Abstract

We show the possibility of generating ultraslow temporal vector optical solitons in a cold lifetime-broadened four-level tripod atomic medium under Raman excitation. We demonstrate that the two orthogonally polarized components of the low-intensity signal field can evolve into various distortion-free temporal vector optical solitons, such as bright–bright vector solitons with ultraslow group velocity. These results are produced from the balance of self- and cross-phase modulation effects and dispersion. We also show that Manakov temporal vector solitons may be realized by adjusting the corresponding self- and cross-phase modulation and dispersion effects of our system.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  2. H. A. Haus and W. S. Wong, “Solitons in optical communications,” Rev. Mod. Phys. 68, 423-444 (1996).
    [CrossRef]
  3. Y. Wu and X. Yang, “Giant Kerr nonlinearities and solitons in a crystal of molecular magnets,” Appl. Phys. Lett. 91, 094104 (2007).
    [CrossRef]
  4. Y. Wu, “Matched soliton pairs of four-wave mixing in molecular magnets,” J. Appl. Phys. 103, 104903 (2008).
    [CrossRef]
  5. X.-T. Xie, W. Li, J. Li, W.-X. Yang, A. Yuan, and X. Yang, “Transverse acoustic wave in molecular magnets via electromagnetically induced transparency,” Phys. Rev. B 75, 184423 (2007).
    [CrossRef]
  6. B. A. Malomed, Soliton Management in Periodic Systems (Springer, 2006) and reference therein.
  7. Y. Wu and L. Deng, “Ultraslow optical solitons in a cold four-state medium,” Phys. Rev. Lett. 93, 143904 (2004).
    [CrossRef] [PubMed]
  8. Y. Wu and L. Deng, “Ultraslow bright and dark optical solitons in a cold three-state medium,” Opt. Lett. 29, 2064-2066 (2004).
    [CrossRef] [PubMed]
  9. Y. Wu, “Two-color ultraslow optical solitons via four-wave mixing in cold-atom media,” Phys. Rev. A 71, 053820 (2005).
    [CrossRef]
  10. L. Deng, M. G. Payne, G. Huang, and E. W. Hagley, “Formation and propagation of matched and coupled ultraslow optical soliton pairs in a four-level double-Λ system,” Phys. Rev. E 72, 055601(R) (2005).
    [CrossRef]
  11. C. Hang, G. Huang, and L. Deng, “Generalized nonlinear Schrödinger equation and ultraslow optical solitons in a cold four-state atomic system,” Phys. Rev. E 73, 036607 (2006).
    [CrossRef]
  12. X.-T. Xie, W.-B. Li, and X. Yang, “Bright, dark, bistable bright, and vortex spatial-optical solitons in a cold three-state medium,” J. Opt. Soc. Am. B 23, 1609-1614 (2006).
    [CrossRef]
  13. X. Wu, X.-T. Xie, and X. Yang, “Dark and bright vortex solitons in electromagnetically induced transparent media,” J. Phys. B 39, 3263-3273 (2006).
    [CrossRef]
  14. W.-X. Yang, J.-M. Hou, and R.-K. Lee, “Ultraslow bright and dark solitons in semiconductor quantum wells,” Phys. Rev. A 77, 033838 (2008).
    [CrossRef]
  15. X.-J. Liu, H. Jing, and M.-L. Ge, “Solitons formed by dark-state polaritons in an electromagnetic induced transparency,” Phys. Rev. A 70, 055802 (2004).
    [CrossRef]
  16. D. V. Skryabin, A. V. Yulin, and A. I. Maimistov, “Localized polaritons and second-harmonic generation in a resonant medium with quadratic nonlinearity,” Phys. Rev. Lett. 96, 163904 (2006).
    [CrossRef] [PubMed]
  17. G. T. Adamashvili, C. Weber, A. Knorr, and N. T. Adamashvili, “Optical nonlinear waves in semiconductor quantum dots: solitons and breathers,” Phys. Rev. A 75, 063808 (2007).
    [CrossRef]
  18. Y. S. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications,” Phys. Rep. 298, 81-197 (1998).
    [CrossRef]
  19. Q. Park and H. J. Shin, “Systematic construction of multicomponent optical solitons,” Phys. Rev. E 61, 3093-3106 (2000).
    [CrossRef]
  20. A. E. Korolev, V. N. Nazarov, D. A. Nolan, and C. M. Truesdale, “Experimental observation of orthogonally polarized time-delayed optical soliton trapping in birefringent fibers,” Opt. Lett. 30, 132-134 (2005).
    [CrossRef] [PubMed]
  21. Y. Barad and Y. Silberberg, “Polarization evolution and polarization instability of solitons in a birefringent optical fiber,” Phys. Rev. Lett. 78, 3290-3293 (1997).
    [CrossRef]
  22. D. Rand, I. Glesk, C.-S. Brès, D. A. Nolan, X. Chen, J. Koh, J. W. Fleischer, K. Steiglitz, and P. R. Prucnal, “Observation of temporal vector soliton propagation and collision in birefringent fiber,” Phys. Rev. Lett. 98, 053902 (2007).
    [CrossRef] [PubMed]
  23. S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in an optical fiber,” Phys. Rev. Lett. 82, 3988-3991 (1999).
    [CrossRef]
  24. G. Huang, K. Jiang, M. G. Payne, and L. Deng, “Formation and propagation of coupled ultraslow optical soliton pairs in a cold three-state double-Λ, system,” Phys. Rev. E 73, 056606 (2006).
    [CrossRef]
  25. C. Hang and G. Huang, “Weak-light ultraslow vector solitons via electromagnetically induced transparency,” Phys. Rev. A 77, 033830 (2008).
    [CrossRef]
  26. L.-G. Si, J.-B. Liu, X.-Y. Lü, and X. Yang, “Ultraslow temporal vector optical solitons in a cold five-state atomic medium under Raman excitation,” J. Phys. B 41, 215504 (2008).
    [CrossRef]
  27. M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211-3214 (1994).
    [CrossRef] [PubMed]
  28. Z. Chen, M. Segev, T. H. Coskun, and D. N. Christodoulides, “Observation of incoherently coupled photorefractive spatial soliton pairs,” Opt. Lett. 21, 1436-1438 (1996).
    [CrossRef] [PubMed]
  29. J. U. Kang, G. I. Stegeman, J. S. Aitchison, and N. Akhmediev, “Observation of Manakov spatial solitons in AlGaAs planar waveguides,” Phys. Rev. Lett. 76, 3699-3702 (1996).
    [CrossRef] [PubMed]
  30. C. Anastassiou, J. W. Fleischer, T. Carmon, M. Segev, and K. Steiglitz, “Information transfer via cascaded collisions of vector solitons,” Opt. Lett. 26, 1498-1500 (2001).
    [CrossRef]
  31. M. Delquè, T. Sylvestre, H. Maillotte, C. Cambournac, P. Kockaert, and M. Haelterman, “Experimental observation of the elliptically polarized fundamental vector soliton of isotropic Kerr media,” Opt. Lett. 30, 3383-3385 (2005).
    [CrossRef]
  32. D. V. Skryabin, F. Biancalana, D. M. Bird, and F. Benabid, “Effective Kerr nonlinearity and two-color solitons in photonic band-gap fibers filled with a Raman active gas,” Phys. Rev. Lett. 93, 143907 (2004).
    [CrossRef] [PubMed]
  33. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36-42 (1997).
    [CrossRef]
  34. S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611-4614 (1999).
    [CrossRef]
  35. Y. Wu and X. Yang, “Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis,” Phys. Rev. A 71, 053806 (2005).
    [CrossRef]
  36. M. D. Lukin and A. Imamoğlu, “Nonlinear optics and quantum entanglement of ultraslow single photons,” Phys. Rev. Lett. 84, 1419-1422 (2000).
    [CrossRef] [PubMed]
  37. H. Schmidt and A. Imamoğlu, “Giant Kerr nonlinearities obtained by electromagnetically induced transparency,” Opt. Lett. 21, 1936-1938 (1996).
    [CrossRef] [PubMed]
  38. Y. Han, J. Xiao, Y. Liu, C. Zhang, H. Wang, M. Xiao, and K. Peng, “Interacting dark states with enhanced nonlinearity in an ideal four-level tripod atomic system,” Phys. Rev. A 77, 023824 (2008).
    [CrossRef]
  39. Y. Wu and X. Yang, “Highly efficient four-wave mixing in double-Λ system in ultraslow propagation regime,” Phys. Rev. A 70, 053818 (2004).
    [CrossRef]
  40. Y. Wu and X. Yang, “Eigenstates and eigenenergies of four-wave-mixing models,” Opt. Lett. 29, 839-841 (1996).
    [CrossRef]
  41. E. Paspalakis and P. L. Knight, “Electromagnetically induced transparency and controlled group velocity in a multilevel system,” Phys. Rev. A 66, 015802 (2002).
    [CrossRef]
  42. E. Paspalakis, N. J. Kylstra, and P. L. Knight, “Propagation and nonlinear generation dynamics in a coherently prepared four-level system,” Phys. Rev. A 65, 053808 (2002).
    [CrossRef]
  43. T. Wang, M. Koštrun, and S. F. Yelin, “Multiple beam splitter for single photons,” Phys. Rev. A 70, 033822 (2004).
    [CrossRef]
  44. A. Raczyński, J. Zaremba, and S. Zielińska-Kaniasty, “Beam splitting and Hong-Ou-Mandel interference for stored light,” Phys. Rev. A 75, 013810 (2007).
    [CrossRef]
  45. F. Vewinger, M. Heinz, R. G. Fernandez, N. V. Vitanov, and K. Bergmann, “Creation and measurement of a coherent superposition of quantum states,” Phys. Rev. Lett. 91, 213001 (2003).
    [CrossRef] [PubMed]
  46. K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003-1025 (1998).
    [CrossRef]
  47. S. Rebić, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbalán, “Polarization phase gate with a tripod atomic system,” Phys. Rev. A 70, 032317 (2004).
    [CrossRef]
  48. D. Petrosyan and Y. P. Malakyan, “Magneto-optical rotation and cross-phase modulation via coherently driven four-level atoms in a tripod configuration,” Phys. Rev. A 70, 023822 (2004).
    [CrossRef]
  49. S. Li, X. Yang, X. Cao, C. Zhang, C. Xie, and H. Wang, “Enhanced cross-phase modulation based on a double electromagnetically induced transparency in a four-level tripod atomic system,” Phys. Rev. Lett. 101, 073602 (2008).
    [CrossRef] [PubMed]
  50. Y. Guo, L. Zhou, L.-M. Kuang, and C. P. Sun, “Magneto-optical Stern-Gerlach effect in an atomic ensemble,” Phys. Rev. A 78, 013833 (2008).
    [CrossRef]
  51. D. A. Steck, http://steck.us/alkalidata.
  52. Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Preparation of multiparty entangled states using pairwise perfectly efficient single-probe photon four-wave mixing,” Phys. Rev. A 69, 063803 (2004).
    [CrossRef]
  53. Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Ultraviolet single-photons on demand and entanglement of photons with a large frequency difference,” Phys. Rev. A 70, 063812 (2004).
    [CrossRef]
  54. X. Yang and Y. Wu, “Achieving an ultra-slowly propagating maximally entangled state of two light beams via four-wave mixing in a double-Λ system,” J. Opt. B: Quantum Semiclassical Opt. 7, 54-56 (2005).
    [CrossRef]
  55. J. Yang, “Multisoliton perturbation theory for the Manakov equations and its applications to nonlinear optics,” Phys. Rev. E 59, 2393-2405 (1999).
    [CrossRef]
  56. V. E. Zakharov and E. L. Schulman, “To the integrability of the system of two coupled nonlinear Schrödinger equations,” Physica D 4, 270-274 (1982).
    [CrossRef]
  57. B. Tan and J. P. Boyd, “Stability and long time evolution of the periodic solutions to the two coupled nonlinear Schrödinger equations,” Chaos, Solitons Fractals 12, 721-734 (2001) and reference therein.
    [CrossRef]
  58. A. Aydin and B. Karasözen, “Symplectic and multi-symplectic methods for coupled nonlinear Schrödinger equations with periodic solutions,” Comput. Phys. Commun. 177, 566-583 (2007) and reference therein.
    [CrossRef]

