Abstract

Photopolymer materials are practical materials for use as holographic recording media. To further develop such materials, a deeper understanding of the photochemical mechanisms present during the formation of holographic gratings in these materials has become ever more crucial. This is especially true of the photoinitiation process, which has already received much attention in the literature. Typically the absorption mechanism varies with exposure time. This has been previously investigated in association with several effects taking place during recording. Since holographic data storage requires multiple sequential short exposures, it is necessary to verify the temporal change in photosensitizer concentration. Postexposure effects have also been discussed in the literature, however, such studies do not include effects such as photosensitizer recovery and bleaching. We report on experimental results and theoretical analysis of the recovery and bleaching mechanisms, which arise during exposure and postexposure for two different types of photosensitizers, methylene blue and erythrosine B in a polyvinylalcohol–acrylamide based photopolymer material.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttgart) 112, 449-463 (2001).
    [CrossRef]
  2. M. R. Gleeson, S. Liu, S. O'Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008).
    [CrossRef]
  3. S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B 77, 639-662 (2003).
    [CrossRef]
  4. C. Carre, D. J. Lougnot, and J. P. Fouassier, “Holography as a tool for mechanistic and kinetic studies of photopolymerization reactions--a theoretical and experimental approach,” Macromolecules 22, 791-799 (1989).
    [CrossRef]
  5. C. Carre and D. J. Lougnot, “Photopolymerizable material for holographic recording in the 450-550 nm domain,” J. Opt. (Paris) 21, 147-152 (1990).
    [CrossRef]
  6. S. Gallego, M. Ortuno, C. Neipp, A. Marquez, A. Belendez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers,” Opt. Express 13, 1939-1947 (2005).
    [CrossRef] [PubMed]
  7. M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O'Neill, and J. T. Sheridan, “The effects of absorption and inhibition during grating formation in photopolymer materials,” J. Opt. Soc. Am. B 23, 2079-2088 (2006).
    [CrossRef]
  8. M. R. Gleeson, J. V. Kelly, D. Sabol, C. E. Close, S. Liu, and J. T. Sheridan, “Modelling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 1-9 (2007).
    [CrossRef]
  9. C. R. Fernández-Pouza, R. Mallavia, and S. Blaya, “Holographic determination of the irradiance dependence of linear-chain polymerization rates in photopolymer dry films,” Appl. Phys. B 70, 537-542 (2000).
    [CrossRef]
  10. M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25, 396-406 (2008).
    [CrossRef]
  11. L. Carretero, S. Blaya, R. Mallavia, R. Madrigal, A. Belendez, and A. Fimia, “Theoretical and experimental study of the bleaching of a dye in a film-polymerization process,” Appl. Opt. 37, 4496-4499 (1998).
    [CrossRef]
  12. A. Gilbert and J. Baggott, Essentials of Molecular Photochemistry (Blackwell Scientific, 1991).
  13. J. B. Birk, Organic Molecular Photophysics (Wiley, 1975).
  14. A. Fimia, N. Lopez, F. Mateos, R. Sastre, J. Pineda, and F. Amatguerri, “Elimination of oxygen inhibition in photopolymer system used as holographic recording materials,” J. Mod. Opt. 40, 699-706 (1993).
    [CrossRef]
  15. A. K. O'Brien and C. N. Bowman, “Modelling the effect of oxygen on photopolymerization kinetics,” Macromol. Theory Simul. 15, 176-182 (2006).
    [CrossRef]
  16. A. V. Galstyan, S. Hakobyan, S. Harbour, and T. Galstian, “Study of the inhibition period prior to the holographic grating formation in liquid crystal photopolymerizable materials,” http://elc.org/Documents/T._V_Galstian_2004_05_05_11_13_17.pdf (2004).
  17. M. D. Goodner and C. N. Bowman, “Modelling primary radical termination and its effects on autoacceleration in photopolymerization kinetics,” Macromolecules 32, 6552-6559 (1999).
    [CrossRef]
  18. G. Odian, Principles of Polymerization (Wiley, 1991).
  19. N. J. Turro, Modern Molecular Photochemistry (University Science, 1991), p. 103.
  20. “Mathematica 5.2 documentation” (Wolfram Research, 2008), http://documents.wolfram.com/mathematica/functions/PolyLog.
  21. S. Bartkiewicz and A. Miniewicz, “Methylene blue sensitized poly(methyl methacrylate) matrix: a novel holographic material,” Appl. Opt. 34, 5175-5178 (1995).
    [CrossRef] [PubMed]
  22. G. Qiaoxia, H. Mingju, and G. Fuxi, “Photobleaching process of xanthene dyes initiated by N-phenylglycine in the polyvinylalcohol film,” Elsevier, Dyes Pigm. 69, 204-209 (2006).
    [CrossRef]
  23. R. G. Stomphorst, G. van der Zwan, M. A. M. J. van Zandvoort, A. B. Sieval, H. Zuihof, F. J. Vergeldt, and T. J. Schaafsma, “Spectroscopic study of Erythrosine B in PVA films,” J. Phys. Chem. A 105, 4235-4240 (2001).
    [CrossRef]
  24. M. C. Cole, InPhase Technologies, Longmont, Colorado, USA (personal communication, 2007).

