Abstract

The excitation of single and multiple-frequency surface plasmon polaritons (SPP) by a metallic groove grating is studied in the terahertz (THz) frequency range. The efficiency of such gratings for the excitation of SPPs is explored with respect to the grating profile. Numerical simulations provide information on how to design such gratings. Groove gratings were fabricated by anisotropic etching of semiconductor surfaces. Reflection and SPP excitation measurements were done using THz time-domain spectroscopy. The results demonstrate the potential of multisection groove gratings for efficient excitation of broadband THz SPPs.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  2. H. Hirori, K. Yamashita, M. Nagai, and K. Tanaka, “Attenuated total reflection spectroscopy in time domain using terahertz coherent pulses,” Jpn. J. Appl. Phys. 43, 1287-1289 (2004).
    [CrossRef]
  3. D. W. Pohl, “Near-field optics and the surface plasmon polariton,” in Near-Field Optics and Surface Plasmon Polaritons, S.Kawata, ed. (Springer, 2001), pp. 1-13.
    [CrossRef]
  4. O. Demichel, L. Mahler, T. Losco, C. Mauro, R. Green, A. Tredicucci, J. Xu, F. Beltram, H. E. Beere, D. A. Ritchie, and V. Tamošiunas, “Surface plasmon photonic structures in terahertz quantum cascade lasers,” Opt. Express 14, 5335-5345 (2006).
    [CrossRef] [PubMed]
  5. R. A. Höpfel, E. Vass, and E. Gornik, “Thermal excitation of two-dimensional plasma oscillations,” Phys. Rev. Lett. 49, 1667-1671 (1982).
    [CrossRef]
  6. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376-379 (2004).
    [CrossRef] [PubMed]
  7. T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88, 061113 (2006).
    [CrossRef]
  8. J. Saxler, J. G. Rivas, C. Janke, H. P. M. Pellemans, P. H. Bolivar, and H. Kurz, “Time-domain measurements of surface plasmon polaritons in the terahertz frequency range,” Phys. Rev. B 69, 155427 (2004).
    [CrossRef]
  9. J. O'Hara, R. Averitt, and A. Taylor, “Prism coupling to terahertz surface plasmon polaritons,” Opt. Express 13, 6117-6126 (2005).
    [CrossRef] [PubMed]
  10. L. Mukina, M. Nazarov, and A. Shkurinov, “Propagation of THz plasmon pulse on corrugated and flat metal surface,” Surf. Sci. 600, 4771-4776 (2004).
    [CrossRef]
  11. M. M. Nazarov, J.-L. Coutaz, A. Shkurinov, and F. Garet, “THz surface plasmon jump between two metal edges,” Opt. Commun. 277, 33-39 (2007).
    [CrossRef]
  12. G. Torosyan, C. Rau, B. Pradarutti, and R. Beigang, “Generation and propagation of surface plasmons in periodic metallic structures,” Appl. Phys. Lett. 85, 3372-3374 (2004).
    [CrossRef]
  13. J. O'Hara, R. Averitt, and A. Taylor, “Terahertz surface plasmon polariton coupling on metallic gratings,” Opt. Express 12, 6397-6402 (2004).
    [CrossRef] [PubMed]
  14. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, J. R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099-1119 (1983).
    [CrossRef]
  15. D. Begley, R. Alexander, C. Ward, R. Miller, and R. Bell, “Propagation distances of surface electromagnetic waves in the far infrared,” Surf. Sci. 81, 245-251 (1979).
    [CrossRef]
  16. M. Nazarov, F. Garet, D. Armand, A. Shkurinov, and J.-L. Coutaz, “Surface plasmon THz waves on gratings,” C. R. Phys. 9, 232-247 (2008).
    [CrossRef]
  17. D. Maystre, “Integral Methods,” in Electromagnetic Theory of Gratings, R.Petit, ed. (Springer, 1980), pp. 63-100.
    [CrossRef]
  18. R. E. Williams, “Wet Etching,” in Gallium Arsenide Processing Techniques (Artech House, 1984), pp. 101-124.
  19. J. Kroell, J. Darmo, and K. Unterrainer, “High-performance terahertz electro-optic detector,” Electron. Lett. 40, 763-764 (2004).
    [CrossRef]
  20. J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett. 93, 256804 (2004).
    [CrossRef]

2008 (1)

M. Nazarov, F. Garet, D. Armand, A. Shkurinov, and J.-L. Coutaz, “Surface plasmon THz waves on gratings,” C. R. Phys. 9, 232-247 (2008).
[CrossRef]

2007 (1)