2008 (7)

Y. Wu, “Matched soliton pairs of four-wave mixing in molecular magnets,” J. Appl. Phys. 103, 104903 (2008).
[CrossRef]

W.-X. Yang, J.-M. Hou, and R.-K. Lee, “Ultraslow bright and dark solitons in semiconductor quantum wells,” Phys. Rev. A 77, 033838 (2008).
[CrossRef]

C. Hang and G. Huang, “Weak-light ultraslow vector solitons via electromagnetically induced transparency,” Phys. Rev. A 77, 033830 (2008).
[CrossRef]

L.-G. Si, J.-B. Liu, X.-Y. Lü, and X. Yang, “Ultraslow temporal vector optical solitons in a cold five-state atomic medium under Raman excitation,” J. Phys. B 41, 215504 (2008).
[CrossRef]

Y. Han, J. Xiao, Y. Liu, C. Zhang, H. Wang, M. Xiao, and K. Peng, “Interacting dark states with enhanced nonlinearity in an ideal four-level tripod atomic system,” Phys. Rev. A 77, 023824 (2008).
[CrossRef]

S. Li, X. Yang, X. Cao, C. Zhang, C. Xie, and H. Wang, “Enhanced cross-phase modulation based on a double electromagnetically induced transparency in a four-level tripod atomic system,” Phys. Rev. Lett. 101, 073602 (2008).
[CrossRef] [PubMed]

Y. Guo, L. Zhou, L.-M. Kuang, and C. P. Sun, “Magneto-optical Stern-Gerlach effect in an atomic ensemble,” Phys. Rev. A 78, 013833 (2008).
[CrossRef]

2007 (6)

A. Aydin and B. Karasözen, “Symplectic and multi-symplectic methods for coupled nonlinear Schrödinger equations with periodic solutions,” Comput. Phys. Commun. 177, 566-583 (2007) and reference therein.
[CrossRef]

A. Raczyński, J. Zaremba, and S. Zielińska-Kaniasty, “Beam splitting and Hong-Ou-Mandel interference for stored light,” Phys. Rev. A 75, 013810 (2007).
[CrossRef]

D. Rand, I. Glesk, C.-S. Brès, D. A. Nolan, X. Chen, J. Koh, J. W. Fleischer, K. Steiglitz, and P. R. Prucnal, “Observation of temporal vector soliton propagation and collision in birefringent fiber,” Phys. Rev. Lett. 98, 053902 (2007).
[CrossRef] [PubMed]

G. T. Adamashvili, C. Weber, A. Knorr, and N. T. Adamashvili, “Optical nonlinear waves in semiconductor quantum dots: solitons and breathers,” Phys. Rev. A 75, 063808 (2007).
[CrossRef]

X.-T. Xie, W. Li, J. Li, W.-X. Yang, A. Yuan, and X. Yang, “Transverse acoustic wave in molecular magnets via electromagnetically induced transparency,” Phys. Rev. B 75, 184423 (2007).
[CrossRef]

Y. Wu and X. Yang, “Giant Kerr nonlinearities and solitons in a crystal of molecular magnets,” Appl. Phys. Lett. 91, 094104 (2007).
[CrossRef]

2006 (5)

D. V. Skryabin, A. V. Yulin, and A. I. Maimistov, “Localized polaritons and second-harmonic generation in a resonant medium with quadratic nonlinearity,” Phys. Rev. Lett. 96, 163904 (2006).
[CrossRef] [PubMed]

C. Hang, G. Huang, and L. Deng, “Generalized nonlinear Schrödinger equation and ultraslow optical solitons in a cold four-state atomic system,” Phys. Rev. E 73, 036607 (2006).
[CrossRef]

X.-T. Xie, W.-B. Li, and X. Yang, “Bright, dark, bistable bright, and vortex spatial-optical solitons in a cold three-state medium,” J. Opt. Soc. Am. B 23, 1609-1614 (2006).
[CrossRef]

X. Wu, X.-T. Xie, and X. Yang, “Dark and bright vortex solitons in electromagnetically induced transparent media,” J. Phys. B 39, 3263-3273 (2006).
[CrossRef]

G. Huang, K. Jiang, M. G. Payne, and L. Deng, “Formation and propagation of coupled ultraslow optical soliton pairs in a cold three-state double-Λ, system,” Phys. Rev. E 73, 056606 (2006).
[CrossRef]

2005 (6)

M. Delquè, T. Sylvestre, H. Maillotte, C. Cambournac, P. Kockaert, and M. Haelterman, “Experimental observation of the elliptically polarized fundamental vector soliton of isotropic Kerr media,” Opt. Lett. 30, 3383-3385 (2005).
[CrossRef]

Y. Wu and X. Yang, “Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis,” Phys. Rev. A 71, 053806 (2005).
[CrossRef]

A. E. Korolev, V. N. Nazarov, D. A. Nolan, and C. M. Truesdale, “Experimental observation of orthogonally polarized time-delayed optical soliton trapping in birefringent fibers,” Opt. Lett. 30, 132-134 (2005).
[CrossRef] [PubMed]

Y. Wu, “Two-color ultraslow optical solitons via four-wave mixing in cold-atom media,” Phys. Rev. A 71, 053820 (2005).
[CrossRef]

L. Deng, M. G. Payne, G. Huang, and E. W. Hagley, “Formation and propagation of matched and coupled ultraslow optical soliton pairs in a four-level double-Λ system,” Phys. Rev. E 72, 055601(R) (2005).
[CrossRef]

X. Yang and Y. Wu, “Achieving an ultra-slowly propagating maximally entangled state of two light beams via four-wave mixing in a double-Λ system,” J. Opt. B: Quantum Semiclassical Opt. 7, 54-56 (2005).
[CrossRef]

2004 (10)

Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Preparation of multiparty entangled states using pairwise perfectly efficient single-probe photon four-wave mixing,” Phys. Rev. A 69, 063803 (2004).
[CrossRef]

Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Ultraviolet single-photons on demand and entanglement of photons with a large frequency difference,” Phys. Rev. A 70, 063812 (2004).
[CrossRef]

S. Rebić, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbalán, “Polarization phase gate with a tripod atomic system,” Phys. Rev. A 70, 032317 (2004).
[CrossRef]

D. Petrosyan and Y. P. Malakyan, “Magneto-optical rotation and cross-phase modulation via coherently driven four-level atoms in a tripod configuration,” Phys. Rev. A 70, 023822 (2004).
[CrossRef]

T. Wang, M. Koštrun, and S. F. Yelin, “Multiple beam splitter for single photons,” Phys. Rev. A 70, 033822 (2004).
[CrossRef]

Y. Wu and L. Deng, “Ultraslow optical solitons in a cold four-state medium,” Phys. Rev. Lett. 93, 143904 (2004).
[CrossRef] [PubMed]

Y. Wu and L. Deng, “Ultraslow bright and dark optical solitons in a cold three-state medium,” Opt. Lett. 29, 2064-2066 (2004).
[CrossRef] [PubMed]

X.-J. Liu, H. Jing, and M.-L. Ge, “Solitons formed by dark-state polaritons in an electromagnetic induced transparency,” Phys. Rev. A 70, 055802 (2004).
[CrossRef]

Y. Wu and X. Yang, “Highly efficient four-wave mixing in double-Λ system in ultraslow propagation regime,” Phys. Rev. A 70, 053818 (2004).
[CrossRef]

D. V. Skryabin, F. Biancalana, D. M. Bird, and F. Benabid, “Effective Kerr nonlinearity and two-color solitons in photonic band-gap fibers filled with a Raman active gas,” Phys. Rev. Lett. 93, 143907 (2004).
[CrossRef] [PubMed]

2003 (1)

F. Vewinger, M. Heinz, R. G. Fernandez, N. V. Vitanov, and K. Bergmann, “Creation and measurement of a coherent superposition of quantum states,” Phys. Rev. Lett. 91, 213001 (2003).
[CrossRef] [PubMed]

2002 (2)

