Abstract

We present numerical and experimental analyses showing the formation of (2+1)D spatial photorefractive solitons at visible wavelengths in electrically biased lithium niobate crystals for ordinary and extraordinary light polarizations. Similarly sized self-trapped beams are observed for both polarizations, despite the polarization-dependent electro-optic coefficients. The tensorial character of the photovoltaic effect is shown to play a key role. The soliton-induced waveguides are able to properly guide telecommunication wavelengths. Finally, a higher degree of anisotropy is observed for ordinary polarized solitons for specific electro-optic configurations, which reveals the presence of the photorefractive field component perpendicular to the applied field. Experimental results are confirmed by a time-dependent numerical model.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Maneuf, R. Desailly, and C. Froehly, “Stable self-trapping of laser beams: observation in a nonlinear planar waveguide,” Opt. Commun. 65, 193-198 (1988).
    [Crossref]
  2. M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923-926 (1992).
    [Crossref] [PubMed]
  3. G. F. Calvo, B. Sturman, F. Agulló-López, and M. Carrascosa1, “Solitonlike beam propagation along light-induced singularity of space charge in fast photorefractive media,” Phys. Rev. Lett. 89, 033902-033906 (2002).
    [Crossref] [PubMed]
  4. M. Asaro, M. Sheldon, Z. Chen, O. Ostroverkhova, and W. E. Moerner, “Soliton-induced waveguides in an organic photorefractive glass,” Opt. Lett. 30, 519-521 (2005).
    [Crossref] [PubMed]
  5. H. Trompeter, W. Krolikowski, D. N. Neshev, A. S. Desyatnikov, A. A. Sukhorukov, Y. S. Kivshar, T. Pertsch, U. Peschel, and F. Lederer, “Bloch oscillations and Zener tunneling in two-dimensional photonic lattices,” Phys. Rev. Lett. 96, 053903-053907 (2006).
    [Crossref] [PubMed]
  6. M. F. Shih, M. Segev, and G. Salamo, “Circular waveguides induced by two dimensional bright steady state photorefractive spatial screening solitons,” Opt. Lett. 21, 931-933 (1996).
    [Crossref] [PubMed]
  7. M. Peccianti, C. Conti, and G. Assanto, “All-optical switching and logic gating with spatial solitons in liquid crystals,” Appl. Phys. Lett. 81, 3335-3337 (2002).
    [Crossref]
  8. J. S. Atchison, K. Al-hemyari, C. N. Ironside, R. S. Grant, and W. Sibbett, “Observation of spatial solitons in AlGaAs waveguides,” Electron. Lett. 28, 1879-1880 (1992).
    [Crossref]
  9. A. Barthelemy, S. Maneuf, and C. Froehly, “Propagation soliton et auto-confinement de faisceaux laser par non linearité optique de Kerr,” Opt. Commun. 55, 201-206 (1985).
    [Crossref]
  10. E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, M. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193-2195 (2004).
    [Crossref]
  11. R. Ryf, M. Wiki, G. Montemezzani, P. Gunter, and A. A. Zozulya, “Launching one-transverse-dimensional photorefractive solitons in KNbO3 crystals,” Opt. Commun. 159, 339-348 (1999).
    [Crossref]
  12. M. Chauvet, S. A. Hawkins, G. J. Salamo, M. Segev, D. F. Bliss, and G. Bryant, “Self-trapping of planar optical beams by use of the photorefractive effect in InP:Fe,” Opt. Lett. 21, 1333-1335 (1996).
    [Crossref] [PubMed]
  13. W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74, 5037-5039 (1995).
    [Crossref]
  14. G. Assanto and M. Peccianti, “Spatial solitons in nematic liquid crystals,” IEEE J. Quantum Electron. 39, 13-21 (2003).
    [Crossref]
  15. J. F. Henninot, J. F. Blach, and M. Warenghem, “Experimental study of the nonlocality of spatial optical solitons excited in nematic liquid crystal,” J. Opt. A, Pure Appl. Opt. 9, 20-25 (2007).
    [Crossref]
  16. G. Duree, J. Schultz, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. Sharp, and R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533-536 (1993).
    [Crossref] [PubMed]
  17. D. N. Neshev, T. J. Alexander, E. A. Ostrovskaya, Y. S. Kivshar, H. Martin, I. Makasyuk, and Z. Chen, “Observation of discrete vortex solitons in optically induced photonic lattices,” Phys. Rev. Lett. 92, 123903-123907 (2004).
    [Crossref] [PubMed]
  18. U. Kang, G. I. Stegeman, J. S. Aitchison, and N. Akhmediev, “Observation of Manakov spatial solitons in AlGaAs planar waveguides,” Phys. Rev. Lett. 76, 3699-3702 (1996).
    [Crossref] [PubMed]
  19. L. Friedrich, G. I. Stegeman, P. Millar, C. J. Hamilton, and J. S. Aitchison, “Dynamic electronically controlled angle steering of spatial solitons in AlGaAs slab waveguides,” Opt. Lett. 23, 1438-1440 (1998).
    [Crossref]
  20. M. Peccianti and G. Assanto, “Signal readdressing by steering of spatial solitons in bulk nematic liquid crystals,” Opt. Lett. 26, 1690-1692 (2001).
    [Crossref]
  21. M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77, 7-9 (2000).
    [Crossref]
  22. M. Segev, G. C. Valley, S. R. Singh, M. I. Carvalho, and D. N. Christodoulides, “Vector photorefractive spatial solitons,” Opt. Lett. 20, 1764-1766 (1995).
    [Crossref] [PubMed]
  23. S. R. Singh, M. I. Carvalho, and D. N. Christodoulides, “Vector interactions of steady-state planar solitons in biased photorefractive media,” Opt. Lett. 20, 2177-2179 (1995).
    [Crossref] [PubMed]
  24. M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, “Observation of dark photovoltaic spatial soliton,” Phys. Rev. A 52, 3095-3100 (1995).
    [Crossref] [PubMed]
  25. G. Duree, M. Morin, G. Salamo, M. Segev, B. Grosignani, P. Di Porto, E. Sharp, and A. Yariv, “Dark photorefractive spatial solitons and photorefractive vortex solitons,” Phys. Rev. Lett. 74, 1978-1981 (1995).
    [Crossref] [PubMed]
  26. W. L. She, K. K. Lee, and W. K. Lee, “Observation of two-dimensional bright photovoltaic spatial solitons,” Phys. Rev. Lett. 83, 3182-3185 (1999).
    [Crossref]
  27. S. Mailis, C. Riziotis, I. T. Wellington, P. G. R. Smith, C. B. E. Gawith, and R. W. Eason, “Direct ultraviolet writing of channel waveguides in congruent lithium niobate single crystals,” Opt. Lett. 28, 1433-1435 (2003).
    [Crossref] [PubMed]
  28. V. Coda, M. Chauvet, F. Pettazi, and E. Fazio, “3-D integrated optical interconnect induced by self-focused beam,” Electron. Lett. 42, 463-465 (2006).
    [Crossref]
  29. F. Pettazi, V. Coda, M. Chauvet, and E. Fazio, “Frequency-doubling in self-induced waveguides in lithium niobate,” Opt. Commun. 272, 238-241 (2007).
    [Crossref]
  30. F. Devaux, V. Coda, M. Chauvet, and R. Passier, “New time-dependent photorefractive three-dimensional model: application to self-trapped beam with large bending,” J. Opt. Soc. Am. B 25, 1081-1086 (2008).
    [Crossref]
  31. A. Ciattoni and C. Palma, “Optical propagation in uniaxial crystals orthogonal to the optical axis: paraxial theory and beyond,” J. Opt. Soc. Am. A 20, 2163-2171 (2003).
    [Crossref]
  32. P. Yeh,Introduction to Photorefractive Nonlinear Optics (Wiley, 1993).
  33. A. A. Zozulya and D. Anderson, “Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field,” Phys. Rev. A 51, 1520-1531 (1995).
    [Crossref] [PubMed]
  34. B. Sturman and V. M. Fridkin, The photovoltaic and photoreceptive effects in noncentrosymmetric materials (Gordon and Breach Science Publishers, 1992).
  35. R. Passier, F. Devaux, and M. Chauvet, “Impact of tensorial nature of the electro-optic effect on vortex beam propagation in photorefractive media,” Opt. Express 16, 7134-7141 (2008).
    [Crossref] [PubMed]

