Abstract

We have demonstrated for the first time, to the best of our knowledge, photorefractive two-wave mixing in He+ implanted waveguides in one of the most promising materials for infrared photorefractive applications, the ferroelectric semiconductor Sn2P2S6. The high optical nonlinearity is preserved after implantation and at the telecommunication wavelength λ=1.55μm, a maximal two-wave mixing gain of 2.5cm1 has been measured in Te-doped waveguides. In the nominally pure material an increase of the effective number of traps after implantation has been observed, resulting in an increase of the two-beam coupling gain by a factor of almost 2 in the 6331064nm spectral range. In 1% Te-doped Sn2P2S6 the effect of ion implantation to the photorefractive response is completely different than in pure materials. While the dominant contribution by holes is not considerably affected, a strong, thermally induced charge compensation is observed in the He+ implanted Te-doped waveguides.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P.Günter and J.-P.Huignard, eds., Photorefractive Materials and Their Applications III: Applications (Springer-Verlag, 2007).
    [CrossRef]
  2. A. Partovi, J. Millerd, E. M. Garmire, M. Ziari, W. Steier, S. B. Trivedi, and M. B. Klein, “Photorefractivity at 1.5 μm in CdTe-V,” Appl. Phys. Lett. 57, 846-848 (1990).
    [CrossRef]
  3. K. Shcherbin, “Recent progress in semiconductor photorefractive crystals,” in Photorefractive Materials and Their Applications II, P.Günter and J.-P.Huignard, eds. (Springer, 2007), pp. 391-418.
    [CrossRef]
  4. G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, and D. Rytz, “Impurity enhanced self-pumped phase conjugation in the near infrared in 'blue' BaTiO3,”Opt. Commun. 101, 60-64 (1993).
    [CrossRef]
  5. C. Medrano, M. Zgonik, N. Sonderer, Ch. Beyeler, S. Krucker, J. Seglins, H. Wüest, and P. Günter, “Photorefractive effect in Cu- and Ni-doped KNbO3 in the visible and near infrared,” J. Appl. Phys. 76, 5640-5645 (1994).
    [CrossRef]
  6. M. Kaczmarek, R. W. Eason, and I. Mnushkina, “The effect of doping and processing conditions on the optical performance of Rh:BaTiO3,”Appl. Phys. B 68, 813-817 (1999).
    [CrossRef]
  7. D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67, 131-150 (1998).
    [CrossRef]
  8. S. Brülisauer, D. Fluck, P. Günter, L. Beckers, and C. Buchal, “Photorefractive effect in proton-implanted Fe-doped KNbO3 waveguides at telecommunication wavelengths,” J. Opt. Soc. Am. B 13, 2544-2548 (1996).
    [CrossRef]
  9. D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Electro-optical properties of Sn2P2S6,” Opt. Commun. 215, 333-343 (2003).
    [CrossRef]
  10. A. Grabar, M. Jazbinsek, A. N. Shumelyuk, Y. M. Vysochanskii, G. Montemezzani, and P. Günter, “Photorefractive effects in Sn2P2S6,” in Photorefractive Materials and Their Applications II, P.Günter and J.-P.Huignard, eds. (Springer, 2007), pp. 327-362.
    [CrossRef]
  11. T. Bach, M. Jazbinsek, G. Montemezzani, P. Günter, A. A. Grabar, and Y. M. Vysochanskii, “Tailoring of infrared photorefractive properties of Sn2P2S6 crystals by Te and Sb doping,” J. Opt. Soc. Am. B 24, 1535-1541 (2007).
    [CrossRef]
  12. R. Mosimann, P. Marty, T. Bach, F. Juvalta, M. Jazbinsek, P. Günter, and A. A. Grabar, “High-speed photorefraction at telecommunication wavelength 1.55 μm in Sn2P2S6:Te,” Opt. Lett. 32, 3230-3232 (2007).
    [CrossRef] [PubMed]
  13. A. Guarino, M. Jazbinsek, C. Herzog, R. Degl'Innocenti, G. Poberaj, and P. Günter, “Optical waveguides in Sn2P2S6 by low fluence MeV He+ ion implantation,” Opt. Express 14, 2344-2358 (2006).
    [CrossRef] [PubMed]
  14. D. Haertle, M. Jazbinsek, G. Montemezzani, and P. Günter, “Nonlinear optical coefficients and phase-matching conditions in Sn2P2S6,” Opt. Express 13, 3765-3776 (2005).
    [CrossRef] [PubMed]
  15. B. Sturman, P. Mathey, H. R. Jauslin, S. Odoulov, and A. Shumelyuk, “Modeling of the photorefractive nonlinear response in Sn2P2S6 crystals,” J. Opt. Soc. Am. B 24, 1303-1309 (2007).
    [CrossRef]
  16. S. Odoulov, A. Shumelyuk, U. Hellwig, R. Rupp, A. A. Grabar, and I. Stoyka, “Photorefraction in tin hypothiodiphosphate in the near infrared,” J. Opt. Soc. Am. B 13, 2352-2360 (1996).
    [CrossRef]
  17. A. N. Shumelyuk, A. Hryhorashchuk, and S. G. Odoulov, “Coherent optical oscillator with periodic zero-π phase modulation,” Phys. Rev. A 72, 023819 (2005).
    [CrossRef]
  18. A. N. Shumelyuk, K. Shcherbin, S. Odoulov, B. Sturman, E. Podivilov, and K. Buse, “Slowing down of light in photorefractive crystals with beam intensity coupling reduced to zero,” Phys. Rev. Lett. 93, 243604 (2004).
    [CrossRef]
  19. A. Guarino and P. Günter, “Nondestructive method for the characterization of ion-implanted waveguides,” Opt. Lett. 30, 2412-2414 (2005).
    [CrossRef] [PubMed]
  20. D. Fluck, J. A. Weiss, S. Brülisauer, and P. Günter, “Two-wave mixing of focused Gaussian beams in photorefractive waveguides,” Opt. Lett. 19, 2080-2082 (1994).
    [CrossRef] [PubMed]
  21. N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals. II. Beam coupling-light amplification,” Ferroelectrics 22, 961-964 (1979).
    [CrossRef]