2008

M. R. Gleeson, S. Liu, S. O'Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008).
[CrossRef]

M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25, 396-406 (2008).
[CrossRef]

2007

M. R. Gleeson, J. V. Kelly, D. Sabol, C. E. Close, S. Liu, and J. T. Sheridan, “Modelling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 1-9 (2007).
[CrossRef]

2006

M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O'Neill, and J. T. Sheridan, “The effects of absorption and inhibition during grating formation in photopolymer materials,” J. Opt. Soc. Am. B 23, 2079-2088 (2006).
[CrossRef]

A. K. O'Brien and C. N. Bowman, “Modelling the effect of oxygen on photopolymerization kinetics,” Macromol. Theory Simul. 15, 176-182 (2006).
[CrossRef]

G. Qiaoxia, H. Mingju, and G. Fuxi, “Photobleaching process of xanthene dyes initiated by N-phenylglycine in the polyvinylalcohol film,” Elsevier, Dyes Pigm. 69, 204-209 (2006).
[CrossRef]

2005

2003

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B 77, 639-662 (2003).
[CrossRef]

2001

J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttgart) 112, 449-463 (2001).
[CrossRef]

R. G. Stomphorst, G. van der Zwan, M. A. M. J. van Zandvoort, A. B. Sieval, H. Zuihof, F. J. Vergeldt, and T. J. Schaafsma, “Spectroscopic study of Erythrosine B in PVA films,” J. Phys. Chem. A 105, 4235-4240 (2001).
[CrossRef]

2000

C. R. Fernández-Pouza, R. Mallavia, and S. Blaya, “Holographic determination of the irradiance dependence of linear-chain polymerization rates in photopolymer dry films,” Appl. Phys. B 70, 537-542 (2000).
[CrossRef]

1999

M. D. Goodner and C. N. Bowman, “Modelling primary radical termination and its effects on autoacceleration in photopolymerization kinetics,” Macromolecules 32, 6552-6559 (1999).
[CrossRef]

1998

1995

1993

A. Fimia, N. Lopez, F. Mateos, R. Sastre, J. Pineda, and F. Amatguerri, “Elimination of oxygen inhibition in photopolymer system used as holographic recording materials,” J. Mod. Opt. 40, 699-706 (1993).
[CrossRef]

1990

C. Carre and D. J. Lougnot, “Photopolymerizable material for holographic recording in the 450-550 nm domain,” J. Opt. (Paris) 21, 147-152 (1990).
[CrossRef]

1989

C. Carre, D. J. Lougnot, and J. P. Fouassier, “Holography as a tool for mechanistic and kinetic studies of photopolymerization reactions--a theoretical and experimental approach,” Macromolecules 22, 791-799 (1989).
[CrossRef]

Acebal, P.

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B 77, 639-662 (2003).
[CrossRef]

Amatguerri, F.

A. Fimia, N. Lopez, F. Mateos, R. Sastre, J. Pineda, and F. Amatguerri, “Elimination of oxygen inhibition in photopolymer system used as holographic recording materials,” J. Mod. Opt. 40, 699-706 (1993).
[CrossRef]

Baggott, J.

A. Gilbert and J. Baggott, Essentials of Molecular Photochemistry (Blackwell Scientific, 1991).

Bartkiewicz, S.

Belendez, A.

Birk, J. B.

J. B. Birk, Organic Molecular Photophysics (Wiley, 1975).

Blaya, S.

