchene, and B. Girard, “Polarization-dependent pump-probe studies in atomic fine-structure levels: towards the production of spin-polarized electrons,” J. Phys. B 33, 2005-2015 (2000).
[CrossRef]

Staanum, P.

A. Mortensen, J. J. T. Lindballe, I. S. Jensen, P. Staanum, D. Voigt, and M. Drewsen, “Isotope shifts of the 4s2S01-->4s5P11 transition and hyperfine splitting of the 4s5pP11 state in calcium,” Phys. Rev. A 69, 042502 (2004).
[CrossRef]

Tannor, D. J.

D. J. Tannor and S. A. Rice, “Control of selectivity of chemical-reaction via control of wave packet evolution,” J. Chem. Phys. 83, 5013-5018 (1985).
[CrossRef]

Tsubata, M.

T. Nakanishi, H. Aoyagi, H. Horinaka, Y. Kamiya, T. Kato, S. Nakamura, T. Saka, and M. Tsubata, “Large enhancement of spin polarization observed by photoelectrons from a strained GaAs layer,” Phys. Lett. A 158, 345-349 (1991).
[CrossRef]

Turkiewicz, I. M.

D. Fick, G. Grawert, and I. M. Turkiewicz, “Nuclear physics with polarized heavy ions,” Phys. Rep. 214, 1-111 (1992).
[CrossRef]

Voigt, D.

A. Mortensen, J. J. T. Lindballe, I. S. Jensen, P. Staanum, D. Voigt, and M. Drewsen, “Isotope shifts of the 4s2S01-->4s5P11 transition and hyperfine splitting of the 4s5pP11 state in calcium,” Phys. Rev. A 69, 042502 (2004).
[CrossRef]

Walker, J. D.

T. Maruyama, E. L. Garwin, R. Prepost, G. H. Zapalac, J. S. Smith, and J. D. Walker, “Observation of strain-enhanced electron-spin polarization in photoemission from InGaAs,” Phys. Rev. Lett. 66, 2376-2379 (1991).
[CrossRef] [PubMed]

Yonekura, N.

N. Yonekura, T. Nakajima, Y. Matsuo, T. Kobayashi, and Y. Fukuyama, “Electron-spin polarization of photoions produced through photoionization from the laser-excited triplet state of Sr,” J. Chem. Phys. 120, 1806-1812 (2004).
[CrossRef] [PubMed]

T. Nakajima, N. Yonekura, Y. Matsuo, T. Kobayashi, and Y. Fukuyama, “Simultaneous production of spin-polarized ions/electrons based on two-photon ionization of laser-ablated metallic atoms,” Appl. Phys. Lett. 83, 2103-2105 (2003).
[CrossRef]

T. Nakajima and N. Yonekura, “Electron spin-polarized alkaline-earth ions produced by multiphoton ionization,” J. Chem. Phys. 117, 2112-2119 (2002).
[CrossRef]

Zamith, S.

M. A. Bouchene, S. Zamith, and B. Girard, “Spin-polarized electrons produced by a sequence of two femtosecond pulses. Calculation of differential and global polarization rates,” J. Phys. B 34, 1497-1512 (2001).
[CrossRef]

E. Sokell, S. Zamith, M. A. Bouchene, and B. Girard, “Polarization-dependent pump-probe studies in atomic fine-structure levels: towards the production of spin-polarized electrons,” J. Phys. B 33, 2005-2015 (2000).
[CrossRef]

Zapalac, G. H.

T. Maruyama, E. L. Garwin, R. Prepost, G. H. Zapalac, J. S. Smith, and J. D. Walker, “Observation of strain-enhanced electron-spin polarization in photoemission from InGaAs,” Phys. Rev. Lett. 66, 2376-2379 (1991).
[CrossRef] [PubMed]

Zelenskii, A. N.