2007 (3)

2006 (1)

2005 (3)

2004 (1)

A. N. Shumelyuk, K. Shcherbin, S. Odoulov, B. Sturman, E. Podivilov, and K. Buse, “Slowing down of light in photorefractive crystals with beam intensity coupling reduced to zero,” Phys. Rev. Lett. 93, 243604 (2004).
[CrossRef]

2003 (1)

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Electro-optical properties of Sn2P2S6,” Opt. Commun. 215, 333-343 (2003).
[CrossRef]

1999 (1)

M. Kaczmarek, R. W. Eason, and I. Mnushkina, “The effect of doping and processing conditions on the optical performance of Rh:BaTiO3,”Appl. Phys. B 68, 813-817 (1999).
[CrossRef]

1998 (1)

D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67, 131-150 (1998).
[CrossRef]

1996 (2)

1994 (2)

D. Fluck, J. A. Weiss, S. Brülisauer, and P. Günter, “Two-wave mixing of focused Gaussian beams in photorefractive waveguides,” Opt. Lett. 19, 2080-2082 (1994).
[CrossRef] [PubMed]

C. Medrano, M. Zgonik, N. Sonderer, Ch. Beyeler, S. Krucker, J. Seglins, H. Wüest, and P. Günter, “Photorefractive effect in Cu- and Ni-doped KNbO3 in the visible and near infrared,” J. Appl. Phys. 76, 5640-5645 (1994).
[CrossRef]

1993 (1)

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, and D. Rytz, “Impurity enhanced self-pumped phase conjugation in the near infrared in 'blue' BaTiO3,”Opt. Commun. 101, 60-64 (1993).
[CrossRef]

1990 (1)

A. Partovi, J. Millerd, E. M. Garmire, M. Ziari, W. Steier, S. B. Trivedi, and M. B. Klein, “Photorefractivity at 1.5 μm in CdTe-V,” Appl. Phys. Lett. 57, 846-848 (1990).
[CrossRef]

1979 (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals. II. Beam coupling-light amplification,” Ferroelectrics 22, 961-964 (1979).
[CrossRef]

Bach, T.

Beckers, L.

Beyeler, Ch.

C. Medrano, M. Zgonik, N. Sonderer, Ch. Beyeler, S. Krucker, J. Seglins, H. Wüest, and P. Günter, “Photorefractive effect in Cu- and Ni-doped KNbO3 in the visible and near infrared,” J. Appl. Phys. 76, 5640-5645 (1994).
[CrossRef]

Brülisauer, S.

Buchal, C.

Buse, K.