E. Paspalakis and P. L. Knight, “Electromagnetically induced transparency and controlled group velocity in a multilevel system,” Phys. Rev. A 66, 015802 (2002).
[CrossRef]

E. Paspalakis, N. J. Kylstra, and P. L. Knight, “Propagation and nonlinear generation dynamics in a coherently prepared four-level system,” Phys. Rev. A 65, 053808 (2002).
[CrossRef]

2001 (2)

B. Tan and J. P. Boyd, “Stability and long time evolution of the periodic solutions to the two coupled nonlinear Schrödinger equations,” Chaos, Solitons Fractals 12, 721-734 (2001) and reference therein.
[CrossRef]

C. Anastassiou, J. W. Fleischer, T. Carmon, M. Segev, and K. Steiglitz, “Information transfer via cascaded collisions of vector solitons,” Opt. Lett. 26, 1498-1500 (2001).
[CrossRef]

2000 (2)

M. D. Lukin and A. Imamoğlu, “Nonlinear optics and quantum entanglement of ultraslow single photons,” Phys. Rev. Lett. 84, 1419-1422 (2000).
[CrossRef] [PubMed]

Q. Park and H. J. Shin, “Systematic construction of multicomponent optical solitons,” Phys. Rev. E 61, 3093-3106 (2000).
[CrossRef]

1999 (3)

S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in an optical fiber,” Phys. Rev. Lett. 82, 3988-3991 (1999).
[CrossRef]

J. Yang, “Multisoliton perturbation theory for the Manakov equations and its applications to nonlinear optics,” Phys. Rev. E 59, 2393-2405 (1999).
[CrossRef]

S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611-4614 (1999).
[CrossRef]

1998 (2)

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003-1025 (1998).
[CrossRef]

Y. S. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications,” Phys. Rep. 298, 81-197 (1998).
[CrossRef]

1997 (2)

Y. Barad and Y. Silberberg, “Polarization evolution and polarization instability of solitons in a birefringent optical fiber,” Phys. Rev. Lett. 78, 3290-3293 (1997).
[CrossRef]

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36-42 (1997).
[CrossRef]

1996 (5)

1994 (1)

M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211-3214 (1994).
[CrossRef] [PubMed]

1982 (1)

V. E. Zakharov and E. L. Schulman, “To the integrability of the system of two coupled nonlinear Schrödinger equations,” Physica D 4, 270-274 (1982).
[CrossRef]

Adamashvili, G. T.

G. T. Adamashvili, C. Weber, A. Knorr, and N. T. Adamashvili, “Optical nonlinear waves in semiconductor quantum dots: solitons and breathers,” Phys. Rev. A 75, 063808 (2007).
[CrossRef]

Adamashvili, N. T.

G. T. Adamashvili, C. Weber, A. Knorr, and N. T. Adamashvili, “Optical nonlinear waves in semiconductor quantum dots: solitons and breathers,” Phys. Rev. A 75, 063808 (2007).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

Aitchison, J. S.

J. U. Kang, G. I. Stegeman, J. S. Aitchison, and N. Akhmediev, “Observation of Manakov spatial solitons in AlGaAs planar waveguides,” Phys. Rev. Lett. 76, 3699-3702 (1996).
[CrossRef] [PubMed]

Akhmediev, N.

J. U. Kang, G. I. Stegeman, J. S. Aitchison, and N. Akhmediev, “Observation of Manakov spatial solitons in AlGaAs planar waveguides,” Phys. Rev. Lett. 76, 3699-3702 (1996).
[CrossRef] [PubMed]

Akhmediev, N. N.

S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in an optical fiber,” Phys. Rev. Lett. 82, 3988-3991 (1999).
[CrossRef]

Anastassiou, C.

Artoni, M.

S. Rebić, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbalán, “Polarization phase gate with a tripod atomic system,” Phys. Rev. A 70, 032317 (2004).
[CrossRef]

Aydin, A.

A. Aydin and B. Karasözen, “Symplectic and multi-symplectic methods for coupled nonlinear Schrödinger equations with periodic solutions,” Comput. Phys. Commun. 177, 566-583 (2007) and reference therein.
[CrossRef]

Barad, Y.

Y. Barad and Y. Silberberg, “Polarization evolution and polarization instability of solitons in a birefringent optical fiber,” Phys. Rev. Lett. 78, 3290-3293 (1997).
[CrossRef]

Benabid, F.

D. V. Skryabin, F. Biancalana, D. M. Bird, and F. Benabid, “Effective Kerr nonlinearity and two-color solitons in photonic band-gap fibers filled with a Raman active gas,” Phys. Rev. Lett. 93, 143907 (2004).
[CrossRef] [PubMed]

Bergman, K.

S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in an optical fiber,” Phys. Rev. Lett. 82, 3988-3991 (1999).
[CrossRef]

Bergmann, K.

F. Vewinger, M. Heinz, R. G. Fernandez, N. V. Vitanov, and K. Bergmann, “Creation and measurement of a coherent superposition of quantum states,” Phys. Rev. Lett. 91, 213001 (2003).
[CrossRef] [PubMed]

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003-1025 (1998).
[CrossRef]

Biancalana, F.

D. V. Skryabin, F. Biancalana, D. M. Bird, and F. Benabid, “Effective Kerr nonlinearity and two-color solitons in photonic band-gap fibers filled with a Raman active gas,” Phys. Rev. Lett. 93, 143907 (2004).
[CrossRef] [PubMed]

Bird, D. M.

D. V. Skryabin, F. Biancalana, D. M. Bird, and F. Benabid, “Effective Kerr nonlinearity and two-color solitons in photonic band-gap fibers filled with a Raman active gas,” Phys. Rev. Lett. 93, 143907 (2004).
[CrossRef] [PubMed]

Boyd, J. P.

B. Tan and J. P. Boyd, “Stability and long time evolution of the periodic solutions to the two coupled nonlinear Schrödinger equations,” Chaos, Solitons Fractals 12, 721-734 (2001) and reference therein.
[CrossRef]

Brès, C.-S.

D. Rand, I. Glesk, C.-S. Brès, D. A. Nolan, X. Chen, J. Koh, J. W. Fleischer, K. Steiglitz, and P. R. Prucnal, “Observation of temporal vector soliton propagation and collision in birefringent fiber,” Phys. Rev. Lett. 98, 053902 (2007).
[CrossRef] [PubMed]

Cambournac, C.

Cao, X.

S. Li, X. Yang, X. Cao, C. Zhang, C. Xie, and H. Wang, “Enhanced cross-phase modulation based on a double electromagnetically induced transparency in a four-level tripod atomic system,” Phys. Rev. Lett. 101, 073602 (2008).
[CrossRef] [PubMed]

Carmon, T.

Cataliotti, F.

S. Rebić, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbalán, “Polarization phase gate with a tripod atomic system,” Phys. Rev. A 70, 032317 (2004).
[CrossRef]

Chen, X.

D. Rand, I. Glesk, C.-S. Brès, D. A. Nolan, X. Chen, J. Koh, J. W. Fleischer, K. Steiglitz, and P. R. Prucnal, “Observation of temporal vector soliton propagation and collision in birefringent fiber,” Phys. Rev. Lett. 98, 053902 (2007).
[CrossRef] [PubMed]

Chen, Z.

Christodoulides, D. N.

Collings, B. C.

S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in an optical fiber,” Phys. Rev. Lett. 82, 3988-3991 (1999).
[CrossRef]

Corbalán, R.

S. Rebić, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbalán, “Polarization phase gate with a tripod atomic system,” Phys. Rev. A 70, 032317 (2004).
[CrossRef]

Coskun, T. H.

Crosignani, B.

M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211-3214 (1994).
[CrossRef] [PubMed]

Cundiff, S. T.

S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in an optical fiber,” Phys. Rev. Lett. 82, 3988-3991 (1999).
[CrossRef]

Delquè, M.

Deng, L.

G. Huang, K. Jiang, M. G. Payne, and L. Deng, “Formation and propagation of coupled ultraslow optical soliton pairs in a cold three-state double-Λ, system,” Phys. Rev. E 73, 056606 (2006).
[CrossRef]

C. Hang, G. Huang, and L. Deng, “Generalized nonlinear Schrödinger equation and ultraslow optical solitons in a cold four-state atomic system,” Phys. Rev. E 73, 036607 (2006).
[CrossRef]

L. Deng, M. G. Payne, G. Huang, and E. W. Hagley, “Formation and propagation of matched and coupled ultraslow optical soliton pairs in a four-level double-Λ system,” Phys. Rev. E 72, 055601(R) (2005).
[CrossRef]

Y. Wu and L. Deng, “Ultraslow optical solitons in a cold four-state medium,” Phys. Rev. Lett. 93, 143904 (2004).
[CrossRef] [PubMed]

Y. Wu and L. Deng, “Ultraslow bright and dark optical solitons in a cold three-state medium,” Opt. Lett. 29, 2064-2066 (2004).
[CrossRef] [PubMed]

Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Preparation of multiparty entangled states using pairwise perfectly efficient single-probe photon four-wave mixing,” Phys. Rev. A 69, 063803 (2004).
[CrossRef]

Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Ultraviolet single-photons on demand and entanglement of photons with a large frequency difference,” Phys. Rev. A 70, 063812 (2004).
[CrossRef]

DiPorto, P.

M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211-3214 (1994).
[CrossRef] [PubMed]

Fernandez, R. G.

F. Vewinger, M. Heinz, R. G. Fernandez, N. V. Vitanov, and K. Bergmann, “Creation and measurement of a coherent superposition of quantum states,” Phys. Rev. Lett. 91, 213001 (2003).
[CrossRef] [PubMed]

Fleischer, J. W.

D. Rand, I. Glesk, C.-S. Brès, D. A. Nolan, X. Chen, J. Koh, J. W. Fleischer, K. Steiglitz, and P. R. Prucnal, “Observation of temporal vector soliton propagation and collision in birefringent fiber,” Phys. Rev. Lett. 98, 053902 (2007).
[CrossRef] [PubMed]

C. Anastassiou, J. W. Fleischer, T. Carmon, M. Segev, and K. Steiglitz, “Information transfer via cascaded collisions of vector solitons,” Opt. Lett. 26, 1498-1500 (2001).
[CrossRef]

Ge, M.-L.