2008 (2)

2007 (2)

F. Pettazi, V. Coda, M. Chauvet, and E. Fazio, “Frequency-doubling in self-induced waveguides in lithium niobate,” Opt. Commun. 272, 238-241 (2007).
[Crossref]

J. F. Henninot, J. F. Blach, and M. Warenghem, “Experimental study of the nonlocality of spatial optical solitons excited in nematic liquid crystal,” J. Opt. A, Pure Appl. Opt. 9, 20-25 (2007).
[Crossref]

2006 (2)

H. Trompeter, W. Krolikowski, D. N. Neshev, A. S. Desyatnikov, A. A. Sukhorukov, Y. S. Kivshar, T. Pertsch, U. Peschel, and F. Lederer, “Bloch oscillations and Zener tunneling in two-dimensional photonic lattices,” Phys. Rev. Lett. 96, 053903-053907 (2006).
[Crossref] [PubMed]

V. Coda, M. Chauvet, F. Pettazi, and E. Fazio, “3-D integrated optical interconnect induced by self-focused beam,” Electron. Lett. 42, 463-465 (2006).
[Crossref]

2005 (1)

2004 (2)

D. N. Neshev, T. J. Alexander, E. A. Ostrovskaya, Y. S. Kivshar, H. Martin, I. Makasyuk, and Z. Chen, “Observation of discrete vortex solitons in optically induced photonic lattices,” Phys. Rev. Lett. 92, 123903-123907 (2004).
[Crossref] [PubMed]

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, M. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193-2195 (2004).
[Crossref]

2003 (3)

2002 (2)

G. F. Calvo, B. Sturman, F. Agulló-López, and M. Carrascosa1, “Solitonlike beam propagation along light-induced singularity of space charge in fast photorefractive media,” Phys. Rev. Lett. 89, 033902-033906 (2002).
[Crossref] [PubMed]

M. Peccianti, C. Conti, and G. Assanto, “All-optical switching and logic gating with spatial solitons in liquid crystals,” Appl. Phys. Lett. 81, 3335-3337 (2002).
[Crossref]

2001 (1)

2000 (1)

M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77, 7-9 (2000).
[Crossref]

1999 (2)

W. L. She, K. K. Lee, and W. K. Lee, “Observation of two-dimensional bright photovoltaic spatial solitons,” Phys. Rev. Lett. 83, 3182-3185 (1999).
[Crossref]

R. Ryf, M. Wiki, G. Montemezzani, P. Gunter, and A. A. Zozulya, “Launching one-transverse-dimensional photorefractive solitons in KNbO3 crystals,” Opt. Commun. 159, 339-348 (1999).
[Crossref]

1998 (1)

1996 (3)

1995 (6)

W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74, 5037-5039 (1995).
[Crossref]

M. Segev, G. C. Valley, S. R. Singh, M. I. Carvalho, and D. N. Christodoulides, “Vector photorefractive spatial solitons,” Opt. Lett. 20, 1764-1766 (1995).
[Crossref] [PubMed]

S. R. Singh, M. I. Carvalho, and D. N. Christodoulides, “Vector interactions of steady-state planar solitons in biased photorefractive media,” Opt. Lett. 20, 2177-2179 (1995).
[Crossref] [PubMed]

M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, “Observation of dark photovoltaic spatial soliton,” Phys. Rev. A 52, 3095-3100 (1995).
[Crossref] [PubMed]

G. Duree, M. Morin, G. Salamo, M. Segev, B. Grosignani, P. Di Porto, E. Sharp, and A. Yariv, “Dark photorefractive spatial solitons and photorefractive vortex solitons,” Phys. Rev. Lett. 74, 1978-1981 (1995).
[Crossref] [PubMed]

A. A. Zozulya and D. Anderson, “Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field,” Phys. Rev. A 51, 1520-1531 (1995).
[Crossref] [PubMed]

1993 (1)

G. Duree, J. Schultz, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. Sharp, and R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533-536 (1993).
[Crossref] [PubMed]

1992 (2)

J. S. Atchison, K. Al-hemyari, C. N. Ironside, R. S. Grant, and W. Sibbett, “Observation of spatial solitons in AlGaAs waveguides,” Electron. Lett. 28, 1879-1880 (1992).
[Crossref]

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923-926 (1992).
[Crossref] [PubMed]

1988 (1)

S. Maneuf, R. Desailly, and C. Froehly, “Stable self-trapping of laser beams: observation in a nonlinear planar waveguide,” Opt. Commun. 65, 193-198 (1988).
[Crossref]

1985 (1)

A. Barthelemy, S. Maneuf, and C. Froehly, “Propagation soliton et auto-confinement de faisceaux laser par non linearité optique de Kerr,” Opt. Commun. 55, 201-206 (1985).
[Crossref]

Agulló-López, F.