A. N. Shumelyuk, K. Shcherbin, S. Odoulov, B. Sturman, E. Podivilov, and K. Buse, “Slowing down of light in photorefractive crystals with beam intensity coupling reduced to zero,” Phys. Rev. Lett. 93, 243604 (2004).
[CrossRef]

Caimi, G.

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Electro-optical properties of Sn2P2S6,” Opt. Commun. 215, 333-343 (2003).
[CrossRef]

Degl'Innocenti, R.

Eason, R. W.

M. Kaczmarek, R. W. Eason, and I. Mnushkina, “The effect of doping and processing conditions on the optical performance of Rh:BaTiO3,”Appl. Phys. B 68, 813-817 (1999).
[CrossRef]

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, and D. Rytz, “Impurity enhanced self-pumped phase conjugation in the near infrared in 'blue' BaTiO3,”Opt. Commun. 101, 60-64 (1993).
[CrossRef]

Fluck, D.

Garmire, E. M.

A. Partovi, J. Millerd, E. M. Garmire, M. Ziari, W. Steier, S. B. Trivedi, and M. B. Klein, “Photorefractivity at 1.5 μm in CdTe-V,” Appl. Phys. Lett. 57, 846-848 (1990).
[CrossRef]

Garrett, M. H.

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, and D. Rytz, “Impurity enhanced self-pumped phase conjugation in the near infrared in 'blue' BaTiO3,”Opt. Commun. 101, 60-64 (1993).
[CrossRef]

Grabar, A.

A. Grabar, M. Jazbinsek, A. N. Shumelyuk, Y. M. Vysochanskii, G. Montemezzani, and P. Günter, “Photorefractive effects in Sn2P2S6,” in Photorefractive Materials and Their Applications II, P.Günter and J.-P.Huignard, eds. (Springer, 2007), pp. 327-362.
[CrossRef]

Grabar, A. A.

Guarino, A.

Günter, P.

R. Mosimann, P. Marty, T. Bach, F. Juvalta, M. Jazbinsek, P. Günter, and A. A. Grabar, “High-speed photorefraction at telecommunication wavelength 1.55 μm in Sn2P2S6:Te,” Opt. Lett. 32, 3230-3232 (2007).
[CrossRef] [PubMed]

T. Bach, M. Jazbinsek, G. Montemezzani, P. Günter, A. A. Grabar, and Y. M. Vysochanskii, “Tailoring of infrared photorefractive properties of Sn2P2S6 crystals by Te and Sb doping,” J. Opt. Soc. Am. B 24, 1535-1541 (2007).
[CrossRef]

A. Guarino, M. Jazbinsek, C. Herzog, R. Degl'Innocenti, G. Poberaj, and P. Günter, “Optical waveguides in Sn2P2S6 by low fluence MeV He+ ion implantation,” Opt. Express 14, 2344-2358 (2006).
[CrossRef] [PubMed]

D. Haertle, M. Jazbinsek, G. Montemezzani, and P. Günter, “Nonlinear optical coefficients and phase-matching conditions in Sn2P2S6,” Opt. Express 13, 3765-3776 (2005).
[CrossRef] [PubMed]

A. Guarino and P. Günter, “Nondestructive method for the characterization of ion-implanted waveguides,” Opt. Lett. 30, 2412-2414 (2005).
[CrossRef] [PubMed]

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Electro-optical properties of Sn2P2S6,” Opt. Commun. 215, 333-343 (2003).
[CrossRef]

S. Brülisauer, D. Fluck, P. Günter, L. Beckers, and C. Buchal, “Photorefractive effect in proton-implanted Fe-doped KNbO3 waveguides at telecommunication wavelengths,” J. Opt. Soc. Am. B 13, 2544-2548 (1996).
[CrossRef]

C. Medrano, M. Zgonik, N. Sonderer, Ch. Beyeler, S. Krucker, J. Seglins, H. Wüest, and P. Günter, “Photorefractive effect in Cu- and Ni-doped KNbO3 in the visible and near infrared,” J. Appl. Phys. 76, 5640-5645 (1994).
[CrossRef]

D. Fluck, J. A. Weiss, S. Brülisauer, and P. Günter, “Two-wave mixing of focused Gaussian beams in photorefractive waveguides,” Opt. Lett. 19, 2080-2082 (1994).
[CrossRef] [PubMed]

A. Grabar, M. Jazbinsek, A. N. Shumelyuk, Y. M. Vysochanskii, G. Montemezzani, and P. Günter, “Photorefractive effects in Sn2P2S6,” in Photorefractive Materials and Their Applications II, P.Günter and J.-P.Huignard, eds. (Springer, 2007), pp. 327-362.
[CrossRef]

Haertle, D.