A. N. Zelenskii, K. Jayamanna, C. D. P. Levy, M. McDonald, R. Ruegg, and P. W. Schmor, “Optimization studies of proton polarization in the TRIUMF optically pumped polarized H− ion source,” Nucl. Instrum. Methods Phys. Res. A 334, 285-293 (1993).
[CrossRef]

Zon, B. A.

N. B. Delone, B. A. Zon, and M. V. Fedorov, “Polarization of nuclei in resonance ionization of atoms,” Sov. Phys. JETP 49, 255 (1979).

Appl. Phys. Lett.

T. Nakajima, N. Yonekura, Y. Matsuo, T. Kobayashi, and Y. Fukuyama, “Simultaneous production of spin-polarized ions/electrons based on two-photon ionization of laser-ablated metallic atoms,” Appl. Phys. Lett. 83, 2103-2105 (2003).
[CrossRef]

T. Nakajima, “Control of the spin-polarization of photoelectrons/photoions using short laser pulses,” Appl. Phys. Lett. 84, 3786-3788 (2004).
[CrossRef]

T. Nakajima, “Effects of laser intensity and applied electric field on coherent control of spin polarization by short laser pulses,” Appl. Phys. Lett. 88, 111105 (2006).
[CrossRef]

J. Chem. Phys.

D. J. Tannor and S. A. Rice, “Control of selectivity of chemical-reaction via control of wave packet evolution,” J. Chem. Phys. 83, 5013-5018 (1985).
[CrossRef]

N. Yonekura, T. Nakajima, Y. Matsuo, T. Kobayashi, and Y. Fukuyama, “Electron-spin polarization of photoions produced through photoionization from the laser-excited triplet state of Sr,” J. Chem. Phys. 120, 1806-1812 (2004).
[CrossRef] [PubMed]

T. Nakajima and N. Yonekura, “Electron spin-polarized alkaline-earth ions produced by multiphoton ionization,” J. Chem. Phys. 117, 2112-2119 (2002).
[CrossRef]

J. Phys. B

J. S. Deech, R. Luypaert, and G. W. Series, “Determination of lifetimes and hyperfine structures of 8, 9 and 10 D3/22 states of Cs133 by quantum-beat spectroscopy,” J. Phys. B 8, 1406-1414 (1975).
[CrossRef]

E. Sokell, S. Zamith, M. A. Bouchene, and B. Girard, “Polarization-dependent pump-probe studies in atomic fine-structure levels: towards the production of spin-polarized electrons,” J. Phys. B 33, 2005-2015 (2000).
[CrossRef]

M. A. Bouchene, S. Zamith, and B. Girard, “Spin-polarized electrons produced by a sequence of two femtosecond pulses. Calculation of differential and global polarization rates,” J. Phys. B 34, 1497-1512 (2001).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. A

H. Reich and H. J. Jänsch, “Nuclear spin polarized alkali beams (Na,Li): Optical pumping with electro-optically modulated laser beam,” Nucl. Instrum. Methods Phys. Res. A 288, 349-353 (1990).
[CrossRef]

A. N. Zelenskii, K. Jayamanna, C. D. P. Levy, M. McDonald, R. Ruegg, and P. W. Schmor, “Optimization studies of proton polarization in the TRIUMF optically pumped polarized H− ion source,” Nucl. Instrum. Methods Phys. Res. A 334, 285-293 (1993).
[CrossRef]

Nucl. Phys. A

C. D. P. Levy, R. Baartman, J. A. Behr, R. F. Kiefl, M. Pearson, R. Poutissou, A. Hatakeyama, and Y. Hirayama, “The collinear laser beam line at ISAC,” Nucl. Phys. A 746, 206C-209C (2004).
[CrossRef]

Opt. Commun.

C. Fabre, M. Gross, and S. Haroche, “Determination by quantum beat spectroscopy of fine-structure intervals in a series of highly excited sodium D states,” Opt. Commun. 13, 393 (1975).
[CrossRef]

Phys. Lett. A

T. Nakanishi, H. Aoyagi, H. Horinaka, Y. Kamiya, T. Kato, S. Nakamura, T. Saka, and M. Tsubata, “Large enhancement of spin polarization observed by photoelectrons from a strained GaAs layer,” Phys. Lett. A 158, 345-349 (1991).
[CrossRef]

Phys. Rep.