G. F. Calvo, B. Sturman, F. Agulló-López, and M. Carrascosa1, “Solitonlike beam propagation along light-induced singularity of space charge in fast photorefractive media,” Phys. Rev. Lett. 89, 033902-033906 (2002).
[Crossref] [PubMed]

Aitchison, J. S.

L. Friedrich, G. I. Stegeman, P. Millar, C. J. Hamilton, and J. S. Aitchison, “Dynamic electronically controlled angle steering of spatial solitons in AlGaAs slab waveguides,” Opt. Lett. 23, 1438-1440 (1998).
[Crossref]

U. Kang, G. I. Stegeman, J. S. Aitchison, and N. Akhmediev, “Observation of Manakov spatial solitons in AlGaAs planar waveguides,” Phys. Rev. Lett. 76, 3699-3702 (1996).
[Crossref] [PubMed]

Akhmediev, N.

U. Kang, G. I. Stegeman, J. S. Aitchison, and N. Akhmediev, “Observation of Manakov spatial solitons in AlGaAs planar waveguides,” Phys. Rev. Lett. 76, 3699-3702 (1996).
[Crossref] [PubMed]

Alexander, T. J.

D. N. Neshev, T. J. Alexander, E. A. Ostrovskaya, Y. S. Kivshar, H. Martin, I. Makasyuk, and Z. Chen, “Observation of discrete vortex solitons in optically induced photonic lattices,” Phys. Rev. Lett. 92, 123903-123907 (2004).
[Crossref] [PubMed]

Al-hemyari, K.

J. S. Atchison, K. Al-hemyari, C. N. Ironside, R. S. Grant, and W. Sibbett, “Observation of spatial solitons in AlGaAs waveguides,” Electron. Lett. 28, 1879-1880 (1992).
[Crossref]

Anderson, D.

A. A. Zozulya and D. Anderson, “Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field,” Phys. Rev. A 51, 1520-1531 (1995).
[Crossref] [PubMed]

Asaro, M.

Assanto, G.

G. Assanto and M. Peccianti, “Spatial solitons in nematic liquid crystals,” IEEE J. Quantum Electron. 39, 13-21 (2003).
[Crossref]

M. Peccianti, C. Conti, and G. Assanto, “All-optical switching and logic gating with spatial solitons in liquid crystals,” Appl. Phys. Lett. 81, 3335-3337 (2002).
[Crossref]

M. Peccianti and G. Assanto, “Signal readdressing by steering of spatial solitons in bulk nematic liquid crystals,” Opt. Lett. 26, 1690-1692 (2001).
[Crossref]

M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77, 7-9 (2000).
[Crossref]

Atchison, J. S.

J. S. Atchison, K. Al-hemyari, C. N. Ironside, R. S. Grant, and W. Sibbett, “Observation of spatial solitons in AlGaAs waveguides,” Electron. Lett. 28, 1879-1880 (1992).
[Crossref]

Barthelemy, A.

A. Barthelemy, S. Maneuf, and C. Froehly, “Propagation soliton et auto-confinement de faisceaux laser par non linearité optique de Kerr,” Opt. Commun. 55, 201-206 (1985).
[Crossref]

Bashaw, M. C.

M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, “Observation of dark photovoltaic spatial soliton,” Phys. Rev. A 52, 3095-3100 (1995).
[Crossref] [PubMed]

Bertolotti, M.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, M. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193-2195 (2004).
[Crossref]

Blach, J. F.

J. F. Henninot, J. F. Blach, and M. Warenghem, “Experimental study of the nonlocality of spatial optical solitons excited in nematic liquid crystal,” J. Opt. A, Pure Appl. Opt. 9, 20-25 (2007).
[Crossref]

Bliss, D. F.

Bryant, G.

Calvo, G. F.

G. F. Calvo, B. Sturman, F. Agulló-López, and M. Carrascosa1, “Solitonlike beam propagation along light-induced singularity of space charge in fast photorefractive media,” Phys. Rev. Lett. 89, 033902-033906 (2002).
[Crossref] [PubMed]

Carrascosa1, M.

G. F. Calvo, B. Sturman, F. Agulló-López, and M. Carrascosa1, “Solitonlike beam propagation along light-induced singularity of space charge in fast photorefractive media,” Phys. Rev. Lett. 89, 033902-033906 (2002).
[Crossref] [PubMed]

Carvalho, M. I.

Chauvet, M.

R. Passier, F. Devaux, and M. Chauvet, “Impact of tensorial nature of the electro-optic effect on vortex beam propagation in photorefractive media,” Opt. Express 16, 7134-7141 (2008).
[Crossref] [PubMed]

F. Devaux, V. Coda, M. Chauvet, and R. Passier, “New time-dependent photorefractive three-dimensional model: application to self-trapped beam with large bending,” J. Opt. Soc. Am. B 25, 1081-1086 (2008).
[Crossref]

F. Pettazi, V. Coda, M. Chauvet, and E. Fazio, “Frequency-doubling in self-induced waveguides in lithium niobate,” Opt. Commun. 272, 238-241 (2007).
[Crossref]

V. Coda, M. Chauvet, F. Pettazi, and E. Fazio, “3-D integrated optical interconnect induced by self-focused beam,” Electron. Lett. 42, 463-465 (2006).
[Crossref]

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, M. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193-2195 (2004).
[Crossref]

M. Chauvet, S. A. Hawkins, G. J. Salamo, M. Segev, D. F. Bliss, and G. Bryant, “Self-trapping of planar optical beams by use of the photorefractive effect in InP:Fe,” Opt. Lett. 21, 1333-1335 (1996).
[Crossref] [PubMed]

Chen, Z.

M. Asaro, M. Sheldon, Z. Chen, O. Ostroverkhova, and W. E. Moerner, “Soliton-induced waveguides in an organic photorefractive glass,” Opt. Lett. 30, 519-521 (2005).
[Crossref] [PubMed]

D. N. Neshev, T. J. Alexander, E. A. Ostrovskaya, Y. S. Kivshar, H. Martin, I. Makasyuk, and Z. Chen, “Observation of discrete vortex solitons in optically induced photonic lattices,” Phys. Rev. Lett. 92, 123903-123907 (2004).
[Crossref] [PubMed]

Christodoulides, D. N.

Ciattoni, A.

Coda, V.

F. Devaux, V. Coda, M. Chauvet, and R. Passier, “New time-dependent photorefractive three-dimensional model: application to self-trapped beam with large bending,” J. Opt. Soc. Am. B 25, 1081-1086 (2008).
[Crossref]

F. Pettazi, V. Coda, M. Chauvet, and E. Fazio, “Frequency-doubling in self-induced waveguides in lithium niobate,” Opt. Commun. 272, 238-241 (2007).
[Crossref]

V. Coda, M. Chauvet, F. Pettazi, and E. Fazio, “3-D integrated optical interconnect induced by self-focused beam,” Electron. Lett. 42, 463-465 (2006).
[Crossref]

Conti, C.