D. Haertle, M. Jazbinsek, G. Montemezzani, and P. Günter, “Nonlinear optical coefficients and phase-matching conditions in Sn2P2S6,” Opt. Express 13, 3765-3776 (2005).
[CrossRef] [PubMed]

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Electro-optical properties of Sn2P2S6,” Opt. Commun. 215, 333-343 (2003).
[CrossRef]

Haldi, A.

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Electro-optical properties of Sn2P2S6,” Opt. Commun. 215, 333-343 (2003).
[CrossRef]

Hellwig, U.

Herzog, C.

Hribek, P.

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, and D. Rytz, “Impurity enhanced self-pumped phase conjugation in the near infrared in 'blue' BaTiO3,”Opt. Commun. 101, 60-64 (1993).
[CrossRef]

Hryhorashchuk, A.

A. N. Shumelyuk, A. Hryhorashchuk, and S. G. Odoulov, “Coherent optical oscillator with periodic zero-π phase modulation,” Phys. Rev. A 72, 023819 (2005).
[CrossRef]

Jauslin, H. R.

Jazbinsek, M.

Juvalta, F.

Kaczmarek, M.

M. Kaczmarek, R. W. Eason, and I. Mnushkina, “The effect of doping and processing conditions on the optical performance of Rh:BaTiO3,”Appl. Phys. B 68, 813-817 (1999).
[CrossRef]

Kip, D.

D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67, 131-150 (1998).
[CrossRef]

Klein, M. B.

A. Partovi, J. Millerd, E. M. Garmire, M. Ziari, W. Steier, S. B. Trivedi, and M. B. Klein, “Photorefractivity at 1.5 μm in CdTe-V,” Appl. Phys. Lett. 57, 846-848 (1990).
[CrossRef]

Krucker, S.

C. Medrano, M. Zgonik, N. Sonderer, Ch. Beyeler, S. Krucker, J. Seglins, H. Wüest, and P. Günter, “Photorefractive effect in Cu- and Ni-doped KNbO3 in the visible and near infrared,” J. Appl. Phys. 76, 5640-5645 (1994).
[CrossRef]

Kukhtarev, N. V.

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals. II. Beam coupling-light amplification,” Ferroelectrics 22, 961-964 (1979).
[CrossRef]

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals. II. Beam coupling-light amplification,” Ferroelectrics 22, 961-964 (1979).
[CrossRef]

Marty, P.

Mathey, P.

Medrano, C.

C. Medrano, M. Zgonik, N. Sonderer, Ch. Beyeler, S. Krucker, J. Seglins, H. Wüest, and P. Günter, “Photorefractive effect in Cu- and Ni-doped KNbO3 in the visible and near infrared,” J. Appl. Phys. 76, 5640-5645 (1994).
[CrossRef]

Millerd, J.

A. Partovi, J. Millerd, E. M. Garmire, M. Ziari, W. Steier, S. B. Trivedi, and M. B. Klein, “Photorefractivity at 1.5 μm in CdTe-V,” Appl. Phys. Lett. 57, 846-848 (1990).
[CrossRef]

Mnushkina, I.

M. Kaczmarek, R. W. Eason, and I. Mnushkina, “The effect of doping and processing conditions on the optical performance of Rh:BaTiO3,”Appl. Phys. B 68, 813-817 (1999).
[CrossRef]

Montemezzani, G.

T. Bach, M. Jazbinsek, G. Montemezzani, P. Günter, A. A. Grabar, and Y. M. Vysochanskii, “Tailoring of infrared photorefractive properties of Sn2P2S6 crystals by Te and Sb doping,” J. Opt. Soc. Am. B 24, 1535-1541 (2007).
[CrossRef]

D. Haertle, M. Jazbinsek, G. Montemezzani, and P. Günter, “Nonlinear optical coefficients and phase-matching conditions in Sn2P2S6,” Opt. Express 13, 3765-3776 (2005).
[CrossRef] [PubMed]

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Electro-optical properties of Sn2P2S6,” Opt. Commun. 215, 333-343 (2003).
[CrossRef]

A. Grabar, M. Jazbinsek, A. N. Shumelyuk, Y. M. Vysochanskii, G. Montemezzani, and P. Günter, “Photorefractive effects in Sn2P2S6,” in Photorefractive Materials and Their Applications II, P.Günter and J.-P.Huignard, eds. (Springer, 2007), pp. 327-362.
[CrossRef]

Mosimann, R.

