Abstract

A high-Q Mach–Zehnder interferometer (MZI)-coupled microring is presented for optical sensing with high sensitivity and a large measurement range. By optimizing the length difference between the two arms of the MZI coupler, the MZI-coupled microring with a high-Q factor and high extinction ratio is obtained. In the present example, the Q factor of the designed silicon-nanowire-based microring is as high as 1.8×105 when the silicon nanowire has a propagation loss L=2dBcm. Due to this high-Q factor, the sensitivity for the change Δn of the effective refractive index is about 105106 by measuring the shift of the resonant wavelength. Because of the wavelength dependence of the coupling ratio of the MZI coupler, it is possible to have only one resonant wavelength with a high extinction ratio in a very large wavelength span [i.e., the quasi-free spectral range of the MZI-coupler microring], which offers a very large measurement range covering the refractive index change of gas/liquid samples (e.g., 0Δn<0.48 in the present example).

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520-2522 (2006).
    [CrossRef]
  2. G. Nemova and R. Kashyap, “Theoretical model of a planar integrated refractive index sensor based on surface plasmon-polariton excitation with a long period grating,” J. Opt. Soc. Am. B 24, 2696 (2007).
    [CrossRef]
  3. S. Cho and N. M. Jokerst, “A polymer microdisk photonic sensor integrated onto silicon,” IEEE Photon. Technol. Lett. 18, 2096-2098 (2006).
    [CrossRef]
  4. R. W. Boyd and J. E. Heebner, “Sensitive disk resonator photonic biosensor,” Appl. Opt. 40, 5742-5747 (2001).
    [CrossRef]
  5. C.-Y. Chao and L. J. Guoa, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527-159 (2003).
    [CrossRef]
  6. A. M. Armani and K. J. Vahala, “Heavy water detection using ultra-high-Q microcavities,” Opt. Lett. 31, 1896-1898 (2006).
    [CrossRef] [PubMed]
  7. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783-787 (2007).
    [CrossRef] [PubMed]
  8. L. Chen, N. Sherwood-Droz, and M. Lipson, “Compact bandwidth-tunable microring resonators,” Opt. Lett. 32, 3361-3363 (2007).
    [CrossRef] [PubMed]
  9. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65-71 (2007).
    [CrossRef]
  10. D.-X. Xu, A. Densmore, A. Delâge, P. Waldron, R. McKinnon, S. Janz, J. Lapointe, G. Lopinski, T. Mischki, E. Post, P. Cheben, and J. H. Schmid, “Folded cavity SOI microring sensors for high sensitivity and real time measurement of biomolecular binding,” Opt. Express 16, 15137-15148 (2008).
    [CrossRef] [PubMed]
  11. D. Dai and S. He, “Highly sensitive sensor with large measurement range realized with two cascaded microring resonators,” Opt. Commun. 279, 89-93 (2007).
    [CrossRef]
  12. D.-X. Xu, A. Densmore, P. Waldron, J. Lapointe, E. Post, A. Delâge, S. Janz, P. Cheben, J. H. Schmid, and B. Lamontagne, “High bandwidth SOI photonic wire ring resonators using MMI couplers,” Opt. Express 15, 3149-3155 (2007).
    [CrossRef] [PubMed]
  13. W. M. J. Green, R. K. Lee, G. A. DeRose, A. Scherer, and A. Yariv, “Hybrid InGaAsP-InP Mach-Zehnder racetrack resonator for thermooptic switching and coupling control,” Opt. Express 13, 1651-1659 (2005).
    [CrossRef] [PubMed]
  14. L. Zhou and A. W. Poon, “Electrically reconfigurable silicon microring resonator-based filter with waveguide-coupled feedback,” Opt. Express 15, 9194-9204 (2007).
    [CrossRef] [PubMed]
  15. S. Darmawan and M. K. Chin, “Critical coupling, oscillation, reflection, and transmission in optical waveguide-ring resonator systems,” J. Opt. Soc. Am. B 23, 834-841 (2006).
    [CrossRef]

2008 (1)

2007 (7)

2006 (4)