M. M. Nazarov, J.-L. Coutaz, A. Shkurinov, and F. Garet, “THz surface plasmon jump between two metal edges,” Opt. Commun. 277, 33-39 (2007).
[CrossRef]

2006 (2)

2005 (1)

2004 (8)

L. Mukina, M. Nazarov, and A. Shkurinov, “Propagation of THz plasmon pulse on corrugated and flat metal surface,” Surf. Sci. 600, 4771-4776 (2004).
[CrossRef]

J. Saxler, J. G. Rivas, C. Janke, H. P. M. Pellemans, P. H. Bolivar, and H. Kurz, “Time-domain measurements of surface plasmon polaritons in the terahertz frequency range,” Phys. Rev. B 69, 155427 (2004).
[CrossRef]

H. Hirori, K. Yamashita, M. Nagai, and K. Tanaka, “Attenuated total reflection spectroscopy in time domain using terahertz coherent pulses,” Jpn. J. Appl. Phys. 43, 1287-1289 (2004).
[CrossRef]

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376-379 (2004).
[CrossRef] [PubMed]

G. Torosyan, C. Rau, B. Pradarutti, and R. Beigang, “Generation and propagation of surface plasmons in periodic metallic structures,” Appl. Phys. Lett. 85, 3372-3374 (2004).
[CrossRef]

J. O'Hara, R. Averitt, and A. Taylor, “Terahertz surface plasmon polariton coupling on metallic gratings,” Opt. Express 12, 6397-6402 (2004).
[CrossRef] [PubMed]

J. Kroell, J. Darmo, and K. Unterrainer, “High-performance terahertz electro-optic detector,” Electron. Lett. 40, 763-764 (2004).
[CrossRef]

J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett. 93, 256804 (2004).
[CrossRef]

1983 (1)

1982 (1)

R. A. Höpfel, E. Vass, and E. Gornik, “Thermal excitation of two-dimensional plasma oscillations,” Phys. Rev. Lett. 49, 1667-1671 (1982).
[CrossRef]

1979 (1)

D. Begley, R. Alexander, C. Ward, R. Miller, and R. Bell, “Propagation distances of surface electromagnetic waves in the far infrared,” Surf. Sci. 81, 245-251 (1979).
[CrossRef]

Alexander, J. R. W.

Alexander, R.

D. Begley, R. Alexander, C. Ward, R. Miller, and R. Bell, “Propagation distances of surface electromagnetic waves in the far infrared,” Surf. Sci. 81, 245-251 (1979).
[CrossRef]

Armand, D.

M. Nazarov, F. Garet, D. Armand, A. Shkurinov, and J.-L. Coutaz, “Surface plasmon THz waves on gratings,” C. R. Phys. 9, 232-247 (2008).
[CrossRef]

Averitt, R.

Beere, H. E.

Begley, D.

D. Begley, R. Alexander, C. Ward, R. Miller, and R. Bell, “Propagation distances of surface electromagnetic waves in the far infrared,” Surf. Sci. 81, 245-251 (1979).
[CrossRef]

Beigang, R.

G. Torosyan, C. Rau, B. Pradarutti, and R. Beigang, “Generation and propagation of surface plasmons in periodic metallic structures,” Appl. Phys. Lett. 85, 3372-3374 (2004).
[CrossRef]

Bell, R.

D. Begley, R. Alexander, C. Ward, R. Miller, and R. Bell, “Propagation distances of surface electromagnetic waves in the far infrared,” Surf. Sci. 81, 245-251 (1979).
[CrossRef]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Beltram, F.

Bolivar, P. H.

J. Saxler, J. G. Rivas, C. Janke, H. P. M. Pellemans, P. H. Bolivar, and H. Kurz, “Time-domain measurements of surface plasmon polaritons in the terahertz frequency range,” Phys. Rev. B 69, 155427 (2004).
[CrossRef]

J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett. 93, 256804 (2004).
[CrossRef]

Coutaz, J.-L.

M. Nazarov, F. Garet, D. Armand, A. Shkurinov, and J.-L. Coutaz, “Surface plasmon THz waves on gratings,” C. R. Phys. 9, 232-247 (2008).
[CrossRef]

M. M. Nazarov, J.-L. Coutaz, A. Shkurinov, and F. Garet, “THz surface plasmon jump between two metal edges,” Opt. Commun. 277, 33-39 (2007).
[CrossRef]

Darmo, J.

J. Kroell, J. Darmo, and K. Unterrainer, “High-performance terahertz electro-optic detector,” Electron. Lett. 40, 763-764 (2004).
[CrossRef]

Demichel, O.

Garet, F.