Odoulov, S.

Odoulov, S. G.

A. N. Shumelyuk, A. Hryhorashchuk, and S. G. Odoulov, “Coherent optical oscillator with periodic zero-π phase modulation,” Phys. Rev. A 72, 023819 (2005).
[CrossRef]

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals. II. Beam coupling-light amplification,” Ferroelectrics 22, 961-964 (1979).
[CrossRef]

Partovi, A.

A. Partovi, J. Millerd, E. M. Garmire, M. Ziari, W. Steier, S. B. Trivedi, and M. B. Klein, “Photorefractivity at 1.5 μm in CdTe-V,” Appl. Phys. Lett. 57, 846-848 (1990).
[CrossRef]

Poberaj, G.

Podivilov, E.

A. N. Shumelyuk, K. Shcherbin, S. Odoulov, B. Sturman, E. Podivilov, and K. Buse, “Slowing down of light in photorefractive crystals with beam intensity coupling reduced to zero,” Phys. Rev. Lett. 93, 243604 (2004).
[CrossRef]

Ross, G. W.

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, and D. Rytz, “Impurity enhanced self-pumped phase conjugation in the near infrared in 'blue' BaTiO3,”Opt. Commun. 101, 60-64 (1993).
[CrossRef]

Rupp, R.

Rytz, D.

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, and D. Rytz, “Impurity enhanced self-pumped phase conjugation in the near infrared in 'blue' BaTiO3,”Opt. Commun. 101, 60-64 (1993).
[CrossRef]

Seglins, J.

C. Medrano, M. Zgonik, N. Sonderer, Ch. Beyeler, S. Krucker, J. Seglins, H. Wüest, and P. Günter, “Photorefractive effect in Cu- and Ni-doped KNbO3 in the visible and near infrared,” J. Appl. Phys. 76, 5640-5645 (1994).
[CrossRef]

Shcherbin, K.

A. N. Shumelyuk, K. Shcherbin, S. Odoulov, B. Sturman, E. Podivilov, and K. Buse, “Slowing down of light in photorefractive crystals with beam intensity coupling reduced to zero,” Phys. Rev. Lett. 93, 243604 (2004).
[CrossRef]

K. Shcherbin, “Recent progress in semiconductor photorefractive crystals,” in Photorefractive Materials and Their Applications II, P.Günter and J.-P.Huignard, eds. (Springer, 2007), pp. 391-418.
[CrossRef]

Shumelyuk, A.

Shumelyuk, A. N.

A. N. Shumelyuk, A. Hryhorashchuk, and S. G. Odoulov, “Coherent optical oscillator with periodic zero-π phase modulation,” Phys. Rev. A 72, 023819 (2005).
[CrossRef]

A. N. Shumelyuk, K. Shcherbin, S. Odoulov, B. Sturman, E. Podivilov, and K. Buse, “Slowing down of light in photorefractive crystals with beam intensity coupling reduced to zero,” Phys. Rev. Lett. 93, 243604 (2004).
[CrossRef]

A. Grabar, M. Jazbinsek, A. N. Shumelyuk, Y. M. Vysochanskii, G. Montemezzani, and P. Günter, “Photorefractive effects in Sn2P2S6,” in Photorefractive Materials and Their Applications II, P.Günter and J.-P.Huignard, eds. (Springer, 2007), pp. 327-362.
[CrossRef]

Sonderer, N.

C. Medrano, M. Zgonik, N. Sonderer, Ch. Beyeler, S. Krucker, J. Seglins, H. Wüest, and P. Günter, “Photorefractive effect in Cu- and Ni-doped KNbO3 in the visible and near infrared,” J. Appl. Phys. 76, 5640-5645 (1994).
[CrossRef]

Soskin, M. S.

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals. II. Beam coupling-light amplification,” Ferroelectrics 22, 961-964 (1979).
[CrossRef]

Steier, W.

A. Partovi, J. Millerd, E. M. Garmire, M. Ziari, W. Steier, S. B. Trivedi, and M. B. Klein, “Photorefractivity at 1.5 μm in CdTe-V,” Appl. Phys. Lett. 57, 846-848 (1990).
[CrossRef]

Stoika, I. M.