M. Peccianti, C. Conti, and G. Assanto, “All-optical switching and logic gating with spatial solitons in liquid crystals,” Appl. Phys. Lett. 81, 3335-3337 (2002).
[Crossref]

Crosignani, B.

G. Duree, J. Schultz, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. Sharp, and R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533-536 (1993).
[Crossref] [PubMed]

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923-926 (1992).
[Crossref] [PubMed]

De Luca, A.

M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77, 7-9 (2000).
[Crossref]

De Rossi, A.

M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77, 7-9 (2000).
[Crossref]

Desailly, R.

S. Maneuf, R. Desailly, and C. Froehly, “Stable self-trapping of laser beams: observation in a nonlinear planar waveguide,” Opt. Commun. 65, 193-198 (1988).
[Crossref]

Desyatnikov, A. S.

H. Trompeter, W. Krolikowski, D. N. Neshev, A. S. Desyatnikov, A. A. Sukhorukov, Y. S. Kivshar, T. Pertsch, U. Peschel, and F. Lederer, “Bloch oscillations and Zener tunneling in two-dimensional photonic lattices,” Phys. Rev. Lett. 96, 053903-053907 (2006).
[Crossref] [PubMed]

Devaux, F.

Di Porto, P.

G. Duree, M. Morin, G. Salamo, M. Segev, B. Grosignani, P. Di Porto, E. Sharp, and A. Yariv, “Dark photorefractive spatial solitons and photorefractive vortex solitons,” Phys. Rev. Lett. 74, 1978-1981 (1995).
[Crossref] [PubMed]

G. Duree, J. Schultz, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. Sharp, and R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533-536 (1993).
[Crossref] [PubMed]

Duree, G.

G. Duree, M. Morin, G. Salamo, M. Segev, B. Grosignani, P. Di Porto, E. Sharp, and A. Yariv, “Dark photorefractive spatial solitons and photorefractive vortex solitons,” Phys. Rev. Lett. 74, 1978-1981 (1995).
[Crossref] [PubMed]

G. Duree, J. Schultz, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. Sharp, and R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533-536 (1993).
[Crossref] [PubMed]

Eason, R. W.

Fazio, E.

F. Pettazi, V. Coda, M. Chauvet, and E. Fazio, “Frequency-doubling in self-induced waveguides in lithium niobate,” Opt. Commun. 272, 238-241 (2007).
[Crossref]

V. Coda, M. Chauvet, F. Pettazi, and E. Fazio, “3-D integrated optical interconnect induced by self-focused beam,” Electron. Lett. 42, 463-465 (2006).
[Crossref]

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, M. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193-2195 (2004).
[Crossref]

Fejer, M. M.

M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, “Observation of dark photovoltaic spatial soliton,” Phys. Rev. A 52, 3095-3100 (1995).
[Crossref] [PubMed]

Fischer, B.

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923-926 (1992).
[Crossref] [PubMed]

Fridkin, V. M.

B. Sturman and V. M. Fridkin, The photovoltaic and photoreceptive effects in noncentrosymmetric materials (Gordon and Breach Science Publishers, 1992).

Friedrich, L.

Froehly, C.

S. Maneuf, R. Desailly, and C. Froehly, “Stable self-trapping of laser beams: observation in a nonlinear planar waveguide,” Opt. Commun. 65, 193-198 (1988).
[Crossref]

A. Barthelemy, S. Maneuf, and C. Froehly, “Propagation soliton et auto-confinement de faisceaux laser par non linearité optique de Kerr,” Opt. Commun. 55, 201-206 (1985).
[Crossref]

Gawith, C. B. E.

Grant, R. S.

J. S. Atchison, K. Al-hemyari, C. N. Ironside, R. S. Grant, and W. Sibbett, “Observation of spatial solitons in AlGaAs waveguides,” Electron. Lett. 28, 1879-1880 (1992).
[Crossref]

Grosignani, B.

G. Duree, M. Morin, G. Salamo, M. Segev, B. Grosignani, P. Di Porto, E. Sharp, and A. Yariv, “Dark photorefractive spatial solitons and photorefractive vortex solitons,” Phys. Rev. Lett. 74, 1978-1981 (1995).
[Crossref] [PubMed]

Gunter, P.

R. Ryf, M. Wiki, G. Montemezzani, P. Gunter, and A. A. Zozulya, “Launching one-transverse-dimensional photorefractive solitons in KNbO3 crystals,” Opt. Commun. 159, 339-348 (1999).
[Crossref]

Hagan, D. J.

W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74, 5037-5039 (1995).
[Crossref]

Hamilton, C. J.

Hawkins, S. A.

Henninot, J. F.

J. F. Henninot, J. F. Blach, and M. Warenghem, “Experimental study of the nonlocality of spatial optical solitons excited in nematic liquid crystal,” J. Opt. A, Pure Appl. Opt. 9, 20-25 (2007).
[Crossref]

Ironside, C. N.

J. S. Atchison, K. Al-hemyari, C. N. Ironside, R. S. Grant, and W. Sibbett, “Observation of spatial solitons in AlGaAs waveguides,” Electron. Lett. 28, 1879-1880 (1992).
[Crossref]

Kang, U.

U. Kang, G. I. Stegeman, J. S. Aitchison, and N. Akhmediev, “Observation of Manakov spatial solitons in AlGaAs planar waveguides,” Phys. Rev. Lett. 76, 3699-3702 (1996).
[Crossref] [PubMed]

Khoo, I. C.

M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77, 7-9 (2000).
[Crossref]

Kivshar, Y. S.

H. Trompeter, W. Krolikowski, D. N. Neshev, A. S. Desyatnikov, A. A. Sukhorukov, Y. S. Kivshar, T. Pertsch, U. Peschel, and F. Lederer, “Bloch oscillations and Zener tunneling in two-dimensional photonic lattices,” Phys. Rev. Lett. 96, 053903-053907 (2006).
[Crossref] [PubMed]

D. N. Neshev, T. J. Alexander, E. A. Ostrovskaya, Y. S. Kivshar, H. Martin, I. Makasyuk, and Z. Chen, “Observation of discrete vortex solitons in optically induced photonic lattices,” Phys. Rev. Lett. 92, 123903-123907 (2004).
[Crossref] [PubMed]

Krolikowski, W.