M. Nazarov, F. Garet, D. Armand, A. Shkurinov, and J.-L. Coutaz, “Surface plasmon THz waves on gratings,” C. R. Phys. 9, 232-247 (2008).
[CrossRef]

M. M. Nazarov, J.-L. Coutaz, A. Shkurinov, and F. Garet, “THz surface plasmon jump between two metal edges,” Opt. Commun. 277, 33-39 (2007).
[CrossRef]

Gornik, E.

R. A. Höpfel, E. Vass, and E. Gornik, “Thermal excitation of two-dimensional plasma oscillations,” Phys. Rev. Lett. 49, 1667-1671 (1982).
[CrossRef]

Green, R.

Grischkowsky, D.

T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88, 061113 (2006).
[CrossRef]

Hirori, H.

H. Hirori, K. Yamashita, M. Nagai, and K. Tanaka, “Attenuated total reflection spectroscopy in time domain using terahertz coherent pulses,” Jpn. J. Appl. Phys. 43, 1287-1289 (2004).
[CrossRef]

Höpfel, R. A.

R. A. Höpfel, E. Vass, and E. Gornik, “Thermal excitation of two-dimensional plasma oscillations,” Phys. Rev. Lett. 49, 1667-1671 (1982).
[CrossRef]

Janke, C.

J. Saxler, J. G. Rivas, C. Janke, H. P. M. Pellemans, P. H. Bolivar, and H. Kurz, “Time-domain measurements of surface plasmon polaritons in the terahertz frequency range,” Phys. Rev. B 69, 155427 (2004).
[CrossRef]

Jeon, T.-I.

T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88, 061113 (2006).
[CrossRef]

Kroell, J.

J. Kroell, J. Darmo, and K. Unterrainer, “High-performance terahertz electro-optic detector,” Electron. Lett. 40, 763-764 (2004).
[CrossRef]

Kurz, H.

J. Saxler, J. G. Rivas, C. Janke, H. P. M. Pellemans, P. H. Bolivar, and H. Kurz, “Time-domain measurements of surface plasmon polaritons in the terahertz frequency range,” Phys. Rev. B 69, 155427 (2004).
[CrossRef]

J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett. 93, 256804 (2004).
[CrossRef]

Kuttge, M.

J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett. 93, 256804 (2004).
[CrossRef]

Long, L. L.

Losco, T.

Mahler, L.

Mauro, C.

Maystre, D.

D. Maystre, “Integral Methods,” in Electromagnetic Theory of Gratings, R.Petit, ed. (Springer, 1980), pp. 63-100.
[CrossRef]

Miller, R.

D. Begley, R. Alexander, C. Ward, R. Miller, and R. Bell, “Propagation distances of surface electromagnetic waves in the far infrared,” Surf. Sci. 81, 245-251 (1979).
[CrossRef]

Mittleman, D. M.

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376-379 (2004).
[CrossRef] [PubMed]

Mukina, L.

L. Mukina, M. Nazarov, and A. Shkurinov, “Propagation of THz plasmon pulse on corrugated and flat metal surface,” Surf. Sci. 600, 4771-4776 (2004).
[CrossRef]

Nagai, M.

H. Hirori, K. Yamashita, M. Nagai, and K. Tanaka, “Attenuated total reflection spectroscopy in time domain using terahertz coherent pulses,” Jpn. J. Appl. Phys. 43, 1287-1289 (2004).
[CrossRef]

Nazarov, M.

M. Nazarov, F. Garet, D. Armand, A. Shkurinov, and J.-L. Coutaz, “Surface plasmon THz waves on gratings,” C. R. Phys. 9, 232-247 (2008).
[CrossRef]

L. Mukina, M. Nazarov, and A. Shkurinov, “Propagation of THz plasmon pulse on corrugated and flat metal surface,” Surf. Sci. 600, 4771-4776 (2004).
[CrossRef]

Nazarov, M. M.

M. M. Nazarov, J.-L. Coutaz, A. Shkurinov, and F. Garet, “THz surface plasmon jump between two metal edges,” Opt. Commun. 277, 33-39 (2007).
[CrossRef]

O'Hara, J.

Ordal, M. A.

Pellemans, H. P. M.

J. Saxler, J. G. Rivas, C. Janke, H. P. M. Pellemans, P. H. Bolivar, and H. Kurz, “Time-domain measurements of surface plasmon polaritons in the terahertz frequency range,” Phys. Rev. B 69, 155427 (2004).
[CrossRef]

Pohl, D. W.