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B 77, 639-662 (2003).
[CrossRef]

C. R. Fernández-Pouza, R. Mallavia, and S. Blaya, “Holographic determination of the irradiance dependence of linear-chain polymerization rates in photopolymer dry films,” Appl. Phys. B 70, 537-542 (2000).
[CrossRef]

L. Carretero, S. Blaya, R. Mallavia, R. Madrigal, A. Belendez, and A. Fimia, “Theoretical and experimental study of the bleaching of a dye in a film-polymerization process,” Appl. Opt. 37, 4496-4499 (1998).
[CrossRef]

Bowman, C. N.

A. K. O'Brien and C. N. Bowman, “Modelling the effect of oxygen on photopolymerization kinetics,” Macromol. Theory Simul. 15, 176-182 (2006).
[CrossRef]

M. D. Goodner and C. N. Bowman, “Modelling primary radical termination and its effects on autoacceleration in photopolymerization kinetics,” Macromolecules 32, 6552-6559 (1999).
[CrossRef]

Carre, C.

C. Carre and D. J. Lougnot, “Photopolymerizable material for holographic recording in the 450-550 nm domain,” J. Opt. (Paris) 21, 147-152 (1990).
[CrossRef]

C. Carre, D. J. Lougnot, and J. P. Fouassier, “Holography as a tool for mechanistic and kinetic studies of photopolymerization reactions--a theoretical and experimental approach,” Macromolecules 22, 791-799 (1989).
[CrossRef]

Carretero, L.

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B 77, 639-662 (2003).
[CrossRef]

L. Carretero, S. Blaya, R. Mallavia, R. Madrigal, A. Belendez, and A. Fimia, “Theoretical and experimental study of the bleaching of a dye in a film-polymerization process,” Appl. Opt. 37, 4496-4499 (1998).
[CrossRef]

Close, C. E.

Cole, M. C.

M. C. Cole, InPhase Technologies, Longmont, Colorado, USA (personal communication, 2007).

Fernández-Pouza, C. R.

C. R. Fernández-Pouza, R. Mallavia, and S. Blaya, “Holographic determination of the irradiance dependence of linear-chain polymerization rates in photopolymer dry films,” Appl. Phys. B 70, 537-542 (2000).
[CrossRef]

Fimia, A.

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B 77, 639-662 (2003).
[CrossRef]

L. Carretero, S. Blaya, R. Mallavia, R. Madrigal, A. Belendez, and A. Fimia, “Theoretical and experimental study of the bleaching of a dye in a film-polymerization process,” Appl. Opt. 37, 4496-4499 (1998).
[CrossRef]

A. Fimia, N. Lopez, F. Mateos, R. Sastre, J. Pineda, and F. Amatguerri, “Elimination of oxygen inhibition in photopolymer system used as holographic recording materials,” J. Mod. Opt. 40, 699-706 (1993).
[CrossRef]

Fouassier, J. P.

C. Carre, D. J. Lougnot, and J. P. Fouassier, “Holography as a tool for mechanistic and kinetic studies of photopolymerization reactions--a theoretical and experimental approach,” Macromolecules 22, 791-799 (1989).
[CrossRef]

Fuxi, G.

G. Qiaoxia, H. Mingju, and G. Fuxi, “Photobleaching process of xanthene dyes initiated by N-phenylglycine in the polyvinylalcohol film,” Elsevier, Dyes Pigm. 69, 204-209 (2006).
[CrossRef]

Gallego, S.

Galstian, T.

A. V. Galstyan, S. Hakobyan, S. Harbour, and T. Galstian, “Study of the inhibition period prior to the holographic grating formation in liquid crystal photopolymerizable materials,” http://elc.org/Documents/T._V_Galstian_2004_05_05_11_13_17.pdf (2004).

Galstyan, A. V.

A. V. Galstyan, S. Hakobyan, S. Harbour, and T. Galstian, “Study of the inhibition period prior to the holographic grating formation in liquid crystal photopolymerizable materials,” http://elc.org/Documents/T._V_Galstian_2004_05_05_11_13_17.pdf (2004).

Gilbert, A.

A. Gilbert and J. Baggott, Essentials of Molecular Photochemistry (Blackwell Scientific, 1991).

Gleeson, M. R.