H. Trompeter, W. Krolikowski, D. N. Neshev, A. S. Desyatnikov, A. A. Sukhorukov, Y. S. Kivshar, T. Pertsch, U. Peschel, and F. Lederer, “Bloch oscillations and Zener tunneling in two-dimensional photonic lattices,” Phys. Rev. Lett. 96, 053903-053907 (2006).
[Crossref] [PubMed]

Lederer, F.

H. Trompeter, W. Krolikowski, D. N. Neshev, A. S. Desyatnikov, A. A. Sukhorukov, Y. S. Kivshar, T. Pertsch, U. Peschel, and F. Lederer, “Bloch oscillations and Zener tunneling in two-dimensional photonic lattices,” Phys. Rev. Lett. 96, 053903-053907 (2006).
[Crossref] [PubMed]

Lee, K. K.

W. L. She, K. K. Lee, and W. K. Lee, “Observation of two-dimensional bright photovoltaic spatial solitons,” Phys. Rev. Lett. 83, 3182-3185 (1999).
[Crossref]

Lee, W. K.

W. L. She, K. K. Lee, and W. K. Lee, “Observation of two-dimensional bright photovoltaic spatial solitons,” Phys. Rev. Lett. 83, 3182-3185 (1999).
[Crossref]

Mailis, S.

Makasyuk, I.

D. N. Neshev, T. J. Alexander, E. A. Ostrovskaya, Y. S. Kivshar, H. Martin, I. Makasyuk, and Z. Chen, “Observation of discrete vortex solitons in optically induced photonic lattices,” Phys. Rev. Lett. 92, 123903-123907 (2004).
[Crossref] [PubMed]

Maneuf, S.

S. Maneuf, R. Desailly, and C. Froehly, “Stable self-trapping of laser beams: observation in a nonlinear planar waveguide,” Opt. Commun. 65, 193-198 (1988).
[Crossref]

A. Barthelemy, S. Maneuf, and C. Froehly, “Propagation soliton et auto-confinement de faisceaux laser par non linearité optique de Kerr,” Opt. Commun. 55, 201-206 (1985).
[Crossref]

Martin, H.

D. N. Neshev, T. J. Alexander, E. A. Ostrovskaya, Y. S. Kivshar, H. Martin, I. Makasyuk, and Z. Chen, “Observation of discrete vortex solitons in optically induced photonic lattices,” Phys. Rev. Lett. 92, 123903-123907 (2004).
[Crossref] [PubMed]

Menyuk, C. R.

W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74, 5037-5039 (1995).
[Crossref]

Millar, P.

Moerner, W. E.

Montemezzani, G.

R. Ryf, M. Wiki, G. Montemezzani, P. Gunter, and A. A. Zozulya, “Launching one-transverse-dimensional photorefractive solitons in KNbO3 crystals,” Opt. Commun. 159, 339-348 (1999).
[Crossref]

Morin, M.

G. Duree, M. Morin, G. Salamo, M. Segev, B. Grosignani, P. Di Porto, E. Sharp, and A. Yariv, “Dark photorefractive spatial solitons and photorefractive vortex solitons,” Phys. Rev. Lett. 74, 1978-1981 (1995).
[Crossref] [PubMed]

Neshev, D. N.

H. Trompeter, W. Krolikowski, D. N. Neshev, A. S. Desyatnikov, A. A. Sukhorukov, Y. S. Kivshar, T. Pertsch, U. Peschel, and F. Lederer, “Bloch oscillations and Zener tunneling in two-dimensional photonic lattices,” Phys. Rev. Lett. 96, 053903-053907 (2006).
[Crossref] [PubMed]

D. N. Neshev, T. J. Alexander, E. A. Ostrovskaya, Y. S. Kivshar, H. Martin, I. Makasyuk, and Z. Chen, “Observation of discrete vortex solitons in optically induced photonic lattices,” Phys. Rev. Lett. 92, 123903-123907 (2004).
[Crossref] [PubMed]

Neurgaonkar, R.

G. Duree, J. Schultz, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. Sharp, and R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533-536 (1993).
[Crossref] [PubMed]

Ostroverkhova, O.

Ostrovskaya, E. A.

D. N. Neshev, T. J. Alexander, E. A. Ostrovskaya, Y. S. Kivshar, H. Martin, I. Makasyuk, and Z. Chen, “Observation of discrete vortex solitons in optically induced photonic lattices,” Phys. Rev. Lett. 92, 123903-123907 (2004).
[Crossref] [PubMed]

Palma, C.

Passier, R.

Peccianti, M.

G. Assanto and M. Peccianti, “Spatial solitons in nematic liquid crystals,” IEEE J. Quantum Electron. 39, 13-21 (2003).
[Crossref]

M. Peccianti, C. Conti, and G. Assanto, “All-optical switching and logic gating with spatial solitons in liquid crystals,” Appl. Phys. Lett. 81, 3335-3337 (2002).
[Crossref]

M. Peccianti and G. Assanto, “Signal readdressing by steering of spatial solitons in bulk nematic liquid crystals,” Opt. Lett. 26, 1690-1692 (2001).
[Crossref]

M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77, 7-9 (2000).
[Crossref]

Pertsch, T.

H. Trompeter, W. Krolikowski, D. N. Neshev, A. S. Desyatnikov, A. A. Sukhorukov, Y. S. Kivshar, T. Pertsch, U. Peschel, and F. Lederer, “Bloch oscillations and Zener tunneling in two-dimensional photonic lattices,” Phys. Rev. Lett. 96, 053903-053907 (2006).
[Crossref] [PubMed]

Peschel, U.

H. Trompeter, W. Krolikowski, D. N. Neshev, A. S. Desyatnikov, A. A. Sukhorukov, Y. S. Kivshar, T. Pertsch, U. Peschel, and F. Lederer, “Bloch oscillations and Zener tunneling in two-dimensional photonic lattices,” Phys. Rev. Lett. 96, 053903-053907 (2006).
[Crossref] [PubMed]

Petris, A.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, M. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193-2195 (2004).
[Crossref]

Pettazi, F.

F. Pettazi, V. Coda, M. Chauvet, and E. Fazio, “Frequency-doubling in self-induced waveguides in lithium niobate,” Opt. Commun. 272, 238-241 (2007).
[Crossref]

V. Coda, M. Chauvet, F. Pettazi, and E. Fazio, “3-D integrated optical interconnect induced by self-focused beam,” Electron. Lett. 42, 463-465 (2006).
[Crossref]

Ramadan, M.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, M. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193-2195 (2004).
[Crossref]

Renzi, F.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, M. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193-2195 (2004).
[Crossref]

Rinaldi, R.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, M. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193-2195 (2004).
[Crossref]

Riziotis, C.

Ryf, R.