X.-J. Liu, H. Jing, and M.-L. Ge, “Solitons formed by dark-state polaritons in an electromagnetic induced transparency,” Phys. Rev. A 70, 055802 (2004).
[CrossRef]

Glesk, I.

D. Rand, I. Glesk, C.-S. Brès, D. A. Nolan, X. Chen, J. Koh, J. W. Fleischer, K. Steiglitz, and P. R. Prucnal, “Observation of temporal vector soliton propagation and collision in birefringent fiber,” Phys. Rev. Lett. 98, 053902 (2007).
[CrossRef] [PubMed]

Guo, Y.

Y. Guo, L. Zhou, L.-M. Kuang, and C. P. Sun, “Magneto-optical Stern-Gerlach effect in an atomic ensemble,” Phys. Rev. A 78, 013833 (2008).
[CrossRef]

Haelterman, M.

Hagley, E. W.

L. Deng, M. G. Payne, G. Huang, and E. W. Hagley, “Formation and propagation of matched and coupled ultraslow optical soliton pairs in a four-level double-Λ system,” Phys. Rev. E 72, 055601(R) (2005).
[CrossRef]

Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Ultraviolet single-photons on demand and entanglement of photons with a large frequency difference,” Phys. Rev. A 70, 063812 (2004).
[CrossRef]

Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Preparation of multiparty entangled states using pairwise perfectly efficient single-probe photon four-wave mixing,” Phys. Rev. A 69, 063803 (2004).
[CrossRef]

Han, Y.

Y. Han, J. Xiao, Y. Liu, C. Zhang, H. Wang, M. Xiao, and K. Peng, “Interacting dark states with enhanced nonlinearity in an ideal four-level tripod atomic system,” Phys. Rev. A 77, 023824 (2008).
[CrossRef]

Hang, C.

C. Hang and G. Huang, “Weak-light ultraslow vector solitons via electromagnetically induced transparency,” Phys. Rev. A 77, 033830 (2008).
[CrossRef]

C. Hang, G. Huang, and L. Deng, “Generalized nonlinear Schrödinger equation and ultraslow optical solitons in a cold four-state atomic system,” Phys. Rev. E 73, 036607 (2006).
[CrossRef]

Harris, S. E.

S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611-4614 (1999).
[CrossRef]

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36-42 (1997).
[CrossRef]

Hau, L. V.

S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611-4614 (1999).
[CrossRef]

Haus, H. A.

H. A. Haus and W. S. Wong, “Solitons in optical communications,” Rev. Mod. Phys. 68, 423-444 (1996).
[CrossRef]

Heinz, M.

F. Vewinger, M. Heinz, R. G. Fernandez, N. V. Vitanov, and K. Bergmann, “Creation and measurement of a coherent superposition of quantum states,” Phys. Rev. Lett. 91, 213001 (2003).
[CrossRef] [PubMed]

Hou, J.-M.

W.-X. Yang, J.-M. Hou, and R.-K. Lee, “Ultraslow bright and dark solitons in semiconductor quantum wells,” Phys. Rev. A 77, 033838 (2008).
[CrossRef]

Huang, G.

C. Hang and G. Huang, “Weak-light ultraslow vector solitons via electromagnetically induced transparency,” Phys. Rev. A 77, 033830 (2008).
[CrossRef]

C. Hang, G. Huang, and L. Deng, “Generalized nonlinear Schrödinger equation and ultraslow optical solitons in a cold four-state atomic system,” Phys. Rev. E 73, 036607 (2006).
[CrossRef]

G. Huang, K. Jiang, M. G. Payne, and L. Deng, “Formation and propagation of coupled ultraslow optical soliton pairs in a cold three-state double-Λ, system,” Phys. Rev. E 73, 056606 (2006).
[CrossRef]

L. Deng, M. G. Payne, G. Huang, and E. W. Hagley, “Formation and propagation of matched and coupled ultraslow optical soliton pairs in a four-level double-Λ system,” Phys. Rev. E 72, 055601(R) (2005).
[CrossRef]

Imamoglu, A.

M. D. Lukin and A. Imamoğlu, “Nonlinear optics and quantum entanglement of ultraslow single photons,” Phys. Rev. Lett. 84, 1419-1422 (2000).
[CrossRef] [PubMed]

H. Schmidt and A. Imamoğlu, “Giant Kerr nonlinearities obtained by electromagnetically induced transparency,” Opt. Lett. 21, 1936-1938 (1996).
[CrossRef] [PubMed]

Jiang, K.

G. Huang, K. Jiang, M. G. Payne, and L. Deng, “Formation and propagation of coupled ultraslow optical soliton pairs in a cold three-state double-Λ, system,” Phys. Rev. E 73, 056606 (2006).
[CrossRef]

Jing, H.

X.-J. Liu, H. Jing, and M.-L. Ge, “Solitons formed by dark-state polaritons in an electromagnetic induced transparency,” Phys. Rev. A 70, 055802 (2004).
[CrossRef]

Kang, J. U.

J. U. Kang, G. I. Stegeman, J. S. Aitchison, and N. Akhmediev, “Observation of Manakov spatial solitons in AlGaAs planar waveguides,” Phys. Rev. Lett. 76, 3699-3702 (1996).
[CrossRef] [PubMed]

Karasözen, B.

A. Aydin and B. Karasözen, “Symplectic and multi-symplectic methods for coupled nonlinear Schrödinger equations with periodic solutions,” Comput. Phys. Commun. 177, 566-583 (2007) and reference therein.
[CrossRef]

Kivshar, Y. S.

Y. S. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications,” Phys. Rep. 298, 81-197 (1998).
[CrossRef]

Knight, P. L.

E. Paspalakis and P. L. Knight, “Electromagnetically induced transparency and controlled group velocity in a multilevel system,” Phys. Rev. A 66, 015802 (2002).
[CrossRef]

E. Paspalakis, N. J. Kylstra, and P. L. Knight, “Propagation and nonlinear generation dynamics in a coherently prepared four-level system,” Phys. Rev. A 65, 053808 (2002).
[CrossRef]

Knorr, A.

G. T. Adamashvili, C. Weber, A. Knorr, and N. T. Adamashvili, “Optical nonlinear waves in semiconductor quantum dots: solitons and breathers,” Phys. Rev. A 75, 063808 (2007).
[CrossRef]

Knox, W. H.

S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in an optical fiber,” Phys. Rev. Lett. 82, 3988-3991 (1999).
[CrossRef]

Kockaert, P.

Koh, J.

D. Rand, I. Glesk, C.-S. Brès, D. A. Nolan, X. Chen, J. Koh, J. W. Fleischer, K. Steiglitz, and P. R. Prucnal, “Observation of temporal vector soliton propagation and collision in birefringent fiber,” Phys. Rev. Lett. 98, 053902 (2007).
[CrossRef] [PubMed]

Korolev, A. E.

Koštrun, M.

T. Wang, M. Koštrun, and S. F. Yelin, “Multiple beam splitter for single photons,” Phys. Rev. A 70, 033822 (2004).
[CrossRef]

Kuang, L.-M.

Y. Guo, L. Zhou, L.-M. Kuang, and C. P. Sun, “Magneto-optical Stern-Gerlach effect in an atomic ensemble,” Phys. Rev. A 78, 013833 (2008).
[CrossRef]

Kylstra, N. J.

E. Paspalakis, N. J. Kylstra, and P. L. Knight, “Propagation and nonlinear generation dynamics in a coherently prepared four-level system,” Phys. Rev. A 65, 053808 (2002).
[CrossRef]

Lee, R.-K.

W.-X. Yang, J.-M. Hou, and R.-K. Lee, “Ultraslow bright and dark solitons in semiconductor quantum wells,” Phys. Rev. A 77, 033838 (2008).
[CrossRef]

Li, J.

X.-T. Xie, W. Li, J. Li, W.-X. Yang, A. Yuan, and X. Yang, “Transverse acoustic wave in molecular magnets via electromagnetically induced transparency,” Phys. Rev. B 75, 184423 (2007).
[CrossRef]

Li, S.

S. Li, X. Yang, X. Cao, C. Zhang, C. Xie, and H. Wang, “Enhanced cross-phase modulation based on a double electromagnetically induced transparency in a four-level tripod atomic system,” Phys. Rev. Lett. 101, 073602 (2008).
[CrossRef] [PubMed]

Li, W.

X.-T. Xie, W. Li, J. Li, W.-X. Yang, A. Yuan, and X. Yang, “Transverse acoustic wave in molecular magnets via electromagnetically induced transparency,” Phys. Rev. B 75, 184423 (2007).
[CrossRef]

Li, W.-B.

Liu, J.-B.

L.-G. Si, J.-B. Liu, X.-Y. Lü, and X. Yang, “Ultraslow temporal vector optical solitons in a cold five-state atomic medium under Raman excitation,” J. Phys. B 41, 215504 (2008).
[CrossRef]

Liu, X.-J.

X.-J. Liu, H. Jing, and M.-L. Ge, “Solitons formed by dark-state polaritons in an electromagnetic induced transparency,” Phys. Rev. A 70, 055802 (2004).
[CrossRef]

Liu, Y.

Y. Han, J. Xiao, Y. Liu, C. Zhang, H. Wang, M. Xiao, and K. Peng, “Interacting dark states with enhanced nonlinearity in an ideal four-level tripod atomic system,” Phys. Rev. A 77, 023824 (2008).
[CrossRef]

Lü, X.-Y.

L.-G. Si, J.-B. Liu, X.-Y. Lü, and X. Yang, “Ultraslow temporal vector optical solitons in a cold five-state atomic medium under Raman excitation,” J. Phys. B 41, 215504 (2008).
[CrossRef]

Lukin, M. D.

M. D. Lukin and A. Imamoğlu, “Nonlinear optics and quantum entanglement of ultraslow single photons,” Phys. Rev. Lett. 84, 1419-1422 (2000).
[CrossRef] [PubMed]

Luther-Davies, B.

Y. S. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications,” Phys. Rep. 298, 81-197 (1998).
[CrossRef]

Maillotte, H.