S. Darmawan and M. K. Chin, “Critical coupling, oscillation, reflection, and transmission in optical waveguide-ring resonator systems,” J. Opt. Soc. Am. B 23, 834-841 (2006).
[CrossRef]

A. M. Armani and K. J. Vahala, “Heavy water detection using ultra-high-Q microcavities,” Opt. Lett. 31, 1896-1898 (2006).
[CrossRef] [PubMed]

S. Cho and N. M. Jokerst, “A polymer microdisk photonic sensor integrated onto silicon,” IEEE Photon. Technol. Lett. 18, 2096-2098 (2006).
[CrossRef]

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520-2522 (2006).
[CrossRef]

2005 (1)

2003 (1)

C.-Y. Chao and L. J. Guoa, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527-159 (2003).
[CrossRef]

2001 (1)

Armani, A. M.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783-787 (2007).
[CrossRef] [PubMed]

A. M. Armani and K. J. Vahala, “Heavy water detection using ultra-high-Q microcavities,” Opt. Lett. 31, 1896-1898 (2006).
[CrossRef] [PubMed]

Boyd, R. W.

Chao, C.-Y.

C.-Y. Chao and L. J. Guoa, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527-159 (2003).
[CrossRef]

Cheben, P.

Chen, L.

Chin, M. K.

Cho, S.

S. Cho and N. M. Jokerst, “A polymer microdisk photonic sensor integrated onto silicon,” IEEE Photon. Technol. Lett. 18, 2096-2098 (2006).
[CrossRef]

Dai, D.

D. Dai and S. He, “Highly sensitive sensor with large measurement range realized with two cascaded microring resonators,” Opt. Commun. 279, 89-93 (2007).
[CrossRef]

Darmawan, S.

Delâge, A.

Densmore, A.

DeRose, G. A.

Flagan, R. C.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783-787 (2007).
[CrossRef] [PubMed]

Fraser, S. E.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783-787 (2007).
[CrossRef] [PubMed]

Green, W. M. J.

Guoa, L. J.

C.-Y. Chao and L. J. Guoa, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527-159 (2003).
[CrossRef]

He, S.

D. Dai and S. He, “Highly sensitive sensor with large measurement range realized with two cascaded microring resonators,” Opt. Commun. 279, 89-93 (2007).
[CrossRef]

Heebner, J. E.

Janz, S.

Jokerst, N. M.

S. Cho and N. M. Jokerst, “A polymer microdisk photonic sensor integrated onto silicon,” IEEE Photon. Technol. Lett. 18, 2096-2098 (2006).
[CrossRef]

Kashyap, R.

Kulkarni, R. P.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783-787 (2007).
[CrossRef] [PubMed]

Lamontagne, B.

D.-X. Xu, A. Densmore, P. Waldron, J. Lapointe, E. Post, A. Delâge, S. Janz, P. Cheben, J. H. Schmid, and B. Lamontagne, “High bandwidth SOI photonic wire ring resonators using MMI couplers,” Opt. Express 15, 3149-3155 (2007).
[CrossRef] [PubMed]

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520-2522 (2006).
[CrossRef]

Lapointe, J.

Lee, R. K.

Lipson, M.

Lopinski, G.

McKinnon, R.

Mischki, T.

Nemova, G.

Poon, A. W.

Post, E.

Scherer, A.

Schmid, J. H.

Sekaric, L.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65-71 (2007).
[CrossRef]

Sherwood-Droz, N.

Vahala, K. J.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783-787 (2007).
[CrossRef] [PubMed]

A. M. Armani and K. J. Vahala, “Heavy water detection using ultra-high-Q microcavities,” Opt. Lett. 31, 1896-1898 (2006).
[CrossRef] [PubMed]

Vlasov, Y.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65-71 (2007).
[CrossRef]

Waldron, P.

Xia, F.

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65-71 (2007).
[CrossRef]

Xu, D.-X.

Yariv, A.

Zhou, L.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

C.-Y. Chao and L. J. Guoa, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527-159 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18, 2520-2522 (2006).
[CrossRef]

S. Cho and N. M. Jokerst, “A polymer microdisk photonic sensor integrated onto silicon,” IEEE Photon. Technol. Lett. 18, 2096-2098 (2006).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nat. Photonics (1)

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1, 65-71 (2007).
[CrossRef]

Opt. Commun. (1)

D. Dai and S. He, “Highly sensitive sensor with large measurement range realized with two cascaded microring resonators,” Opt. Commun. 279, 89-93 (2007).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Science (1)

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783-787 (2007).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the present MZI-coupler microring.