R. Ryf, M. Wiki, G. Montemezzani, P. Gunter, and A. A. Zozulya, “Launching one-transverse-dimensional photorefractive solitons in KNbO3 crystals,” Opt. Commun. 159, 339-348 (1999).
[Crossref]

Salamo, G.

M. F. Shih, M. Segev, and G. Salamo, “Circular waveguides induced by two dimensional bright steady state photorefractive spatial screening solitons,” Opt. Lett. 21, 931-933 (1996).
[Crossref] [PubMed]

G. Duree, M. Morin, G. Salamo, M. Segev, B. Grosignani, P. Di Porto, E. Sharp, and A. Yariv, “Dark photorefractive spatial solitons and photorefractive vortex solitons,” Phys. Rev. Lett. 74, 1978-1981 (1995).
[Crossref] [PubMed]

G. Duree, J. Schultz, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. Sharp, and R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533-536 (1993).
[Crossref] [PubMed]

Salamo, G. J.

Schultz, J.

G. Duree, J. Schultz, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. Sharp, and R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533-536 (1993).
[Crossref] [PubMed]

Segev, M.

M. Chauvet, S. A. Hawkins, G. J. Salamo, M. Segev, D. F. Bliss, and G. Bryant, “Self-trapping of planar optical beams by use of the photorefractive effect in InP:Fe,” Opt. Lett. 21, 1333-1335 (1996).
[Crossref] [PubMed]

M. F. Shih, M. Segev, and G. Salamo, “Circular waveguides induced by two dimensional bright steady state photorefractive spatial screening solitons,” Opt. Lett. 21, 931-933 (1996).
[Crossref] [PubMed]

M. Segev, G. C. Valley, S. R. Singh, M. I. Carvalho, and D. N. Christodoulides, “Vector photorefractive spatial solitons,” Opt. Lett. 20, 1764-1766 (1995).
[Crossref] [PubMed]

G. Duree, M. Morin, G. Salamo, M. Segev, B. Grosignani, P. Di Porto, E. Sharp, and A. Yariv, “Dark photorefractive spatial solitons and photorefractive vortex solitons,” Phys. Rev. Lett. 74, 1978-1981 (1995).
[Crossref] [PubMed]

M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, “Observation of dark photovoltaic spatial soliton,” Phys. Rev. A 52, 3095-3100 (1995).
[Crossref] [PubMed]

G. Duree, J. Schultz, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. Sharp, and R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533-536 (1993).
[Crossref] [PubMed]

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923-926 (1992).
[Crossref] [PubMed]

Sharp, E.

G. Duree, M. Morin, G. Salamo, M. Segev, B. Grosignani, P. Di Porto, E. Sharp, and A. Yariv, “Dark photorefractive spatial solitons and photorefractive vortex solitons,” Phys. Rev. Lett. 74, 1978-1981 (1995).
[Crossref] [PubMed]

G. Duree, J. Schultz, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. Sharp, and R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533-536 (1993).
[Crossref] [PubMed]

She, W. L.

W. L. She, K. K. Lee, and W. K. Lee, “Observation of two-dimensional bright photovoltaic spatial solitons,” Phys. Rev. Lett. 83, 3182-3185 (1999).
[Crossref]

Sheldon, M.

Shih, M. F.

Sibbett, W.

J. S. Atchison, K. Al-hemyari, C. N. Ironside, R. S. Grant, and W. Sibbett, “Observation of spatial solitons in AlGaAs waveguides,” Electron. Lett. 28, 1879-1880 (1992).
[Crossref]

Singh, S. R.

Smith, P. G. R.

Stegeman, G. I.

L. Friedrich, G. I. Stegeman, P. Millar, C. J. Hamilton, and J. S. Aitchison, “Dynamic electronically controlled angle steering of spatial solitons in AlGaAs slab waveguides,” Opt. Lett. 23, 1438-1440 (1998).
[Crossref]

U. Kang, G. I. Stegeman, J. S. Aitchison, and N. Akhmediev, “Observation of Manakov spatial solitons in AlGaAs planar waveguides,” Phys. Rev. Lett. 76, 3699-3702 (1996).
[Crossref] [PubMed]

W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74, 5037-5039 (1995).
[Crossref]

Sturman, B.

G. F. Calvo, B. Sturman, F. Agulló-López, and M. Carrascosa1, “Solitonlike beam propagation along light-induced singularity of space charge in fast photorefractive media,” Phys. Rev. Lett. 89, 033902-033906 (2002).
[Crossref] [PubMed]

B. Sturman and V. M. Fridkin, The photovoltaic and photoreceptive effects in noncentrosymmetric materials (Gordon and Breach Science Publishers, 1992).

Sukhorukov, A. A.

H. Trompeter, W. Krolikowski, D. N. Neshev, A. S. Desyatnikov, A. A. Sukhorukov, Y. S. Kivshar, T. Pertsch, U. Peschel, and F. Lederer, “Bloch oscillations and Zener tunneling in two-dimensional photonic lattices,” Phys. Rev. Lett. 96, 053903-053907 (2006).
[Crossref] [PubMed]

Taya, M.

M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, “Observation of dark photovoltaic spatial soliton,” Phys. Rev. A 52, 3095-3100 (1995).
[Crossref] [PubMed]

Torner, L.

W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74, 5037-5039 (1995).
[Crossref]

Torruellas, W. E.

W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74, 5037-5039 (1995).
[Crossref]

Trompeter, H.

H. Trompeter, W. Krolikowski, D. N. Neshev, A. S. Desyatnikov, A. A. Sukhorukov, Y. S. Kivshar, T. Pertsch, U. Peschel, and F. Lederer, “Bloch oscillations and Zener tunneling in two-dimensional photonic lattices,” Phys. Rev. Lett. 96, 053903-053907 (2006).
[Crossref] [PubMed]

Umeton, C.

M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77, 7-9 (2000).
[Crossref]

Valley, G. C.

M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, “Observation of dark photovoltaic spatial soliton,” Phys. Rev. A 52, 3095-3100 (1995).
[Crossref] [PubMed]

M. Segev, G. C. Valley, S. R. Singh, M. I. Carvalho, and D. N. Christodoulides, “Vector photorefractive spatial solitons,” Opt. Lett. 20, 1764-1766 (1995).
[Crossref] [PubMed]

VanStryland, E. W.

W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74, 5037-5039 (1995).
[Crossref]

Vlad, V. I.

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, M. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193-2195 (2004).
[Crossref]

Wang, Z.

W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74, 5037-5039 (1995).
[Crossref]

Warenghem, M.

J. F. Henninot, J. F. Blach, and M. Warenghem, “Experimental study of the nonlocality of spatial optical solitons excited in nematic liquid crystal,” J. Opt. A, Pure Appl. Opt. 9, 20-25 (2007).
[Crossref]

Wellington, I. T.