Maimistov, A. I.

D. V. Skryabin, A. V. Yulin, and A. I. Maimistov, “Localized polaritons and second-harmonic generation in a resonant medium with quadratic nonlinearity,” Phys. Rev. Lett. 96, 163904 (2006).
[CrossRef] [PubMed]

Malakyan, Y. P.

D. Petrosyan and Y. P. Malakyan, “Magneto-optical rotation and cross-phase modulation via coherently driven four-level atoms in a tripod configuration,” Phys. Rev. A 70, 023822 (2004).
[CrossRef]

Malomed, B. A.

B. A. Malomed, Soliton Management in Periodic Systems (Springer, 2006) and reference therein.

Nazarov, V. N.

Nolan, D. A.

D. Rand, I. Glesk, C.-S. Brès, D. A. Nolan, X. Chen, J. Koh, J. W. Fleischer, K. Steiglitz, and P. R. Prucnal, “Observation of temporal vector soliton propagation and collision in birefringent fiber,” Phys. Rev. Lett. 98, 053902 (2007).
[CrossRef] [PubMed]

A. E. Korolev, V. N. Nazarov, D. A. Nolan, and C. M. Truesdale, “Experimental observation of orthogonally polarized time-delayed optical soliton trapping in birefringent fibers,” Opt. Lett. 30, 132-134 (2005).
[CrossRef] [PubMed]

Ottaviani, C.

S. Rebić, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbalán, “Polarization phase gate with a tripod atomic system,” Phys. Rev. A 70, 032317 (2004).
[CrossRef]

Park, Q.

Q. Park and H. J. Shin, “Systematic construction of multicomponent optical solitons,” Phys. Rev. E 61, 3093-3106 (2000).
[CrossRef]

Paspalakis, E.

E. Paspalakis and P. L. Knight, “Electromagnetically induced transparency and controlled group velocity in a multilevel system,” Phys. Rev. A 66, 015802 (2002).
[CrossRef]

E. Paspalakis, N. J. Kylstra, and P. L. Knight, “Propagation and nonlinear generation dynamics in a coherently prepared four-level system,” Phys. Rev. A 65, 053808 (2002).
[CrossRef]

Payne, M. G.

G. Huang, K. Jiang, M. G. Payne, and L. Deng, “Formation and propagation of coupled ultraslow optical soliton pairs in a cold three-state double-Λ, system,” Phys. Rev. E 73, 056606 (2006).
[CrossRef]

L. Deng, M. G. Payne, G. Huang, and E. W. Hagley, “Formation and propagation of matched and coupled ultraslow optical soliton pairs in a four-level double-Λ system,” Phys. Rev. E 72, 055601(R) (2005).
[CrossRef]

Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Preparation of multiparty entangled states using pairwise perfectly efficient single-probe photon four-wave mixing,” Phys. Rev. A 69, 063803 (2004).
[CrossRef]

Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Ultraviolet single-photons on demand and entanglement of photons with a large frequency difference,” Phys. Rev. A 70, 063812 (2004).
[CrossRef]

Peng, K.

Y. Han, J. Xiao, Y. Liu, C. Zhang, H. Wang, M. Xiao, and K. Peng, “Interacting dark states with enhanced nonlinearity in an ideal four-level tripod atomic system,” Phys. Rev. A 77, 023824 (2008).
[CrossRef]

Petrosyan, D.

D. Petrosyan and Y. P. Malakyan, “Magneto-optical rotation and cross-phase modulation via coherently driven four-level atoms in a tripod configuration,” Phys. Rev. A 70, 023822 (2004).
[CrossRef]

Prucnal, P. R.

D. Rand, I. Glesk, C.-S. Brès, D. A. Nolan, X. Chen, J. Koh, J. W. Fleischer, K. Steiglitz, and P. R. Prucnal, “Observation of temporal vector soliton propagation and collision in birefringent fiber,” Phys. Rev. Lett. 98, 053902 (2007).
[CrossRef] [PubMed]

Raczynski, A.

A. Raczyński, J. Zaremba, and S. Zielińska-Kaniasty, “Beam splitting and Hong-Ou-Mandel interference for stored light,” Phys. Rev. A 75, 013810 (2007).
[CrossRef]

Rand, D.

D. Rand, I. Glesk, C.-S. Brès, D. A. Nolan, X. Chen, J. Koh, J. W. Fleischer, K. Steiglitz, and P. R. Prucnal, “Observation of temporal vector soliton propagation and collision in birefringent fiber,” Phys. Rev. Lett. 98, 053902 (2007).
[CrossRef] [PubMed]

Rebic, S.

S. Rebić, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbalán, “Polarization phase gate with a tripod atomic system,” Phys. Rev. A 70, 032317 (2004).
[CrossRef]

Schmidt, H.

Schulman, E. L.

V. E. Zakharov and E. L. Schulman, “To the integrability of the system of two coupled nonlinear Schrödinger equations,” Physica D 4, 270-274 (1982).
[CrossRef]

Segev, M.

Shin, H. J.

Q. Park and H. J. Shin, “Systematic construction of multicomponent optical solitons,” Phys. Rev. E 61, 3093-3106 (2000).
[CrossRef]

Shore, B. W.

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003-1025 (1998).
[CrossRef]

Si, L.-G.

L.-G. Si, J.-B. Liu, X.-Y. Lü, and X. Yang, “Ultraslow temporal vector optical solitons in a cold five-state atomic medium under Raman excitation,” J. Phys. B 41, 215504 (2008).
[CrossRef]

Silberberg, Y.

Y. Barad and Y. Silberberg, “Polarization evolution and polarization instability of solitons in a birefringent optical fiber,” Phys. Rev. Lett. 78, 3290-3293 (1997).
[CrossRef]

Skryabin, D. V.

D. V. Skryabin, A. V. Yulin, and A. I. Maimistov, “Localized polaritons and second-harmonic generation in a resonant medium with quadratic nonlinearity,” Phys. Rev. Lett. 96, 163904 (2006).
[CrossRef] [PubMed]

D. V. Skryabin, F. Biancalana, D. M. Bird, and F. Benabid, “Effective Kerr nonlinearity and two-color solitons in photonic band-gap fibers filled with a Raman active gas,” Phys. Rev. Lett. 93, 143907 (2004).
[CrossRef] [PubMed]

Soto-Crespo, J. M.

S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in an optical fiber,” Phys. Rev. Lett. 82, 3988-3991 (1999).
[CrossRef]

Steck, D. A.

D. A. Steck, http://steck.us/alkalidata.

Stegeman, G. I.

J. U. Kang, G. I. Stegeman, J. S. Aitchison, and N. Akhmediev, “Observation of Manakov spatial solitons in AlGaAs planar waveguides,” Phys. Rev. Lett. 76, 3699-3702 (1996).
[CrossRef] [PubMed]

Steiglitz, K.

D. Rand, I. Glesk, C.-S. Brès, D. A. Nolan, X. Chen, J. Koh, J. W. Fleischer, K. Steiglitz, and P. R. Prucnal, “Observation of temporal vector soliton propagation and collision in birefringent fiber,” Phys. Rev. Lett. 98, 053902 (2007).
[CrossRef] [PubMed]

C. Anastassiou, J. W. Fleischer, T. Carmon, M. Segev, and K. Steiglitz, “Information transfer via cascaded collisions of vector solitons,” Opt. Lett. 26, 1498-1500 (2001).
[CrossRef]

Sun, C. P.

Y. Guo, L. Zhou, L.-M. Kuang, and C. P. Sun, “Magneto-optical Stern-Gerlach effect in an atomic ensemble,” Phys. Rev. A 78, 013833 (2008).
[CrossRef]

Sylvestre, T.

Tan, B.

B. Tan and J. P. Boyd, “Stability and long time evolution of the periodic solutions to the two coupled nonlinear Schrödinger equations,” Chaos, Solitons Fractals 12, 721-734 (2001) and reference therein.
[CrossRef]

Theuer, H.

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003-1025 (1998).
[CrossRef]

Tombesi, P.

S. Rebić, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbalán, “Polarization phase gate with a tripod atomic system,” Phys. Rev. A 70, 032317 (2004).
[CrossRef]

Truesdale, C. M.

Valley, G. C.

M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211-3214 (1994).
[CrossRef] [PubMed]

Vewinger, F.

F. Vewinger, M. Heinz, R. G. Fernandez, N. V. Vitanov, and K. Bergmann, “Creation and measurement of a coherent superposition of quantum states,” Phys. Rev. Lett. 91, 213001 (2003).
[CrossRef] [PubMed]

Vitali, D.

S. Rebić, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbalán, “Polarization phase gate with a tripod atomic system,” Phys. Rev. A 70, 032317 (2004).
[CrossRef]

Vitanov, N. V.

F. Vewinger, M. Heinz, R. G. Fernandez, N. V. Vitanov, and K. Bergmann, “Creation and measurement of a coherent superposition of quantum states,” Phys. Rev. Lett. 91, 213001 (2003).
[CrossRef] [PubMed]

Wang, H.

Y. Han, J. Xiao, Y. Liu, C. Zhang, H. Wang, M. Xiao, and K. Peng, “Interacting dark states with enhanced nonlinearity in an ideal four-level tripod atomic system,” Phys. Rev. A 77, 023824 (2008).
[CrossRef]

S. Li, X. Yang, X. Cao, C. Zhang, C. Xie, and H. Wang, “Enhanced cross-phase modulation based on a double electromagnetically induced transparency in a four-level tripod atomic system,” Phys. Rev. Lett. 101, 073602 (2008).
[CrossRef] [PubMed]

Wang, T.

T. Wang, M. Koštrun, and S. F. Yelin, “Multiple beam splitter for single photons,” Phys. Rev. A 70, 033822 (2004).
[CrossRef]

Weber, C.

G. T. Adamashvili, C. Weber, A. Knorr, and N. T. Adamashvili, “Optical nonlinear waves in semiconductor quantum dots: solitons and breathers,” Phys. Rev. A 75, 063808 (2007).
[CrossRef]

Wong, W. S.