M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25, 396-406 (2008).
[CrossRef]

M. R. Gleeson, S. Liu, S. O'Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008).
[CrossRef]

M. R. Gleeson, J. V. Kelly, D. Sabol, C. E. Close, S. Liu, and J. T. Sheridan, “Modelling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 1-9 (2007).
[CrossRef]

M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O'Neill, and J. T. Sheridan, “The effects of absorption and inhibition during grating formation in photopolymer materials,” J. Opt. Soc. Am. B 23, 2079-2088 (2006).
[CrossRef]

Goodner, M. D.

M. D. Goodner and C. N. Bowman, “Modelling primary radical termination and its effects on autoacceleration in photopolymerization kinetics,” Macromolecules 32, 6552-6559 (1999).
[CrossRef]

Hakobyan, S.

A. V. Galstyan, S. Hakobyan, S. Harbour, and T. Galstian, “Study of the inhibition period prior to the holographic grating formation in liquid crystal photopolymerizable materials,” http://elc.org/Documents/T._V_Galstian_2004_05_05_11_13_17.pdf (2004).

Harbour, S.

A. V. Galstyan, S. Hakobyan, S. Harbour, and T. Galstian, “Study of the inhibition period prior to the holographic grating formation in liquid crystal photopolymerizable materials,” http://elc.org/Documents/T._V_Galstian_2004_05_05_11_13_17.pdf (2004).

Kelly, J. V.

Lawrence, J. R.

J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttgart) 112, 449-463 (2001).
[CrossRef]

Liu, S.

M. R. Gleeson, S. Liu, S. O'Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008).
[CrossRef]

M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25, 396-406 (2008).
[CrossRef]

M. R. Gleeson, J. V. Kelly, D. Sabol, C. E. Close, S. Liu, and J. T. Sheridan, “Modelling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 1-9 (2007).
[CrossRef]

Lopez, N.

A. Fimia, N. Lopez, F. Mateos, R. Sastre, J. Pineda, and F. Amatguerri, “Elimination of oxygen inhibition in photopolymer system used as holographic recording materials,” J. Mod. Opt. 40, 699-706 (1993).
[CrossRef]

Lougnot, D. J.

C. Carre and D. J. Lougnot, “Photopolymerizable material for holographic recording in the 450-550 nm domain,” J. Opt. (Paris) 21, 147-152 (1990).
[CrossRef]

C. Carre, D. J. Lougnot, and J. P. Fouassier, “Holography as a tool for mechanistic and kinetic studies of photopolymerization reactions--a theoretical and experimental approach,” Macromolecules 22, 791-799 (1989).
[CrossRef]

Madrigal, R.

Madrigal, R. F.

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B 77, 639-662 (2003).
[CrossRef]

Mallavia, R.

C. R. Fernández-Pouza, R. Mallavia, and S. Blaya, “Holographic determination of the irradiance dependence of linear-chain polymerization rates in photopolymer dry films,” Appl. Phys. B 70, 537-542 (2000).
[CrossRef]

L. Carretero, S. Blaya, R. Mallavia, R. Madrigal, A. Belendez, and A. Fimia, “Theoretical and experimental study of the bleaching of a dye in a film-polymerization process,” Appl. Opt. 37, 4496-4499 (1998).
[CrossRef]

Marquez, A.

Mateos, F.

A. Fimia, N. Lopez, F. Mateos, R. Sastre, J. Pineda, and F. Amatguerri, “Elimination of oxygen inhibition in photopolymer system used as holographic recording materials,” J. Mod. Opt. 40, 699-706 (1993).
[CrossRef]

Mingju, H.

G. Qiaoxia, H. Mingju, and G. Fuxi, “Photobleaching process of xanthene dyes initiated by N-phenylglycine in the polyvinylalcohol film,” Elsevier, Dyes Pigm. 69, 204-209 (2006).
[CrossRef]

Miniewicz, A.

Neipp, C.

O'Brien, A. K.

A. K. O'Brien and C. N. Bowman, “Modelling the effect of oxygen on photopolymerization kinetics,” Macromol. Theory Simul. 15, 176-182 (2006).
[CrossRef]

Odian, G.

G. Odian, Principles of Polymerization (Wiley, 1991).

O'Duill, S.

M. R. Gleeson, S. Liu, S. O'Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008).
[CrossRef]

O'Neill, F. T.