D. W. Pohl, “Near-field optics and the surface plasmon polariton,” in Near-Field Optics and Surface Plasmon Polaritons, S.Kawata, ed. (Springer, 2001), pp. 1-13.
[CrossRef]

Pradarutti, B.

G. Torosyan, C. Rau, B. Pradarutti, and R. Beigang, “Generation and propagation of surface plasmons in periodic metallic structures,” Appl. Phys. Lett. 85, 3372-3374 (2004).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

Rau, C.

G. Torosyan, C. Rau, B. Pradarutti, and R. Beigang, “Generation and propagation of surface plasmons in periodic metallic structures,” Appl. Phys. Lett. 85, 3372-3374 (2004).
[CrossRef]

Ritchie, D. A.

Rivas, J. G.

J. Saxler, J. G. Rivas, C. Janke, H. P. M. Pellemans, P. H. Bolivar, and H. Kurz, “Time-domain measurements of surface plasmon polaritons in the terahertz frequency range,” Phys. Rev. B 69, 155427 (2004).
[CrossRef]

J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett. 93, 256804 (2004).
[CrossRef]

Sánchez-Gil, J. A.

J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett. 93, 256804 (2004).
[CrossRef]

Saxler, J.

J. Saxler, J. G. Rivas, C. Janke, H. P. M. Pellemans, P. H. Bolivar, and H. Kurz, “Time-domain measurements of surface plasmon polaritons in the terahertz frequency range,” Phys. Rev. B 69, 155427 (2004).
[CrossRef]

Shkurinov, A.

M. Nazarov, F. Garet, D. Armand, A. Shkurinov, and J.-L. Coutaz, “Surface plasmon THz waves on gratings,” C. R. Phys. 9, 232-247 (2008).
[CrossRef]

M. M. Nazarov, J.-L. Coutaz, A. Shkurinov, and F. Garet, “THz surface plasmon jump between two metal edges,” Opt. Commun. 277, 33-39 (2007).
[CrossRef]

L. Mukina, M. Nazarov, and A. Shkurinov, “Propagation of THz plasmon pulse on corrugated and flat metal surface,” Surf. Sci. 600, 4771-4776 (2004).
[CrossRef]

Tamošiunas, V.

Tanaka, K.

H. Hirori, K. Yamashita, M. Nagai, and K. Tanaka, “Attenuated total reflection spectroscopy in time domain using terahertz coherent pulses,” Jpn. J. Appl. Phys. 43, 1287-1289 (2004).
[CrossRef]

Taylor, A.

Torosyan, G.

G. Torosyan, C. Rau, B. Pradarutti, and R. Beigang, “Generation and propagation of surface plasmons in periodic metallic structures,” Appl. Phys. Lett. 85, 3372-3374 (2004).
[CrossRef]

Tredicucci, A.

Unterrainer, K.

J. Kroell, J. Darmo, and K. Unterrainer, “High-performance terahertz electro-optic detector,” Electron. Lett. 40, 763-764 (2004).
[CrossRef]

Vass, E.

R. A. Höpfel, E. Vass, and E. Gornik, “Thermal excitation of two-dimensional plasma oscillations,” Phys. Rev. Lett. 49, 1667-1671 (1982).
[CrossRef]

Wang, K.

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376-379 (2004).
[CrossRef] [PubMed]

Ward, C.

D. Begley, R. Alexander, C. Ward, R. Miller, and R. Bell, “Propagation distances of surface electromagnetic waves in the far infrared,” Surf. Sci. 81, 245-251 (1979).
[CrossRef]

Ward, C. A.

Williams, R. E.

R. E. Williams, “Wet Etching,” in Gallium Arsenide Processing Techniques (Artech House, 1984), pp. 101-124.

Xu, J.

Yamashita, K.

H. Hirori, K. Yamashita, M. Nagai, and K. Tanaka, “Attenuated total reflection spectroscopy in time domain using terahertz coherent pulses,” Jpn. J. Appl. Phys. 43, 1287-1289 (2004).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

G. Torosyan, C. Rau, B. Pradarutti, and R. Beigang, “Generation and propagation of surface plasmons in periodic metallic structures,” Appl. Phys. Lett. 85, 3372-3374 (2004).
[CrossRef]

T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88, 061113 (2006).
[CrossRef]

C. R. Phys. (1)

M. Nazarov, F. Garet, D. Armand, A. Shkurinov, and J.-L. Coutaz, “Surface plasmon THz waves on gratings,” C. R. Phys. 9, 232-247 (2008).
[CrossRef]

Electron. Lett. (1)

J. Kroell, J. Darmo, and K. Unterrainer, “High-performance terahertz electro-optic detector,” Electron. Lett. 40, 763-764 (2004).
[CrossRef]