D. Fick, G. Grawert, and I. M. Turkiewicz, “Nuclear physics with polarized heavy ions,” Phys. Rep. 214, 1-111 (1992).
[CrossRef]

Phys. Rev.

A. Lurio, “Hyerpfine structure of the P3 states of Zn67 and Mg25,” Phys. Rev. 126, 1768-1773 (1962).
[CrossRef]

Phys. Rev. A

A. Mortensen, J. J. T. Lindballe, I. S. Jensen, P. Staanum, D. Voigt, and M. Drewsen, “Isotope shifts of the 4s2S01-->4s5P11 transition and hyperfine splitting of the 4s5pP11 state in calcium,” Phys. Rev. A 69, 042502 (2004).
[CrossRef]

T. Nakajima and G. Buica, “Above-threshold ionization of Mg by linearly and circularly polarized laser pulses: Origin of the subpeaks in the photoelectron energy spectra,” Phys. Rev. A 74, 023411 (2006).
[CrossRef]

J. T. Cusma and L. W. Anderson, “Polarization of an atomic sodium beam by laser optical pumping,” Phys. Rev. A 28, 1195-1197 (1983).
[CrossRef]

T. Nakajima, Y. Matsuo, and T. Kobayashi, “All-optical control and direct detection of ultrafast spin polarization in a multi-valence-electron system,” Phys. Rev. A 77, 063404 (2008).
[CrossRef]

Phys. Rev. Lett.

G. D. Cates, D. R. Benton, M. Gatzke, W. Happer, K. C. Hasson, and N. R. Newbury, “Laser production of large nuclear-spin polarization in frozen xenon,” Phys. Rev. Lett. 65, 2591-2594 (1990).
[CrossRef] [PubMed]

T. Maruyama, E. L. Garwin, R. Prepost, G. H. Zapalac, J. S. Smith, and J. D. Walker, “Observation of strain-enhanced electron-spin polarization in photoemission from InGaAs,” Phys. Rev. Lett. 66, 2376-2379 (1991).
[CrossRef] [PubMed]

T. Nakajima, “Investigation of ultrafast nuclear spin polarization induced by short laser pulses,” Phys. Rev. Lett. 99, 024801 (2007).
[CrossRef] [PubMed]

M. E. Hayden and E. W. Otten, “Comment on 'Investigation of ultrafast nuclear spin polarization induced by short laser pulses',” Phys. Rev. Lett. 101, 189501 (2008).
[CrossRef] [PubMed]

T. Nakajima, “Nakajima replies,” Phys. Rev. Lett. 101, 189502 (2008).
[CrossRef]

Sov. Phys. JETP

N. B. Delone, B. A. Zon, and M. V. Fedorov, “Polarization of nuclei in resonance ionization of atoms,” Sov. Phys. JETP 49, 255 (1979).

Z. Phys. A

H. J. Andra, H. J. Plohn, A. Gaupp, and R. Frohling, “Nuclear-spin polarization produced by ion-beam-surface-interaction, its optical detection and use in an atomic quantum-beat experiment,” Z. Phys. A 281, 15-20 (1977).
[CrossRef]

G. Olsson and S. Salomonson, “Analysis of the hyperfine structure of the 4s4p configuration in Ca and the nuclear quadrupole moment of Ca43,” Z. Phys. A 307, 99-107 (1982).
[CrossRef]

Other

R. D. Cowan, The Theory of Atomic Structure and Spectra, (U. California Press, 1981).

J. Kessler, Polarized Electrons, 2nd Ed., (Springer-Verlag, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Level scheme. “A” can be any alkaline–earth atom. A circularly polarized short laser pulse coherently excites atoms in the n s 2 S 0 1 ground state configuration to the hyperfine manifolds in the n s m p P 1 3 or P 1 1 configuration.