Ortuno, M.

Pascual, I.

Pineda, J.

A. Fimia, N. Lopez, F. Mateos, R. Sastre, J. Pineda, and F. Amatguerri, “Elimination of oxygen inhibition in photopolymer system used as holographic recording materials,” J. Mod. Opt. 40, 699-706 (1993).
[CrossRef]

Qiaoxia, G.

G. Qiaoxia, H. Mingju, and G. Fuxi, “Photobleaching process of xanthene dyes initiated by N-phenylglycine in the polyvinylalcohol film,” Elsevier, Dyes Pigm. 69, 204-209 (2006).
[CrossRef]

Sabol, D.

M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25, 396-406 (2008).
[CrossRef]

M. R. Gleeson, J. V. Kelly, D. Sabol, C. E. Close, S. Liu, and J. T. Sheridan, “Modelling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 1-9 (2007).
[CrossRef]

Sastre, R.

A. Fimia, N. Lopez, F. Mateos, R. Sastre, J. Pineda, and F. Amatguerri, “Elimination of oxygen inhibition in photopolymer system used as holographic recording materials,” J. Mod. Opt. 40, 699-706 (1993).
[CrossRef]

Schaafsma, T. J.

R. G. Stomphorst, G. van der Zwan, M. A. M. J. van Zandvoort, A. B. Sieval, H. Zuihof, F. J. Vergeldt, and T. J. Schaafsma, “Spectroscopic study of Erythrosine B in PVA films,” J. Phys. Chem. A 105, 4235-4240 (2001).
[CrossRef]

Sheridan, J. T.

M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25, 396-406 (2008).
[CrossRef]

M. R. Gleeson, S. Liu, S. O'Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008).
[CrossRef]

M. R. Gleeson, J. V. Kelly, D. Sabol, C. E. Close, S. Liu, and J. T. Sheridan, “Modelling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 1-9 (2007).
[CrossRef]

M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O'Neill, and J. T. Sheridan, “The effects of absorption and inhibition during grating formation in photopolymer materials,” J. Opt. Soc. Am. B 23, 2079-2088 (2006).
[CrossRef]

S. Gallego, M. Ortuno, C. Neipp, A. Marquez, A. Belendez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers,” Opt. Express 13, 1939-1947 (2005).
[CrossRef] [PubMed]

J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttgart) 112, 449-463 (2001).
[CrossRef]

Sieval, A. B.

R. G. Stomphorst, G. van der Zwan, M. A. M. J. van Zandvoort, A. B. Sieval, H. Zuihof, F. J. Vergeldt, and T. J. Schaafsma, “Spectroscopic study of Erythrosine B in PVA films,” J. Phys. Chem. A 105, 4235-4240 (2001).
[CrossRef]

Stomphorst, R. G.

R. G. Stomphorst, G. van der Zwan, M. A. M. J. van Zandvoort, A. B. Sieval, H. Zuihof, F. J. Vergeldt, and T. J. Schaafsma, “Spectroscopic study of Erythrosine B in PVA films,” J. Phys. Chem. A 105, 4235-4240 (2001).
[CrossRef]

Turro, N. J.

N. J. Turro, Modern Molecular Photochemistry (University Science, 1991), p. 103.

Ulibarrena, M.

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B 77, 639-662 (2003).
[CrossRef]

van der Zwan, G.

R. G. Stomphorst, G. van der Zwan, M. A. M. J. van Zandvoort, A. B. Sieval, H. Zuihof, F. J. Vergeldt, and T. J. Schaafsma, “Spectroscopic study of Erythrosine B in PVA films,” J. Phys. Chem. A 105, 4235-4240 (2001).
[CrossRef]

van Zandvoort, M. A. M. J.

R. G. Stomphorst, G. van der Zwan, M. A. M. J. van Zandvoort, A. B. Sieval, H. Zuihof, F. J. Vergeldt, and T. J. Schaafsma, “Spectroscopic study of Erythrosine B in PVA films,” J. Phys. Chem. A 105, 4235-4240 (2001).
[CrossRef]

Vergeldt, F. J.

R. G. Stomphorst, G. van der Zwan, M. A. M. J. van Zandvoort, A. B. Sieval, H. Zuihof, F. J. Vergeldt, and T. J. Schaafsma, “Spectroscopic study of Erythrosine B in PVA films,” J. Phys. Chem. A 105, 4235-4240 (2001).
[CrossRef]

Zuihof, H.