Wiki, M.

R. Ryf, M. Wiki, G. Montemezzani, P. Gunter, and A. A. Zozulya, “Launching one-transverse-dimensional photorefractive solitons in KNbO3 crystals,” Opt. Commun. 159, 339-348 (1999).
[Crossref]

Yariv, A.

G. Duree, M. Morin, G. Salamo, M. Segev, B. Grosignani, P. Di Porto, E. Sharp, and A. Yariv, “Dark photorefractive spatial solitons and photorefractive vortex solitons,” Phys. Rev. Lett. 74, 1978-1981 (1995).
[Crossref] [PubMed]

G. Duree, J. Schultz, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. Sharp, and R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533-536 (1993).
[Crossref] [PubMed]

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923-926 (1992).
[Crossref] [PubMed]

Yeh, P.

P. Yeh,Introduction to Photorefractive Nonlinear Optics (Wiley, 1993).

Zozulya, A. A.

R. Ryf, M. Wiki, G. Montemezzani, P. Gunter, and A. A. Zozulya, “Launching one-transverse-dimensional photorefractive solitons in KNbO3 crystals,” Opt. Commun. 159, 339-348 (1999).
[Crossref]

A. A. Zozulya and D. Anderson, “Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field,” Phys. Rev. A 51, 1520-1531 (1995).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

E. Fazio, F. Renzi, R. Rinaldi, M. Bertolotti, M. Chauvet, M. Ramadan, A. Petris, and V. I. Vlad, “Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides,” Appl. Phys. Lett. 85, 2193-2195 (2004).
[Crossref]

M. Peccianti, C. Conti, and G. Assanto, “All-optical switching and logic gating with spatial solitons in liquid crystals,” Appl. Phys. Lett. 81, 3335-3337 (2002).
[Crossref]

M. Peccianti, A. De Rossi, G. Assanto, A. De Luca, C. Umeton, and I. C. Khoo, “Electrically assisted self-confinement and waveguiding in planar nematic liquid crystal cells,” Appl. Phys. Lett. 77, 7-9 (2000).
[Crossref]

Electron. Lett. (2)

V. Coda, M. Chauvet, F. Pettazi, and E. Fazio, “3-D integrated optical interconnect induced by self-focused beam,” Electron. Lett. 42, 463-465 (2006).
[Crossref]

J. S. Atchison, K. Al-hemyari, C. N. Ironside, R. S. Grant, and W. Sibbett, “Observation of spatial solitons in AlGaAs waveguides,” Electron. Lett. 28, 1879-1880 (1992).
[Crossref]

IEEE J. Quantum Electron. (1)

G. Assanto and M. Peccianti, “Spatial solitons in nematic liquid crystals,” IEEE J. Quantum Electron. 39, 13-21 (2003).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

J. F. Henninot, J. F. Blach, and M. Warenghem, “Experimental study of the nonlocality of spatial optical solitons excited in nematic liquid crystal,” J. Opt. A, Pure Appl. Opt. 9, 20-25 (2007).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Commun. (4)

F. Pettazi, V. Coda, M. Chauvet, and E. Fazio, “Frequency-doubling in self-induced waveguides in lithium niobate,” Opt. Commun. 272, 238-241 (2007).
[Crossref]

A. Barthelemy, S. Maneuf, and C. Froehly, “Propagation soliton et auto-confinement de faisceaux laser par non linearité optique de Kerr,” Opt. Commun. 55, 201-206 (1985).
[Crossref]

R. Ryf, M. Wiki, G. Montemezzani, P. Gunter, and A. A. Zozulya, “Launching one-transverse-dimensional photorefractive solitons in KNbO3 crystals,” Opt. Commun. 159, 339-348 (1999).
[Crossref]

S. Maneuf, R. Desailly, and C. Froehly, “Stable self-trapping of laser beams: observation in a nonlinear planar waveguide,” Opt. Commun. 65, 193-198 (1988).
[Crossref]

Opt. Express (1)

Opt. Lett. (8)

M. F. Shih, M. Segev, and G. Salamo, “Circular waveguides induced by two dimensional bright steady state photorefractive spatial screening solitons,” Opt. Lett. 21, 931-933 (1996).
[Crossref] [PubMed]

S. Mailis, C. Riziotis, I. T. Wellington, P. G. R. Smith, C. B. E. Gawith, and R. W. Eason, “Direct ultraviolet writing of channel waveguides in congruent lithium niobate single crystals,” Opt. Lett. 28, 1433-1435 (2003).
[Crossref] [PubMed]

M. Segev, G. C. Valley, S. R. Singh, M. I. Carvalho, and D. N. Christodoulides, “Vector photorefractive spatial solitons,” Opt. Lett. 20, 1764-1766 (1995).
[Crossref] [PubMed]

S. R. Singh, M. I. Carvalho, and D. N. Christodoulides, “Vector interactions of steady-state planar solitons in biased photorefractive media,” Opt. Lett. 20, 2177-2179 (1995).
[Crossref] [PubMed]

M. Asaro, M. Sheldon, Z. Chen, O. Ostroverkhova, and W. E. Moerner, “Soliton-induced waveguides in an organic photorefractive glass,” Opt. Lett. 30, 519-521 (2005).
[Crossref] [PubMed]

M. Chauvet, S. A. Hawkins, G. J. Salamo, M. Segev, D. F. Bliss, and G. Bryant, “Self-trapping of planar optical beams by use of the photorefractive effect in InP:Fe,” Opt. Lett. 21, 1333-1335 (1996).
[Crossref] [PubMed]

L. Friedrich, G. I. Stegeman, P. Millar, C. J. Hamilton, and J. S. Aitchison, “Dynamic electronically controlled angle steering of spatial solitons in AlGaAs slab waveguides,” Opt. Lett. 23, 1438-1440 (1998).
[Crossref]

M. Peccianti and G. Assanto, “Signal readdressing by steering of spatial solitons in bulk nematic liquid crystals,” Opt. Lett. 26, 1690-1692 (2001).
[Crossref]

Phys. Rev. A (2)

M. Taya, M. C. Bashaw, M. M. Fejer, M. Segev, and G. C. Valley, “Observation of dark photovoltaic spatial soliton,” Phys. Rev. A 52, 3095-3100 (1995).
[Crossref] [PubMed]

A. A. Zozulya and D. Anderson, “Propagation of an optical beam in a photorefractive medium in the presence of a photogalvanic nonlinearity or an externally applied electric field,” Phys. Rev. A 51, 1520-1531 (1995).
[Crossref] [PubMed]

Phys. Rev. Lett. (9)