H. A. Haus and W. S. Wong, “Solitons in optical communications,” Rev. Mod. Phys. 68, 423-444 (1996).
[CrossRef]

Wu, X.

X. Wu, X.-T. Xie, and X. Yang, “Dark and bright vortex solitons in electromagnetically induced transparent media,” J. Phys. B 39, 3263-3273 (2006).
[CrossRef]

Wu, Y.

Y. Wu, “Matched soliton pairs of four-wave mixing in molecular magnets,” J. Appl. Phys. 103, 104903 (2008).
[CrossRef]

Y. Wu and X. Yang, “Giant Kerr nonlinearities and solitons in a crystal of molecular magnets,” Appl. Phys. Lett. 91, 094104 (2007).
[CrossRef]

Y. Wu, “Two-color ultraslow optical solitons via four-wave mixing in cold-atom media,” Phys. Rev. A 71, 053820 (2005).
[CrossRef]

Y. Wu and X. Yang, “Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis,” Phys. Rev. A 71, 053806 (2005).
[CrossRef]

X. Yang and Y. Wu, “Achieving an ultra-slowly propagating maximally entangled state of two light beams via four-wave mixing in a double-Λ system,” J. Opt. B: Quantum Semiclassical Opt. 7, 54-56 (2005).
[CrossRef]

Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Preparation of multiparty entangled states using pairwise perfectly efficient single-probe photon four-wave mixing,” Phys. Rev. A 69, 063803 (2004).
[CrossRef]

Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Ultraviolet single-photons on demand and entanglement of photons with a large frequency difference,” Phys. Rev. A 70, 063812 (2004).
[CrossRef]

Y. Wu and X. Yang, “Highly efficient four-wave mixing in double-Λ system in ultraslow propagation regime,” Phys. Rev. A 70, 053818 (2004).
[CrossRef]

Y. Wu and L. Deng, “Ultraslow bright and dark optical solitons in a cold three-state medium,” Opt. Lett. 29, 2064-2066 (2004).
[CrossRef] [PubMed]

Y. Wu and L. Deng, “Ultraslow optical solitons in a cold four-state medium,” Phys. Rev. Lett. 93, 143904 (2004).
[CrossRef] [PubMed]

Y. Wu and X. Yang, “Eigenstates and eigenenergies of four-wave-mixing models,” Opt. Lett. 29, 839-841 (1996).
[CrossRef]

Xiao, J.

Y. Han, J. Xiao, Y. Liu, C. Zhang, H. Wang, M. Xiao, and K. Peng, “Interacting dark states with enhanced nonlinearity in an ideal four-level tripod atomic system,” Phys. Rev. A 77, 023824 (2008).
[CrossRef]

Xiao, M.

Y. Han, J. Xiao, Y. Liu, C. Zhang, H. Wang, M. Xiao, and K. Peng, “Interacting dark states with enhanced nonlinearity in an ideal four-level tripod atomic system,” Phys. Rev. A 77, 023824 (2008).
[CrossRef]

Xie, C.

S. Li, X. Yang, X. Cao, C. Zhang, C. Xie, and H. Wang, “Enhanced cross-phase modulation based on a double electromagnetically induced transparency in a four-level tripod atomic system,” Phys. Rev. Lett. 101, 073602 (2008).
[CrossRef] [PubMed]

Xie, X.-T.

X.-T. Xie, W. Li, J. Li, W.-X. Yang, A. Yuan, and X. Yang, “Transverse acoustic wave in molecular magnets via electromagnetically induced transparency,” Phys. Rev. B 75, 184423 (2007).
[CrossRef]

X. Wu, X.-T. Xie, and X. Yang, “Dark and bright vortex solitons in electromagnetically induced transparent media,” J. Phys. B 39, 3263-3273 (2006).
[CrossRef]

X.-T. Xie, W.-B. Li, and X. Yang, “Bright, dark, bistable bright, and vortex spatial-optical solitons in a cold three-state medium,” J. Opt. Soc. Am. B 23, 1609-1614 (2006).
[CrossRef]

Yang, J.

J. Yang, “Multisoliton perturbation theory for the Manakov equations and its applications to nonlinear optics,” Phys. Rev. E 59, 2393-2405 (1999).
[CrossRef]

Yang, W.-X.

W.-X. Yang, J.-M. Hou, and R.-K. Lee, “Ultraslow bright and dark solitons in semiconductor quantum wells,” Phys. Rev. A 77, 033838 (2008).
[CrossRef]

X.-T. Xie, W. Li, J. Li, W.-X. Yang, A. Yuan, and X. Yang, “Transverse acoustic wave in molecular magnets via electromagnetically induced transparency,” Phys. Rev. B 75, 184423 (2007).
[CrossRef]

Yang, X.

L.-G. Si, J.-B. Liu, X.-Y. Lü, and X. Yang, “Ultraslow temporal vector optical solitons in a cold five-state atomic medium under Raman excitation,” J. Phys. B 41, 215504 (2008).
[CrossRef]

S. Li, X. Yang, X. Cao, C. Zhang, C. Xie, and H. Wang, “Enhanced cross-phase modulation based on a double electromagnetically induced transparency in a four-level tripod atomic system,” Phys. Rev. Lett. 101, 073602 (2008).
[CrossRef] [PubMed]

Y. Wu and X. Yang, “Giant Kerr nonlinearities and solitons in a crystal of molecular magnets,” Appl. Phys. Lett. 91, 094104 (2007).
[CrossRef]

X.-T. Xie, W. Li, J. Li, W.-X. Yang, A. Yuan, and X. Yang, “Transverse acoustic wave in molecular magnets via electromagnetically induced transparency,” Phys. Rev. B 75, 184423 (2007).
[CrossRef]

X. Wu, X.-T. Xie, and X. Yang, “Dark and bright vortex solitons in electromagnetically induced transparent media,” J. Phys. B 39, 3263-3273 (2006).
[CrossRef]

X.-T. Xie, W.-B. Li, and X. Yang, “Bright, dark, bistable bright, and vortex spatial-optical solitons in a cold three-state medium,” J. Opt. Soc. Am. B 23, 1609-1614 (2006).
[CrossRef]

Y. Wu and X. Yang, “Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis,” Phys. Rev. A 71, 053806 (2005).
[CrossRef]

X. Yang and Y. Wu, “Achieving an ultra-slowly propagating maximally entangled state of two light beams via four-wave mixing in a double-Λ system,” J. Opt. B: Quantum Semiclassical Opt. 7, 54-56 (2005).
[CrossRef]

Y. Wu and X. Yang, “Highly efficient four-wave mixing in double-Λ system in ultraslow propagation regime,” Phys. Rev. A 70, 053818 (2004).
[CrossRef]

Y. Wu and X. Yang, “Eigenstates and eigenenergies of four-wave-mixing models,” Opt. Lett. 29, 839-841 (1996).
[CrossRef]

Yariv, A.

M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211-3214 (1994).
[CrossRef] [PubMed]

Yelin, S. F.

T. Wang, M. Koštrun, and S. F. Yelin, “Multiple beam splitter for single photons,” Phys. Rev. A 70, 033822 (2004).
[CrossRef]

Yuan, A.

X.-T. Xie, W. Li, J. Li, W.-X. Yang, A. Yuan, and X. Yang, “Transverse acoustic wave in molecular magnets via electromagnetically induced transparency,” Phys. Rev. B 75, 184423 (2007).
[CrossRef]

Yulin, A. V.

D. V. Skryabin, A. V. Yulin, and A. I. Maimistov, “Localized polaritons and second-harmonic generation in a resonant medium with quadratic nonlinearity,” Phys. Rev. Lett. 96, 163904 (2006).
[CrossRef] [PubMed]

Zakharov, V. E.

V. E. Zakharov and E. L. Schulman, “To the integrability of the system of two coupled nonlinear Schrödinger equations,” Physica D 4, 270-274 (1982).
[CrossRef]

Zaremba, J.

A. Raczyński, J. Zaremba, and S. Zielińska-Kaniasty, “Beam splitting and Hong-Ou-Mandel interference for stored light,” Phys. Rev. A 75, 013810 (2007).
[CrossRef]

Zhang, C.

Y. Han, J. Xiao, Y. Liu, C. Zhang, H. Wang, M. Xiao, and K. Peng, “Interacting dark states with enhanced nonlinearity in an ideal four-level tripod atomic system,” Phys. Rev. A 77, 023824 (2008).
[CrossRef]

S. Li, X. Yang, X. Cao, C. Zhang, C. Xie, and H. Wang, “Enhanced cross-phase modulation based on a double electromagnetically induced transparency in a four-level tripod atomic system,” Phys. Rev. Lett. 101, 073602 (2008).
[CrossRef] [PubMed]

Zhou, L.

Y. Guo, L. Zhou, L.-M. Kuang, and C. P. Sun, “Magneto-optical Stern-Gerlach effect in an atomic ensemble,” Phys. Rev. A 78, 013833 (2008).
[CrossRef]

Zielinska-Kaniasty, S.