Jpn. J. Appl. Phys. (1)

H. Hirori, K. Yamashita, M. Nagai, and K. Tanaka, “Attenuated total reflection spectroscopy in time domain using terahertz coherent pulses,” Jpn. J. Appl. Phys. 43, 1287-1289 (2004).
[CrossRef]

Nature (1)

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376-379 (2004).
[CrossRef] [PubMed]

Opt. Commun. (1)

M. M. Nazarov, J.-L. Coutaz, A. Shkurinov, and F. Garet, “THz surface plasmon jump between two metal edges,” Opt. Commun. 277, 33-39 (2007).
[CrossRef]

Opt. Express (3)

Phys. Rev. B (1)

J. Saxler, J. G. Rivas, C. Janke, H. P. M. Pellemans, P. H. Bolivar, and H. Kurz, “Time-domain measurements of surface plasmon polaritons in the terahertz frequency range,” Phys. Rev. B 69, 155427 (2004).
[CrossRef]

Phys. Rev. Lett. (2)

R. A. Höpfel, E. Vass, and E. Gornik, “Thermal excitation of two-dimensional plasma oscillations,” Phys. Rev. Lett. 49, 1667-1671 (1982).
[CrossRef]

J. G. Rivas, M. Kuttge, P. H. Bolivar, H. Kurz, and J. A. Sánchez-Gil, “Propagation of surface plasmon polaritons on semiconductor gratings,” Phys. Rev. Lett. 93, 256804 (2004).
[CrossRef]

Surf. Sci. (2)

L. Mukina, M. Nazarov, and A. Shkurinov, “Propagation of THz plasmon pulse on corrugated and flat metal surface,” Surf. Sci. 600, 4771-4776 (2004).
[CrossRef]

D. Begley, R. Alexander, C. Ward, R. Miller, and R. Bell, “Propagation distances of surface electromagnetic waves in the far infrared,” Surf. Sci. 81, 245-251 (1979).
[CrossRef]

Other (4)

D. Maystre, “Integral Methods,” in Electromagnetic Theory of Gratings, R.Petit, ed. (Springer, 1980), pp. 63-100.
[CrossRef]

R. E. Williams, “Wet Etching,” in Gallium Arsenide Processing Techniques (Artech House, 1984), pp. 101-124.

D. W. Pohl, “Near-field optics and the surface plasmon polariton,” in Near-Field Optics and Surface Plasmon Polaritons, S.Kawata, ed. (Springer, 2001), pp. 1-13.
[CrossRef]

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Groove profiles for varying angle α of the bevel in the upper part. Schematic of practically realizable semiconductor-gold-air structure in the lower part. (b) Amplitude of electric field corresponding to the grating profiles in (a). (c) Dependence of electric field amplitude on the groove depth for sinusoidal and trapezoidal ( α = 35 ° ) groove shape. (d) Electric field distribution in the region above the grooves.

Fig. 2
Fig. 2

(a) Experimental arrangement for the excitation of THz SPP by groove diffraction gratings. The distance between gratings is 10 mm . The length of grating is L G = 4.5 mm for uniform gratings (samples A,B,C,D, and SP1) and L G = 4.65 mm for the multisection grating (sample SP2). (b) Photograph of SP1. (c) Dektak (TM) profilometer-measured groove profile of sample SP1. (d) Photograph of one grating of SP2 device.

Fig. 3
Fig. 3

Geometry of the experiment for (a) reflection measurements and (b) excitation, propagating and decoupling of SPP. The magnetic field is oriented in x-direction (normal to the plot).

Fig. 4
Fig. 4

(a) THz transient of reflection from sample C. (b) Amplitude of normalized reflection spectra at an angle of incidence of 45° for samples A, B, C, and D; (b) corresponding phase.

Fig. 5
Fig. 5

(a) Time-profile of SPP excited and decoupled on the gratings of sample SP1 (high-pass filter with f T = 0.4 THz applied to signal). The pulse envelope (thin line) is calculated assuming an incident Gaussian THz beam with 2.1 mm diameter. (b) Spectral content of the excited THz SPP where the first three modes are distinguishable.

Fig. 6
Fig. 6

(a) Time profile of THz SPP excited on the multisection groove grating (sample SP2). (b) Time–frequency structure of the excited THz SPP. The horizontal lines show the expected SPP modes. (c) Temporal evolution of dedicated SPP frequencies obtained from (a) along marked lines proves a temporal localization of individual frequency components of excited SPP.

Tables (1)

Tables Icon

Table 1 Fabricated Gratings

Metrics