Fig. 2
Fig. 2

Features for the present MZI-coupled microring with m MZI = 0 as ε varies. (a) Transmission spectrum. The curves with difference resonant dips are for the cases of ε = 0.001 , 0.003 , , 0.017 and the dashed curves mark the positions of the resonant wavelengths. (b) Q factor. (c) Extinction ratio. (d) Resonant wavelength λ MRR 0 . In these figures, the labels of diamond (◊), square (□), and triangle (Δ) are for the cases of L = 0.1 , 1.0 , and 2.0 dB cm , respectively.

Fig. 3
Fig. 3

Transmission spectrum for the present MZI-coupled microring with m MZI = 0 . (a) L = 0.1 , (b) L = 1.0 , and (c) L = 2.0 dB cm . Here the bold curves are for the coupling ratios k 14 and the fine lines are for 10 log 10 E 4 E 1 2 .

Fig. 4
Fig. 4

Special values ε 0 for the cases with different orders m MZI .

Fig. 5
Fig. 5

When L = 2 dB cm , the transmission spectrum for the present MZI-coupled microring with (a) m MZI = 0 , (b) m MZI = 1 , (c) m MZI = 2 , (d) m MZI = 3 , (e) m MZI = 4 , (f) m MZI = 5 , (g) m MZI = 6 , and (h) m MZI = 7 . Here the dashed curves are for the power coupling ratios k 14 and the solid curves are for E 4 E 1 2 .

Fig. 6
Fig. 6

Spectrum for the case of m MZI = 3 and ε 0 = 0.0134 when (a) there is a small change of the effective refractive index and (b) there is a large change of the effective refractive index. Here the dashed curves are for the coupling ratios k 14 and the solid curves are for E 4 E 1 2 .

Fig. 7
Fig. 7

Resonant wavelength λ MRR 0 as the effective refractive index changes.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

E 4 E 1 = k 14 + k 1 4 k 4 1 k 14 1 k 4 1 k 1 4 ,
[ E 4 E 4 ] = [ k 14 k 1 4 k 14 k 1 4 ] [ E 1 E 1 ] ,
k 14 = k 12 k 23 k 34 + k 12 k 2 3 k 3 4 ,
k 14 = k 12 k 23 k 34 + k 12 k 2 3 k 3 4 ,
k 1 4 = k 1 2 k 23 k 34 + k 1 2 k 2 3 k 3 4 ,
k 1 4 = k 1 2 k 23 k 34 + k 1 2 k 2 3 k 3 4 ,
[ k 12 k 1 2 k 12 k 1 2 ] = [ 1 K j K j K 1 K ] ,
[ k 34 k 3 4 k 34 k 3 4 ] = [ 1 K j K j K 1 K ] ,
k 23 = γ 23 exp ( j β l 23 ) ,
k 2 3 = γ 2 3 exp ( j β l 2 3 ) .
k 14 = [ ( 1 K ) γ 23 K γ 2 3 exp ( j β Δ l 23 ) 1 ] K γ 2 3 exp ( j β l 2 3 ) ,
k 14 = [ γ 23 γ 2 3 exp ( j β Δ l 23 ) + 1 ] j K 1 K γ 2 3 exp ( j β l 2 3 ) ,
k 1 4 = [ γ 23 γ 2 3 exp ( j β Δ l 23 ) + 1 ] j K 1 K γ 2 3 exp ( j β l 2 3 ) ,
k 1 4 = [ K γ 23 ( 1 K ) γ 2 3 exp ( j β Δ l 23 ) + 1 ] ( 1 K ) γ 2 3 exp ( j β l 2 3 ) ,
n Δ l 23 = ( m MZI + 1 2 ) λ MZI ,
n Δ L 23 = ( m MZI + 1 2 ) λ MZI = ( m MZI + 1 2 + ε ) λ MRR 0 ,

Metrics