A. Raczyński, J. Zaremba, and S. Zielińska-Kaniasty, “Beam splitting and Hong-Ou-Mandel interference for stored light,” Phys. Rev. A 75, 013810 (2007).
[CrossRef]

Appl. Phys. Lett. (1)

Y. Wu and X. Yang, “Giant Kerr nonlinearities and solitons in a crystal of molecular magnets,” Appl. Phys. Lett. 91, 094104 (2007).
[CrossRef]

Chaos, Solitons Fractals (1)

B. Tan and J. P. Boyd, “Stability and long time evolution of the periodic solutions to the two coupled nonlinear Schrödinger equations,” Chaos, Solitons Fractals 12, 721-734 (2001) and reference therein.
[CrossRef]

Comput. Phys. Commun. (1)

A. Aydin and B. Karasözen, “Symplectic and multi-symplectic methods for coupled nonlinear Schrödinger equations with periodic solutions,” Comput. Phys. Commun. 177, 566-583 (2007) and reference therein.
[CrossRef]

J. Appl. Phys. (1)

Y. Wu, “Matched soliton pairs of four-wave mixing in molecular magnets,” J. Appl. Phys. 103, 104903 (2008).
[CrossRef]

J. Opt. B: Quantum Semiclassical Opt. (1)

X. Yang and Y. Wu, “Achieving an ultra-slowly propagating maximally entangled state of two light beams via four-wave mixing in a double-Λ system,” J. Opt. B: Quantum Semiclassical Opt. 7, 54-56 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. B (2)

X. Wu, X.-T. Xie, and X. Yang, “Dark and bright vortex solitons in electromagnetically induced transparent media,” J. Phys. B 39, 3263-3273 (2006).
[CrossRef]

L.-G. Si, J.-B. Liu, X.-Y. Lü, and X. Yang, “Ultraslow temporal vector optical solitons in a cold five-state atomic medium under Raman excitation,” J. Phys. B 41, 215504 (2008).
[CrossRef]

Opt. Lett. (7)

Phys. Rep. (1)

Y. S. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications,” Phys. Rep. 298, 81-197 (1998).
[CrossRef]

Phys. Rev. A (17)

C. Hang and G. Huang, “Weak-light ultraslow vector solitons via electromagnetically induced transparency,” Phys. Rev. A 77, 033830 (2008).
[CrossRef]

Y. Wu, “Two-color ultraslow optical solitons via four-wave mixing in cold-atom media,” Phys. Rev. A 71, 053820 (2005).
[CrossRef]

W.-X. Yang, J.-M. Hou, and R.-K. Lee, “Ultraslow bright and dark solitons in semiconductor quantum wells,” Phys. Rev. A 77, 033838 (2008).
[CrossRef]

X.-J. Liu, H. Jing, and M.-L. Ge, “Solitons formed by dark-state polaritons in an electromagnetic induced transparency,” Phys. Rev. A 70, 055802 (2004).
[CrossRef]

G. T. Adamashvili, C. Weber, A. Knorr, and N. T. Adamashvili, “Optical nonlinear waves in semiconductor quantum dots: solitons and breathers,” Phys. Rev. A 75, 063808 (2007).
[CrossRef]

E. Paspalakis and P. L. Knight, “Electromagnetically induced transparency and controlled group velocity in a multilevel system,” Phys. Rev. A 66, 015802 (2002).
[CrossRef]

E. Paspalakis, N. J. Kylstra, and P. L. Knight, “Propagation and nonlinear generation dynamics in a coherently prepared four-level system,” Phys. Rev. A 65, 053808 (2002).
[CrossRef]

T. Wang, M. Koštrun, and S. F. Yelin, “Multiple beam splitter for single photons,” Phys. Rev. A 70, 033822 (2004).
[CrossRef]

A. Raczyński, J. Zaremba, and S. Zielińska-Kaniasty, “Beam splitting and Hong-Ou-Mandel interference for stored light,” Phys. Rev. A 75, 013810 (2007).
[CrossRef]

Y. Han, J. Xiao, Y. Liu, C. Zhang, H. Wang, M. Xiao, and K. Peng, “Interacting dark states with enhanced nonlinearity in an ideal four-level tripod atomic system,” Phys. Rev. A 77, 023824 (2008).
[CrossRef]

Y. Wu and X. Yang, “Highly efficient four-wave mixing in double-Λ system in ultraslow propagation regime,” Phys. Rev. A 70, 053818 (2004).
[CrossRef]

Y. Wu and X. Yang, “Electromagnetically induced transparency in V-, Λ-, and cascade-type schemes beyond steady-state analysis,” Phys. Rev. A 71, 053806 (2005).
[CrossRef]

Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Preparation of multiparty entangled states using pairwise perfectly efficient single-probe photon four-wave mixing,” Phys. Rev. A 69, 063803 (2004).
[CrossRef]

Y. Wu, M. G. Payne, E. W. Hagley, and L. Deng, “Ultraviolet single-photons on demand and entanglement of photons with a large frequency difference,” Phys. Rev. A 70, 063812 (2004).
[CrossRef]

S. Rebić, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbalán, “Polarization phase gate with a tripod atomic system,” Phys. Rev. A 70, 032317 (2004).
[CrossRef]

D. Petrosyan and Y. P. Malakyan, “Magneto-optical rotation and cross-phase modulation via coherently driven four-level atoms in a tripod configuration,” Phys. Rev. A 70, 023822 (2004).
[CrossRef]

Y. Guo, L. Zhou, L.-M. Kuang, and C. P. Sun, “Magneto-optical Stern-Gerlach effect in an atomic ensemble,” Phys. Rev. A 78, 013833 (2008).
[CrossRef]

Phys. Rev. B (1)

X.-T. Xie, W. Li, J. Li, W.-X. Yang, A. Yuan, and X. Yang, “Transverse acoustic wave in molecular magnets via electromagnetically induced transparency,” Phys. Rev. B 75, 184423 (2007).
[CrossRef]

Phys. Rev. E (5)

L. Deng, M. G. Payne, G. Huang, and E. W. Hagley, “Formation and propagation of matched and coupled ultraslow optical soliton pairs in a four-level double-Λ system,” Phys. Rev. E 72, 055601(R) (2005).
[CrossRef]

C. Hang, G. Huang, and L. Deng, “Generalized nonlinear Schrödinger equation and ultraslow optical solitons in a cold four-state atomic system,” Phys. Rev. E 73, 036607 (2006).
[CrossRef]

G. Huang, K. Jiang, M. G. Payne, and L. Deng, “Formation and propagation of coupled ultraslow optical soliton pairs in a cold three-state double-Λ, system,” Phys. Rev. E 73, 056606 (2006).
[CrossRef]

Q. Park and H. J. Shin, “Systematic construction of multicomponent optical solitons,” Phys. Rev. E 61, 3093-3106 (2000).
[CrossRef]

J. Yang, “Multisoliton perturbation theory for the Manakov equations and its applications to nonlinear optics,” Phys. Rev. E 59, 2393-2405 (1999).
[CrossRef]

Phys. Rev. Lett. (12)

S. Li, X. Yang, X. Cao, C. Zhang, C. Xie, and H. Wang, “Enhanced cross-phase modulation based on a double electromagnetically induced transparency in a four-level tripod atomic system,” Phys. Rev. Lett. 101, 073602 (2008).
[CrossRef] [PubMed]

M. D. Lukin and A. Imamoğlu, “Nonlinear optics and quantum entanglement of ultraslow single photons,” Phys. Rev. Lett. 84, 1419-1422 (2000).
[CrossRef] [PubMed]

F. Vewinger, M. Heinz, R. G. Fernandez, N. V. Vitanov, and K. Bergmann, “Creation and measurement of a coherent superposition of quantum states,” Phys. Rev. Lett. 91, 213001 (2003).
[CrossRef] [PubMed]

S. E. Harris and L. V. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82, 4611-4614 (1999).
[CrossRef]

Y. Barad and Y. Silberberg, “Polarization evolution and polarization instability of solitons in a birefringent optical fiber,” Phys. Rev. Lett. 78, 3290-3293 (1997).
[CrossRef]

D. Rand, I. Glesk, C.-S. Brès, D. A. Nolan, X. Chen, J. Koh, J. W. Fleischer, K. Steiglitz, and P. R. Prucnal, “Observation of temporal vector soliton propagation and collision in birefringent fiber,” Phys. Rev. Lett. 98, 053902 (2007).
[CrossRef] [PubMed]

S. T. Cundiff, B. C. Collings, N. N. Akhmediev, J. M. Soto-Crespo, K. Bergman, and W. H. Knox, “Observation of polarization-locked vector solitons in an optical fiber,” Phys. Rev. Lett. 82, 3988-3991 (1999).
[CrossRef]

D. V. Skryabin, F. Biancalana, D. M. Bird, and F. Benabid, “Effective Kerr nonlinearity and two-color solitons in photonic band-gap fibers filled with a Raman active gas,” Phys. Rev. Lett. 93, 143907 (2004).
[CrossRef] [PubMed]

J. U. Kang, G. I. Stegeman, J. S. Aitchison, and N. Akhmediev, “Observation of Manakov spatial solitons in AlGaAs planar waveguides,” Phys. Rev. Lett. 76, 3699-3702 (1996).
[CrossRef] [PubMed]

M. Segev, G. C. Valley, B. Crosignani, P. DiPorto, and A. Yariv, “Steady-state spatial screening solitons in photorefractive materials with external applied field,” Phys. Rev. Lett. 73, 3211-3214 (1994).
[CrossRef] [PubMed]

Y. Wu and L. Deng, “Ultraslow optical solitons in a cold four-state medium,” Phys. Rev. Lett. 93, 143904 (2004).
[CrossRef] [PubMed]

D. V. Skryabin, A. V. Yulin, and A. I. Maimistov, “Localized polaritons and second-harmonic generation in a resonant medium with quadratic nonlinearity,” Phys. Rev. Lett. 96, 163904 (2006).
[CrossRef] [PubMed]

Phys. Today (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36-42 (1997).
[CrossRef]

Physica D (1)

V. E. Zakharov and E. L. Schulman, “To the integrability of the system of two coupled nonlinear Schrödinger equations,” Physica D 4, 270-274 (1982).
[CrossRef]

Rev. Mod. Phys. (2)

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70, 1003-1025 (1998).
[CrossRef]

H. A. Haus and W. S. Wong, “Solitons in optical communications,” Rev. Mod. Phys. 68, 423-444 (1996).
[CrossRef]

Other (3)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

B. A. Malomed, Soliton Management in Periodic Systems (Springer, 2006) and reference therein.

D. A. Steck, http://steck.us/alkalidata.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Energy-level diagram of a four-level tripod atomic system interacting with a control field and a linear-polarized signal field in the presence of a magnetic field parallel to the signal field propagation direction. Ω S and Ω C are the Rabi frequencies of the signal field and the control field, respectively. Δ S and Δ C are one- and two-photon detunings; Δ = μ B M F g F B is the Zeeman shift of levels g 1 and g 2 . ( b 1 ) and ( b 2 ) Two possible arrangements of experimental apparatus [48]. (c) Level scheme of the Rb 87 D1 lines, including the levels involved in theoretical research [51].