R. G. Stomphorst, G. van der Zwan, M. A. M. J. van Zandvoort, A. B. Sieval, H. Zuihof, F. J. Vergeldt, and T. J. Schaafsma, “Spectroscopic study of Erythrosine B in PVA films,” J. Phys. Chem. A 105, 4235-4240 (2001).
[CrossRef]

Appl. Opt.

Appl. Phys. B

C. R. Fernández-Pouza, R. Mallavia, and S. Blaya, “Holographic determination of the irradiance dependence of linear-chain polymerization rates in photopolymer dry films,” Appl. Phys. B 70, 537-542 (2000).
[CrossRef]

S. Blaya, L. Carretero, R. F. Madrigal, M. Ulibarrena, P. Acebal, and A. Fimia, “Photopolymerization model for holographic gratings formation in photopolymers,” Appl. Phys. B 77, 639-662 (2003).
[CrossRef]

Dyes Pigm.

G. Qiaoxia, H. Mingju, and G. Fuxi, “Photobleaching process of xanthene dyes initiated by N-phenylglycine in the polyvinylalcohol film,” Elsevier, Dyes Pigm. 69, 204-209 (2006).
[CrossRef]

J. Appl. Phys.

M. R. Gleeson, S. Liu, S. O'Duill, and J. T. Sheridan, “Examination of the photoinitiation processes in photopolymer materials,” J. Appl. Phys. 104, 064917 (2008).
[CrossRef]

M. R. Gleeson, J. V. Kelly, D. Sabol, C. E. Close, S. Liu, and J. T. Sheridan, “Modelling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 1-9 (2007).
[CrossRef]

J. Mod. Opt.

A. Fimia, N. Lopez, F. Mateos, R. Sastre, J. Pineda, and F. Amatguerri, “Elimination of oxygen inhibition in photopolymer system used as holographic recording materials,” J. Mod. Opt. 40, 699-706 (1993).
[CrossRef]

J. Opt. (Paris)

C. Carre and D. J. Lougnot, “Photopolymerizable material for holographic recording in the 450-550 nm domain,” J. Opt. (Paris) 21, 147-152 (1990).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. A

R. G. Stomphorst, G. van der Zwan, M. A. M. J. van Zandvoort, A. B. Sieval, H. Zuihof, F. J. Vergeldt, and T. J. Schaafsma, “Spectroscopic study of Erythrosine B in PVA films,” J. Phys. Chem. A 105, 4235-4240 (2001).
[CrossRef]

Macromol. Theory Simul.

A. K. O'Brien and C. N. Bowman, “Modelling the effect of oxygen on photopolymerization kinetics,” Macromol. Theory Simul. 15, 176-182 (2006).
[CrossRef]

Macromolecules

M. D. Goodner and C. N. Bowman, “Modelling primary radical termination and its effects on autoacceleration in photopolymerization kinetics,” Macromolecules 32, 6552-6559 (1999).
[CrossRef]

C. Carre, D. J. Lougnot, and J. P. Fouassier, “Holography as a tool for mechanistic and kinetic studies of photopolymerization reactions--a theoretical and experimental approach,” Macromolecules 22, 791-799 (1989).
[CrossRef]

Opt. Express

Optik (Stuttgart)

J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Stuttgart) 112, 449-463 (2001).
[CrossRef]

Other

G. Odian, Principles of Polymerization (Wiley, 1991).

N. J. Turro, Modern Molecular Photochemistry (University Science, 1991), p. 103.

“Mathematica 5.2 documentation” (Wolfram Research, 2008), http://documents.wolfram.com/mathematica/functions/PolyLog.

A. Gilbert and J. Baggott, Essentials of Molecular Photochemistry (Blackwell Scientific, 1991).

J. B. Birk, Organic Molecular Photophysics (Wiley, 1975).

A. V. Galstyan, S. Hakobyan, S. Harbour, and T. Galstian, “Study of the inhibition period prior to the holographic grating formation in liquid crystal photopolymerizable materials,” http://elc.org/Documents/T._V_Galstian_2004_05_05_11_13_17.pdf (2004).