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Electro-optical properties of Sn2P2S6,” Opt. Commun. 215, 333-343 (2003).
[CrossRef]

Stoyka, I.

Sturman, B.

B. Sturman, P. Mathey, H. R. Jauslin, S. Odoulov, and A. Shumelyuk, “Modeling of the photorefractive nonlinear response in Sn2P2S6 crystals,” J. Opt. Soc. Am. B 24, 1303-1309 (2007).
[CrossRef]

A. N. Shumelyuk, K. Shcherbin, S. Odoulov, B. Sturman, E. Podivilov, and K. Buse, “Slowing down of light in photorefractive crystals with beam intensity coupling reduced to zero,” Phys. Rev. Lett. 93, 243604 (2004).
[CrossRef]

Trivedi, S. B.

A. Partovi, J. Millerd, E. M. Garmire, M. Ziari, W. Steier, S. B. Trivedi, and M. B. Klein, “Photorefractivity at 1.5 μm in CdTe-V,” Appl. Phys. Lett. 57, 846-848 (1990).
[CrossRef]

Vinetskii, V. L.

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals. II. Beam coupling-light amplification,” Ferroelectrics 22, 961-964 (1979).
[CrossRef]

Vysochanskii, Y. M.

T. Bach, M. Jazbinsek, G. Montemezzani, P. Günter, A. A. Grabar, and Y. M. Vysochanskii, “Tailoring of infrared photorefractive properties of Sn2P2S6 crystals by Te and Sb doping,” J. Opt. Soc. Am. B 24, 1535-1541 (2007).
[CrossRef]

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Electro-optical properties of Sn2P2S6,” Opt. Commun. 215, 333-343 (2003).
[CrossRef]

A. Grabar, M. Jazbinsek, A. N. Shumelyuk, Y. M. Vysochanskii, G. Montemezzani, and P. Günter, “Photorefractive effects in Sn2P2S6,” in Photorefractive Materials and Their Applications II, P.Günter and J.-P.Huignard, eds. (Springer, 2007), pp. 327-362.
[CrossRef]

Weiss, J. A.

Wüest, H.

C. Medrano, M. Zgonik, N. Sonderer, Ch. Beyeler, S. Krucker, J. Seglins, H. Wüest, and P. Günter, “Photorefractive effect in Cu- and Ni-doped KNbO3 in the visible and near infrared,” J. Appl. Phys. 76, 5640-5645 (1994).
[CrossRef]

Zgonik, M.

C. Medrano, M. Zgonik, N. Sonderer, Ch. Beyeler, S. Krucker, J. Seglins, H. Wüest, and P. Günter, “Photorefractive effect in Cu- and Ni-doped KNbO3 in the visible and near infrared,” J. Appl. Phys. 76, 5640-5645 (1994).
[CrossRef]

Ziari, M.

A. Partovi, J. Millerd, E. M. Garmire, M. Ziari, W. Steier, S. B. Trivedi, and M. B. Klein, “Photorefractivity at 1.5 μm in CdTe-V,” Appl. Phys. Lett. 57, 846-848 (1990).
[CrossRef]

Appl. Phys. B (2)

M. Kaczmarek, R. W. Eason, and I. Mnushkina, “The effect of doping and processing conditions on the optical performance of Rh:BaTiO3,”Appl. Phys. B 68, 813-817 (1999).
[CrossRef]

D. Kip, “Photorefractive waveguides in oxide crystals: fabrication, properties, and applications,” Appl. Phys. B 67, 131-150 (1998).
[CrossRef]

Appl. Phys. Lett. (1)

A. Partovi, J. Millerd, E. M. Garmire, M. Ziari, W. Steier, S. B. Trivedi, and M. B. Klein, “Photorefractivity at 1.5 μm in CdTe-V,” Appl. Phys. Lett. 57, 846-848 (1990).
[CrossRef]

Ferroelectrics (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odoulov, M. S. Soskin, and V. L. Vinetskii, “Holographic storage in electro-optic crystals. II. Beam coupling-light amplification,” Ferroelectrics 22, 961-964 (1979).
[CrossRef]

J. Appl. Phys. (1)

C. Medrano, M. Zgonik, N. Sonderer, Ch. Beyeler, S. Krucker, J. Seglins, H. Wüest, and P. Günter, “Photorefractive effect in Cu- and Ni-doped KNbO3 in the visible and near infrared,” J. Appl. Phys. 76, 5640-5645 (1994).
[CrossRef]