Fig. 2
Fig. 2

Level scheme for the I = 1 2 system of alkaline–earth atoms in the (a) coupled basis and (b) uncoupled basis descriptions.

Fig. 3
Fig. 3

Level scheme for the I = 3 2 system of alkaline–earth atoms in the coupled basis description.

Fig. 4
Fig. 4

Variation of (a) the degree of nuclear spin polarization, and (b) the occupation probabilities in nuclear spin states m I = + 1 2 (solid line) and 1 2 (dashed line) as a function of time for the Mg 27 3 s 2 S 0 1 - 3 s 3 p P 1 3 ( I = 1 2 ) system.

Fig. 5
Fig. 5

Variation of (a) the degree of nuclear spin polarization and (b) the occupation probabilities in nuclear-spin up/down states as a function of time for the Mg 23 3 s 2 S 0 1 - 3 s 3 p P 1 3 ( I = 3 2 ) system. In graph (b), solid and dashed, and dotted and dot-dashed lines represent the occupation probabilities in the m I = + 3 2 , + 1 2 and m I = 3 2 , 1 2 nuclear spin states, respectively. Note that the temporal dynamics would be similar for Mg 29 .

Fig. 6
Fig. 6

Variation of (a) the degree of nuclear spin polarization and the occupation probabilities in (b) nuclear-spin up states and (c) nuclear-spin down states as a function of time for the Mg 25 3 s 2 S 0 1 - 3 s 3 p P 1 3 ( I = 5 2 ) system. In graphs (b) and (c), solid, dashed, and dotted lines represent the occupation probabilities in the m I = + 5 2 , + 3 2 , + 1 2 and m I = 5 2 , 3 2 , 1 2 nuclear spin states, respectively.

Fig. 7
Fig. 7

Variation of (a) the degree of nuclear spin polarization and the occupation probabilities in (b) nuclear-spin up states and (c) nuclear-spin down states as a function of time for the Mg 31 3 s 2 S 0 1 - 3 s 3 p P 1 3 ( I = 7 2 ) system. In graphs (b) and (c), solid, dashed, dotted, and dot-dashed lines represent the occupation probabilities in the m I = + 7 2 , + 5 2 , + 3 2 , + 1 2 and m I = 7 2 , 5 2 , 3 2 , 1 2 nuclear spin states, respectively.

Fig. 8
Fig. 8

Same with Fig. 4, but for the Ca 35 4 s 2 S 0 1 - 4 s 4 p P 1 3 ( I = 1 2 ) system.

Fig. 9
Fig. 9

Same with Fig. 5, but for the Ca 37 4 s 2 S 0 1 - 4 s 4 p P 1 3 ( I = 3 2 ) system. Note that the temporal dynamics would be similar for Ca 39 and Ca 49 .

Fig. 10
Fig. 10

Same with Fig. 7, but for the Ca 43 4 s 2 S 0 1 - 4 s 4 p P 1 3 ( I = 7 2 ) system. Note that the temporal dynamics would be similar for Ca 41 , Ca 45 , and Ca 47 .

Fig. 11
Fig. 11

Same with Fig. 10, but for the Ca 43 4 s 2 S 0 1 - 4 s 5 p P 1 1 ( I = 7 2 ) system.

Fig. 12
Fig. 12

Achievable degree of nuclear spin polarization for the various isotopes of Mg (circles) and Ca (crosses) using the 3 s 3 p P 1 3 and 4 s 4 p P 1 3 states, respectively. The corresponding result using the 4 s 5 p P 1 1 state of Ca (triangle) is also shown.

Fig. 13
Fig. 13

Ionization probability for the process of Mg + ( 3 s ) Mg 2 + as a function of the third laser wavelength. The peak laser intensity is 2 × 10 12 W cm 2 and the pulse duration is 120 fs .

Fig. 14
Fig. 14

Ionization probability for the process of Ca + ( 4 s ) Ca 2 + as a function of the third laser wavelength. The peak laser intensity is 2 × 10 12 W cm 2 and the pulse duration is 120 fs .