M. C. Cole, InPhase Technologies, Longmont, Colorado, USA (personal communication, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Flow chart illustrating the photoinitiation mechanisms of the photosensitizer, MB, and EB.

Fig. 2
Fig. 2

(a) Experimental data and curve fits T ( t ) with error bars, and (b) photosensitizer as functions of time A ( t ) .

Fig. 3
Fig. 3

Representation of normalized transmittance curves obtained experimentally for estimation of recovery mechanism of active photosensitizer.

Fig. 4
Fig. 4

Fit to experimental data of recovery versus postexposure time off ( t OFF ) of MB for different exposure times: t 1 = 5 s (solid curve), t 2 = 10 s (long dashed curve), t 3 = 20 s (dashed curve), and t 4 = 75 s (short dashed curve).

Fig. 5
Fig. 5

Schematic representation of the combining of the photosensitizer concentration (decaying curve) and recovery of MB for t OFF with different initial exposure times: t 1 = 5 s (solid curve), t 2 = 10 s (long dashed curve), t 3 = 20 s (dashed curve), and t 4 = 75 s (short dashed curve).

Fig. 6
Fig. 6

Concentration of the bleached photosensitizer MB (dots), obtained experimentally as a function of exposure time, along with a best fit (solid curve).

Fig. 7
Fig. 7

Fit to experimental data of recovery versus postexposure time off ( t OFF ) of MB for curve (1) material cover plated (short dashed curve with big dots) and curve (2) uncover plated (long dashed curve with small dots).

Fig. 8
Fig. 8

Fit to experimental data of recovery versus postexposure time off ( t OFF ) of EB for different exposure times and rates: t 1 = 5 s (solid curve), t 2 = 10 s (long dashed curve), t 3 = 20 s (dashed curve), and t 4 = 75 s (short dashed curve).

Fig. 9
Fig. 9

Concentration of the bleached photosensitizer EB (dots), obtained experimentally as a function of exposure time, along with a best fit (solid curve).

Fig. 10
Fig. 10

Fit to experimental data of recovery versus postexposure time off ( t OFF ) of EB for (1) material cover plated (short dashed curve with big dots) and (2) uncover plated (long dashed curve with small dots).

Tables (4)

Tables Icon

Table 1 Absorption Parameter Extraction from Fits to Experimentally Obtained Transmittance Curves of MB for Different Illumination Intensities and Layer Thicknesses

Tables Icon

Table 2 Extracted Parameter Values of Recovery Produced by Fitting Experimental Data for MB

Tables Icon

Table 3 Absorption Parameter Extraction from Fits to Experimentally Obtained Transmittance Curves of EB for Different Layer Thicknesses and Illumination Intensities

Tables Icon

Table 4 Extracted Parameter Values of Recovery Process from Fits to Experimental Data of EB

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

d A ( t ) d t = ϕ I a ( t ) d + k r [ A 0 A b ( t ) A ( t ) ] .
d A b ( t ) d t k b I 0 A ( t ) ,
d A ( t ) d t ϕ I a ( t ) d .
I a ( t ) = I 0 { 1 exp [ ε A ( t ) d ] } ,
A ( t ) = ( ε d ) 1 log { 1 + [ exp ( ε A 0 d ) 1 ] exp ( ε ϕ I 0 t ) } .
A b ( t ) = k b 2 ε ϕ 2 d ( ε ϕ I 0 t { ε ϕ I 0 t 2 log [ 1 + exp ( ε ϕ I 0 t ) ( exp ( ε A 0 d ) 1 ) 1 + exp ( ε ϕ I 0 t ) ( exp ( ε A 0 d ) 1 ) ] } + 2 Li 2 [ + exp ( ε ϕ I 0 t ) 1 exp ( ε A 0 d ) ] 2 Li 2 [ exp ( ε ϕ I 0 t ) 1 exp ( ε A 0 d ) ] ) .
T ( t ) = T s f 1 + [ exp ( ε d A 0 ) 1 ] exp ( ε ϕ I 0 t ) .
d A ( t ) d t = k r [ A 0 A b ( t exp ) A ( t ) ] .
A r ( t ) = [ A 0 A b ( t exp ) ] [ A 0 A b ( t exp ) A ( t exp ) ] exp [ k r ( t t exp ) ] ,
Δ A r = A ( t III ) A ( t I ) .
A b ( t ) = A 0 A ( t OFF ) .

Metrics