J. Opt. Soc. Am. B (4)

Opt. Commun. (2)

D. Haertle, G. Caimi, A. Haldi, G. Montemezzani, P. Günter, A. A. Grabar, I. M. Stoika, and Y. M. Vysochanskii, “Electro-optical properties of Sn2P2S6,” Opt. Commun. 215, 333-343 (2003).
[CrossRef]

G. W. Ross, P. Hribek, R. W. Eason, M. H. Garrett, and D. Rytz, “Impurity enhanced self-pumped phase conjugation in the near infrared in 'blue' BaTiO3,”Opt. Commun. 101, 60-64 (1993).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. A (1)

A. N. Shumelyuk, A. Hryhorashchuk, and S. G. Odoulov, “Coherent optical oscillator with periodic zero-π phase modulation,” Phys. Rev. A 72, 023819 (2005).
[CrossRef]

Phys. Rev. Lett. (1)

A. N. Shumelyuk, K. Shcherbin, S. Odoulov, B. Sturman, E. Podivilov, and K. Buse, “Slowing down of light in photorefractive crystals with beam intensity coupling reduced to zero,” Phys. Rev. Lett. 93, 243604 (2004).
[CrossRef]

Other (3)

P.Günter and J.-P.Huignard, eds., Photorefractive Materials and Their Applications III: Applications (Springer-Verlag, 2007).
[CrossRef]

K. Shcherbin, “Recent progress in semiconductor photorefractive crystals,” in Photorefractive Materials and Their Applications II, P.Günter and J.-P.Huignard, eds. (Springer, 2007), pp. 391-418.
[CrossRef]

A. Grabar, M. Jazbinsek, A. N. Shumelyuk, Y. M. Vysochanskii, G. Montemezzani, and P. Günter, “Photorefractive effects in Sn2P2S6,” in Photorefractive Materials and Their Applications II, P.Günter and J.-P.Huignard, eds. (Springer, 2007), pp. 327-362.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Measured reflectivity using the barrier coupling method [19] as a function of the angle for the Te - Sn 2 P 2 S 6 waveguide implanted with He + ions with ion energy 2 MeV and fluence 0.6 × 10 15 cm 2 . (b) The corresponding effective indices for the measured (dots) and calculated (solid curve) profiles. The calculated modes of the best-fit profiles have been connected for clarity and are shown by the solid curve. The resulting thickness is 5.52 ± 0.05 μ m and the barrier strength Δ n = 0.09 ± 0.01 .

Fig. 2
Fig. 2

Two-wave mixing gain Γ as a function of the grating spacing Λ in nominally pure Sn 2 P 2 S 6 : (a) in the bulk crystal, (b) in the waveguide. The solid curves are according to Eq. (1) and the resulting parameters are listed in Table 1.

Fig. 3
Fig. 3

Two-beam coupling signal measured after opening the pump at t = 0 s in Te-doped Sn 2 P 2 S 6 , with crosses representing the signal in the waveguiding region and squares representing the bulk region. It can be clearly seen that only in the waveguiding region charge compensation occurs, with a time constant τ wgs = 140 ms ( λ = 780 nm , Λ = 2.0 μ m ).

Fig. 4
Fig. 4

Temperature dependence of the inverse build-up time is shown on a logarithmic scale for Sn 2 P 2 S 6 : Te at λ = 780 nm and Λ = 2.0 μ m . τ bulk f and τ wgf are the build-up times for the fast charge carriers in the bulk material and in the waveguide, respectively, and τ wgs is the one for the slow charge carriers in the waveguide. Only the slow charge carriers show a strong dependence on the temperature. The solid line is according to Eq. (3) and results in an activation energy of Δ E = 0.95 eV .

Tables (1)

Tables Icon

Table 1 Photorefractive Parameters of Ion Implanted Sn 2 P 2 S 6 a

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Γ 0 = 2 π r eff n 3 λ k B T e cos ( 2 θ ) cos ( θ ) 2 π Λ ( 1 + ( 2 π l s Λ ) 2 ) ,
Γ = Γ 0 ( 1 exp ( t τ ) ) .
τ wgs = τ 0 exp ( Δ E k b 1 T ) ,
1 τ = σ photo ( I ) + σ dark ϵ 0 ϵ ,

Metrics