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

D = ( ( l c l ) L S ) J I F m F r q ( ( l c l ) L S ) J I F m F = ( 1 ) F m F + J + I + F + 1 ( 2 F + 1 ) ( 2 F + 1 ) ( F 1 F m F q m F ) { J I F F 1 J } ( ( l c l ) L S ) J r ( ( l c l ) L S ) J .
ψ ex m F ( t ) = j c j j e i E j t ,
( ( L S ) J I ) F m F = m J + m I = m F ( 1 ) J I + m F 2 F + 1 ( J I F m J m I m F ) ( ( L S ) J m J ) I m I .
P m I ( t ) = J , m J m F ( L S ) J m J m I ψ ex m F ( t ) 2 .
P ( t ) = m I × P m I ( t ) I × m I P m I ( t ) .
ψ ex m F = 1 2 ( t ) = 2 3 1 e i E 1 t + 1 3 2 e i E 2 t ,
( 1 2 ) = ( 2 3 1 3 1 3 2 3 ) ( 1 2 ) .
ψ ex m F = 1 2 ( t ) = 1 3 3 ( 2 e i E 1 t + e i E 2 t ) 1 + 2 3 3 ( e i E 1 t + e i E 2 t ) 2 .
ψ ex m F = 3 2 ( t ) = 1 3 4 e i E 4 t .
P m I = 1 2 ( t ) = 1 27 ( 5 + 4 cos Δ t )
P m I = 1 2 ( t ) = 4 27 ( 1 cos Δ t ) + 1 3 ,
P ( t ) = P m I = 1 2 ( t ) P m I = 1 2 ( t ) P m I = 1 2 ( t ) + P m I = 1 2 ( t ) = 4 9 ( 1 cos Δ t ) .
ψ ex m F = 1 2 ( t ) = ( 3 6 e i E 1 t + 2 3 15 e i E 2 t + 3 30 e i E 3 t ) 1 + ( 2 6 e i E 1 t + 2 15 e i E 2 t + 2 10 e i E 3 t ) 2 + ( 1 6 e i E 1 t 4 15 e i E 2 t + 1 10 e i E 3 t ) 3 ,
ψ ex m F = 1 2 ( t ) = ( 3 18 e i E 5 t + 8 3 45 e i E 6 t + 3 10 e i E 7 t ) 5 + ( 6 18 e i E 5 t 2 6 45 e i E 6 t + 6 10 e i E 7 t ) 6 + ( 1 6 e i E 5 t 4 15 e i E 6 t + 1 10 e i E 7 t ) 7 ,
ψ ex m F = 3 2 ( t ) = ( 2 3 15 e i E 9 t + 3 5 e i E 10 t ) 9 + ( 2 5 e i E 9 t + 2 5 e i E 10 t ) 10 ,
ψ ex m F = 5 2 ( t ) = 1 3 e i E 12 t 1 2 ,
P m I = 3 2 ( t ) = 3 6 e i E 1 t + 2 3 15 e i E 2 t + 3 30 e i E 3 t 2 ,
P m I = 1 2 ( t ) = 2 6 e i E 1 t + 2 15 e i E 2 t + 2 10 e i E 3 t 2 + 3 18 e i E 5 t + 8 3 45 e i E 6 t + 3 10 e i E 7 t 2 ,
P m I = 1 2 ( t ) = 1 6 e i E 1 t 4 15 e i E 2 t + 1 10 e i E 3 t 2 + 6 18 e i E 5 t 2 6 45 e i E 6 t + 6 10 e i E 7 t 2 + 2 3 15 e i E 9 t + 3 5 e i E 10 t 2 ,
P m I = 3 2 ( t ) = 1 6 e i E 5 t 4 15 e i E 6 t + 1 10 e i E 7 t 2 + 2 5 e i E 9 t + 2 5 e i E 10 t 2 + 1 3 e i E 12 t 2 .

Metrics