Fig. 2
Fig. 2

Absorption coefficients α 1 ( 2 ) versus Rabi frequency Ω C for several different values of two-photon detuning Δ C . The other parameters are 2 γ 7.2 × 10 7 s 1 , κ 41 κ 42 1.0 × 10 9 ( cm s ) 1 , Δ S 1.0 × 10 9 s 1 , and Δ 1.0 × 10 4 s 1 .

Fig. 3
Fig. 3

Ratios K n , r K n , i ( n = 1 , 2 ) and U l m , r U l m , i ( l , m = 1 , 2 ) vs. the Rabi frequency Ω C . The other parameters are chosen as 2 γ 7.2 × 10 7 s 1 , κ 41 κ 42 1.0 × 10 9 ( cm s ) 1 , Δ S 1.0 × 10 9 s 1 , Δ C 2.0 × 10 4 s 1 , and Δ 1.0 × 10 4 s 1 . This figure corresponds to the case of bright–bright vector solitons

Equations (56)

Equations on this page are rendered with MathJax. Learn more.

H ̂ int = 2 Δ 2 2 + ( Δ Δ C ) 3 3 + ( Δ Δ S ) 4 4 ( Ω S 1 4 1 + Ω S 2 4 2 + Ω C 4 3 + H.c. ) ,
ρ ̇ 11 = i Ω S 1 * ρ 41 i Ω S 1 ρ 14 ,
ρ ̇ 22 = i Ω S 2 * ρ 42 i Ω S 2 ρ 24 ,
ρ ̇ 33 = i Ω C * ρ 43 i Ω C ρ 34 ,
ρ ̇ 44 = 2 γ ρ 44 + i Ω S 1 ρ 14 + i Ω S 2 ρ 24 + i Ω C ρ 34 i Ω S 1 * ρ 41 i Ω S 2 * ρ 42 i Ω C * ρ 43 ,
ρ ̇ 21 = i 2 Δ ρ 21 i Ω S 1 ρ 24 + i Ω S 2 * ρ 41 ,
ρ ̇ 31 = i ( Δ Δ C ) ρ 31 i Ω S 1 ρ 34 + i Ω C * ρ 41 ,
ρ ̇ 41 = i ( Δ Δ S i γ ) ρ 41 + i Ω S 1 ( ρ 11 ρ 44 ) + i Ω S 2 ρ 21 + i Ω C ρ 31 ,
ρ ̇ 32 = i ( Δ Δ C ) ρ 32 i Ω S 2 ρ 34 + i Ω C * ρ 42 ,
ρ ̇ 42 = i ( Δ Δ S i γ ) ρ 42 + i Ω S 2 ( ρ 22 ρ 44 ) + i Ω S 1 ρ 12 + i Ω C ρ 32 ,
ρ ̇ 43 = i ( Δ C Δ S i γ ) ρ 43 + i Ω C ( ρ 33 ρ 44 ) + i Ω S 1 ρ 13 + i Ω S 2 ρ 23 ,
Ω S 1 z + 1 c Ω S 1 t = i κ 41 ρ 41 ,
Ω S 2 z + 1 c Ω S 2 t = i κ 42 ρ 42 ,
ρ j k ( 1 ) ( t ) = 1 2 π β j k ( 1 ) ( ω ) e i ω t d ω , j , k = 1 , , 4 ,
Ω k ( t ) = 1 2 π Λ k ( ω ) e i ω t d ω , k = S 1 , S 2 ,
( ω 2 Δ ) β 21 ( 1 ) Λ S 1 β 24 ( 0 ) + Λ S 2 * β 41 ( 0 ) = 0 ,
( ω Δ + Δ C ) β 31 ( 1 ) + Ω C * β 41 ( 1 ) = Λ S 1 β 34 ( 0 ) ,
( ω Δ + Δ S + i γ ) β 41 ( 1 ) + Ω C β 31 ( 1 ) = 1 2 Λ S 1 Λ S 2 β 21 ( 0 ) ,
( ω + Δ + Δ C ) β 32 ( 1 ) + Ω C * β 42 ( 1 ) = Λ S 2 β 34 ( 0 ) ,
( ω + Δ + Δ S + i γ ) β 42 ( 1 ) + Ω C β 32 ( 1 ) = 1 2 Λ S 2 Λ S 1 β 12 ( 0 ) ,
( ω Δ C + Δ S + i γ ) β 43 ( 1 ) + Λ S 1 β 13 ( 0 ) + Λ S 2 β 23 ( 0 ) = 0 ,
Λ S 1 z i ω c Λ S 1 = i κ 41 β 41 ( 1 ) ,
Λ S 2 z i ω c Λ S 2 = i κ 42 β 42 ( 1 ) .
Λ S 1 ( z , ω ) = Λ S 1 ( 0 , ω ) exp [ i K 1 ( ω ) z ] ,
Λ S 2 ( z , ω ) = Λ S 2 ( 0 , ω ) exp [ i K 2 ( ω ) z ] ,
K 1 ( ω ) = ω c + κ 41 ω Δ + Δ C 2 D 1 ( ω ) = K 1 + K 1 ω + K 1 ω 2 + ,
K 2 ( ω ) = ω c + κ 42 ω + Δ + Δ C 2 D 2 ( ω ) = K 2 + K 2 ω + K 2 ω 2 + ,
z Λ S 1 ( z , ω ) = i K 1 ( ω ) Λ S 1 ( z , ω ) ,
z Λ S 2 ( z , ω ) = i K 2 ( ω ) Λ S 2 ( z , ω ) .
Λ 1 ( z , ω ) z e i z K 1 = i ( K 1 ω + K 1 ω 2 ) Λ 1 ( z , ω ) e i z K 1 ,
Λ 2 ( z , ω ) z e i z K 2 = i ( K 2 ω + K 2 ω 2 ) Λ 2 ( z , ω ) e i z K 2 .
i κ 41 ρ 41 i κ 41 ρ 41 ( 1 ) + i nlt 1 ,
i κ 42 ρ 42 i κ 42 ρ 42 ( 1 ) + i nlt 2 ,
nlt 1 = κ 41 e i z K 1 [ Δ + Δ C 2 Δ D 1 Ω S 2 ( Ω S 1 ρ 42 ( 1 ) * Ω S 2 * ρ 41 ( 1 ) ) + Ω C D 1 ( Δ S Δ C i γ ) Ω S 1 ( Ω S 1 * ρ 31 ( 1 ) + Ω S 2 * ρ 32 ( 1 ) ) ] ,
nlt 2 = κ 42 e i z K 2 [ Δ + Δ C 2 Δ D 2 Ω S 1 ( Ω S 1 * ρ 42 ( 1 ) Ω S 2 ρ 41 ( 1 ) * ) + Ω C D 2 ( Δ S Δ C i γ ) Ω S 2 ( Ω S 1 * ρ 31 ( 1 ) + Ω S 2 * ρ 32 ( 1 ) ) ] ,
ρ 31 ( 1 ) = Ω C * 2 D 1 Ω S 1 , ρ 41 ( 1 ) = Δ + Δ C 2 D 1 Ω S 1 ,
ρ 32 ( 1 ) = Ω C * 2 D 2 Ω S 2 , ρ 42 ( 1 ) = Δ + Δ C 2 D 2 Ω S 2 ,
Ω k ( z , t ) = 1 2 π Λ k ( z , ω ) e i ω t d ω , k = 1 , 2 ,
i ( z + 1 V g 1 t ) Ω 1 + K 1 2 t 2 Ω 1 + ( U 11 Ω 1 2 e α 1 z + U 12 Ω 2 2 e α 2 z ) Ω 1 = 0 ,
i ( z + 1 V g 2 t ) Ω 2 + K 2 2 t 2 Ω 2 + ( U 21 Ω 1 2 e α 1 z + U 22 Ω 2 2 e α 2 z ) Ω 2 = 0 ,
K 1 = κ 41 [ 2 ( Δ + Δ C ) Ω C 2 + ( Δ + Δ S + i γ ) Ω C 2 + ( Δ + Δ C ) 3 ] ÷ 2 D 1 3 ,
K 2 = κ 42 [ 2 ( Δ + Δ C ) Ω C 2 + ( Δ + Δ S + i γ ) Ω C 2 + ( Δ + Δ C ) 3 ] ÷ 2 D 2 3 ,
U 11 = κ 41 Ω C 2 2 ( Δ S Δ C i γ ) D 1 2 ,
U 22 = κ 42 Ω C 2 2 ( Δ S Δ C i γ ) D 2 2 ,
U 12 = κ 41 [ Ω C 2 2 ( Δ S Δ C i γ ) D 1 D 2 + ( Δ + Δ C ) 2 4 Δ D 1 2 Δ 2 + Δ C 2 4 Δ D 1 D 2 * ] ,
U 21 = κ 42 [ Ω C 2 2 ( Δ S Δ C i γ ) D 1 D 2 ( Δ + Δ C ) 2 4 Δ D 2 2 + Δ 2 + Δ C 2 4 Δ D 1 * D 2 ] .
i ( ξ + δ τ ) Ω 1 K 1 2 τ 2 Ω 1 ( U 11 e α 1 ξ Ω 1 2 + U 12 e α 2 ξ Ω 2 2 ) Ω 1 = 0 ,
i ( ξ δ τ ) Ω 2 K 2 2 τ 2 Ω 2 ( U 22 e α 2 ξ Ω 2 2 + U 21 e α 1 ξ Ω 1 2 ) Ω 2 = 0 .
i u s + i G δ u σ G 1 2 u σ 2 ( G 11 u 2 + G 12 v 2 ) u = 0 ,
i v s i G δ v σ G 2 2 v σ 2 ( G 22 v 2 + G 21 u 2 ) v = 0 ,
u = C 1 sech ( σ ) exp [ i ( F 11 σ + F 12 s ) ] ,
v = C 2 sech ( σ ) exp [ i ( F 21 σ + F 22 s ) ] ,
i s u + 2 σ 2 u + ( u 2 + v 2 ) u = 0 ,
i s v + 2 σ 2 v + ( v 2 + u 2 ) v = 0 ,
u = 2 cos ( θ ) sech ( σ ) e i s ,
v = 2 sin ( θ ) sech ( σ ) e i s ,

Metrics