G. Duree, M. Morin, G. Salamo, M. Segev, B. Grosignani, P. Di Porto, E. Sharp, and A. Yariv, “Dark photorefractive spatial solitons and photorefractive vortex solitons,” Phys. Rev. Lett. 74, 1978-1981 (1995).
[Crossref] [PubMed]

W. L. She, K. K. Lee, and W. K. Lee, “Observation of two-dimensional bright photovoltaic spatial solitons,” Phys. Rev. Lett. 83, 3182-3185 (1999).
[Crossref]

G. Duree, J. Schultz, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. Sharp, and R. Neurgaonkar, “Observation of self-trapping of an optical beam due to the photorefractive effect,” Phys. Rev. Lett. 71, 533-536 (1993).
[Crossref] [PubMed]

D. N. Neshev, T. J. Alexander, E. A. Ostrovskaya, Y. S. Kivshar, H. Martin, I. Makasyuk, and Z. Chen, “Observation of discrete vortex solitons in optically induced photonic lattices,” Phys. Rev. Lett. 92, 123903-123907 (2004).
[Crossref] [PubMed]

U. Kang, G. I. Stegeman, J. S. Aitchison, and N. Akhmediev, “Observation of Manakov spatial solitons in AlGaAs planar waveguides,” Phys. Rev. Lett. 76, 3699-3702 (1996).
[Crossref] [PubMed]

W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. VanStryland, G. I. Stegeman, L. Torner, and C. R. Menyuk, “Observation of two-dimensional spatial solitary waves in a quadratic medium,” Phys. Rev. Lett. 74, 5037-5039 (1995).
[Crossref]

H. Trompeter, W. Krolikowski, D. N. Neshev, A. S. Desyatnikov, A. A. Sukhorukov, Y. S. Kivshar, T. Pertsch, U. Peschel, and F. Lederer, “Bloch oscillations and Zener tunneling in two-dimensional photonic lattices,” Phys. Rev. Lett. 96, 053903-053907 (2006).
[Crossref] [PubMed]

M. Segev, B. Crosignani, A. Yariv, and B. Fischer, “Spatial solitons in photorefractive media,” Phys. Rev. Lett. 68, 923-926 (1992).
[Crossref] [PubMed]

G. F. Calvo, B. Sturman, F. Agulló-López, and M. Carrascosa1, “Solitonlike beam propagation along light-induced singularity of space charge in fast photorefractive media,” Phys. Rev. Lett. 89, 033902-033906 (2002).
[Crossref] [PubMed]

Other (2)

B. Sturman and V. M. Fridkin, The photovoltaic and photoreceptive effects in noncentrosymmetric materials (Gordon and Breach Science Publishers, 1992).

P. Yeh,Introduction to Photorefractive Nonlinear Optics (Wiley, 1993).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Calculated light intensity distribution for (a) extraordinary polarization, refractive index distribution and (b) transverse components (c) E Z and (d) E X of the space-charge field normalized to E 0 at the exit face for light propagation along the y crystallographic axis in a 20 mm long Li Nb O 3 crystal.

Fig. 2
Fig. 2

Calculated light intensity distribution for (a) ordinary polarization, (b) refractive index distribution, and transverse components (c) E Z and (d) E X of the space-charge field normalized to E 0 at the exit face for light propagation along the y crystallographic axis in a 20 mm long Li Nb O 3 crystal.

Fig. 3
Fig. 3

Calculated light intensity distribution for (a) ordinary polarization in a transient regime, (b) refractive index distribution, and transverse components (c) E Z and (d) E Y of the space-charge field normalized to E 0 at the exit face for propagation along the x crystallographic axis in a 7 mm long Li Nb O 3 crystal. Parameters are identical to those in Fig. 1 except λ = 632 nm , input FWHM = 16 μ m , and E ph = 26 kV cm .

Fig. 4
Fig. 4

Self-focusing dynamic of an extraordinary polarized beam for E 0 = 40 kV cm , λ = 532 nm , input power = 114 μ W , and input beam FWHM = 12 μ m . Images are taken at regular intervals from (a) t = 0 s for a free diffracting beam to (f) t = 450 s for the most confined beam.

Fig. 5
Fig. 5

Self-focusing dynamic of an ordinary polarized beam for E 0 = 40 kV cm , input power = 114 μ W , and input beam FWHM = 12 μ m . Images are taken at regular intervals from (a) t = 0 for a free diffracting beam to (f) t = 1020 s for the most confined beam.

Fig. 6
Fig. 6

Calculated light intensity distribution for (a) ordinary polarization FWHM x = 14 μ m , FWHM z = 10 μ m , (b) refractive index distribution, and (c) transverse components E Z and (d) E X of the space-charge field normalized to E 0 at the exit face for light propagation along the y crystallographic axis in a 20 mm long Li Nb O 3 crystal for E ph = 24 kV cm .

Fig. 7
Fig. 7

Self-focusing dynamic for an ordinary polarized beam propagating along the x crystallographic axis for E 0 = 40 kV cm , λ = 632 nm , L = 7 mm , and P = 400 μ W . Images are taken at regular time intervals from (a) a free diffracting beam to (f) t = 70 min . Interferences are caused by CCD sensor internal reflection.

Fig. 8
Fig. 8

Images at the exit face of waveguides formed with (a,b) extraordinary and (c,d) ordinary polarized trapped beam when excited with an extraordinary polarized probe at either (a,c) 1.06 μ m or (b,d) 1.5 μ m wavelengths.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

N D + t = s ( I + I d ) ( N D N D + ) γ n e N D + ,
ρ = e ( N D + N A n e ) ,
J = e μ n e E + μ k B T n e + β ph ( N D N D + ) I c ,
ρ t = J ,
E ( r ) = 1 4 π [ ɛ ] v ρ ( r ) r r r r 3 d V ,
n ̃ e = ξ ( I + I d ) ( N ̃ D N ̃ D + ) N ̃ D + ,
ρ ̃ t = μ E 0 { [ n ̃ e ] E ̃ + n ̃ e E ̃ + k B T e E 0 Δ n ̃ e } μ ξ E ph ( N ̃ D N ̃ D + ) I c ,
E ph = β ph γ N A e μ s .
z A ( x , y , z ) = i 1 2 k 2 A ( x , y , z ) + i 2 π λ Δ n A ( x , y , z ) ,
Δ n 1 2 n 3 [ r ] [ E X E Y E Z ] ,
Δ n Z 1 2 n e 3 r 33 E Z ,
Δ n X 1 2 n o 3 r 13 E Z .
Δ n Y 1 2 n o 3 ( r 22 E Y + r 13 E Z ) .

Metrics