Abstract

Seven new schemes have been theoretically studied using the density-matrix approach for the ns2(S01)nsnp(P103orP101)nsms(S01) and the ns2(S01)nsnp(P103orP101)np2(S01orD21) double optical resonance photoionization pathways to establish the possibility of selective ionization of the rare strontium Sr90 isotope for continuous wave laser excitation. The double-resonance excitation is followed by photoionization using a 488nm photon. Density-matrix equations for the double-resonance ionization have been numerically integrated by incorporating the effects of Doppler broadening, velocity-dependent interaction times, time varying Rabi frequencies, and laser bandwidths. All the optical selectivity calculations were carried out on a high-speed parallel processing machine. Theoretical computations on five previously studied photoionization pathways have also been performed and tabulated for the sake of completeness. The conditions for obtaining optimum optical selectivities have been evaluated. This study results in seven new photoionization pathways. The optical selectivities are a few orders higher compared to the previously studied photoionization schemes for five out of the seven schemes studied. The remaining two schemes are slightly better than the previously studied schemes.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Muller, K. Blaum, B. A. Bushaw, S. Diel, Ch. Geppert, A. Nahler, W. Nortershauser, N. Trautmann, and K. Wendt, “Trace detection of Ca41 in nuclear reactor concrete by diode-laser-based resonance ionization mass spectrometry,” Radiochim. Acta 88, 487-493 (2000).
    [CrossRef]
  2. M. Eisenbud, Environmental Radioactivity (Academic, 1987).
  3. B. A. Bushaw and W. Nortershauser, “Resonance ionization spectroscopy of stable strontium isotopes and Sr90 via 5s2S01-->λ15s5pP101-->λ25s5dD21-->λ35s11fF31-->λ4Sr+,” Spectrochim. Acta, Part B 55, 1679-1692 (2000).
    [CrossRef]
  4. B. A. Bushaw and B. D. Cannon, “Diode laser based resonance ionization mass spectrometric measurement of strontium-90,” Spectrochim. Acta, Part B 52, 1839-1854 (1997).
    [CrossRef]
  5. B. A. Bushaw, W. Nortershauser, and K. Wendt, “Lineshapes and optical selectivity in high-resolution double-resonance ionization mass spectrometry,” Spectrochim. Acta, Part B 54, 321-332 (1999).
    [CrossRef]
  6. W. Nortershauser, B. A. Bushaw, P. Muller, and K. Wendt, “Line shapes in triple-resonance ionization spectroscopy,” Appl. Opt. 39, 5590-5600 (2000).
    [CrossRef]
  7. M. Sankari, P. V. Kiran Kumar, and M. V. Suryanarayana, “Investigations on the S01⟶λ1P101-->λ2S01-->nonresonantM+ photoionization pathway of rare calcium and strontium isotopes,” J. Opt. Soc. Am. B 21, 1369-1378 (2004).
    [CrossRef]
  8. B. W. Shore, The Theory of Coherent Atomic Excitation (Wiley, 1990).
  9. P. Zoller and P. Lambropoulos, “Non-Lorentzian laser lineshapes in intense field-atom interaction,” J. Phys. B 12, L547 (1979).
    [CrossRef]
  10. H. G. C. Werij, C. H. Greene, C. E. Theodosiou, and A. Gallagher, “Oscillator strengths and radiative branching ratios in atomic Sr,” Phys. Rev. A 46, 1248-1260 (1992).
    [CrossRef] [PubMed]
  11. R. L. Kurucz and B. Bell, 1995 Atomic Line Data Kurucz, CD-ROM No. 23 (Smithsonian Astrophysical Observatory, 1995).
  12. W. H. King, Isotope Shifts in Atomic Spectra (Plenum, 1984).
  13. F. Buchinger, R. Corriveau, E. B. Ramsey, D. Berdichevsky, and D. W. L. Sprung, “Influence of the N=50 shell closure on mean square charge radii of strontium,” Phys. Rev. C 32, 2058-2066 (1985).
    [CrossRef]
  14. A. Aspect, J. Bauche, M. Godefroid, P. Grangier, J. E. Hansen, and N. Vaeck, “Experimental and MCHF isotope shifts of strongly perturbed levels in CaI and SrI,” J. Phys. B 24, 4077-4099 (1991).
    [CrossRef]
  15. C.-J. Lorenzen, K. Niemax, and L. R. Pendrill, “Isotope shifts of energy levels in the naturally abundant isotopes of strontium and calcium,” Phys. Rev. A 28, 2051-2058 (1983).
    [CrossRef]
  16. F. Buchinger, E. B. Ramsay, E. Arnold, W. Neu, R. Neugart, K. Wendt, R. E. Silverans, P. Lievens, L. Vermeeren, D. Berdichevsky, R. Flemming, D. W. L. Sprung, and G. Ulm, Phys. Rev. C 41, 2883-2897 (1990).
    [CrossRef]

2004 (1)

2000 (3)

P. Muller, K. Blaum, B. A. Bushaw, S. Diel, Ch. Geppert, A. Nahler, W. Nortershauser, N. Trautmann, and K. Wendt, “Trace detection of Ca41 in nuclear reactor concrete by diode-laser-based resonance ionization mass spectrometry,” Radiochim. Acta 88, 487-493 (2000).
[CrossRef]

B. A. Bushaw and W. Nortershauser, “Resonance ionization spectroscopy of stable strontium isotopes and Sr90 via 5s2S01-->λ15s5pP101-->λ25s5dD21-->λ35s11fF31-->λ4Sr+,” Spectrochim. Acta, Part B 55, 1679-1692 (2000).
[CrossRef]

W. Nortershauser, B. A. Bushaw, P. Muller, and K. Wendt, “Line shapes in triple-resonance ionization spectroscopy,” Appl. Opt. 39, 5590-5600 (2000).
[CrossRef]

1999 (1)

B. A. Bushaw, W. Nortershauser, and K. Wendt, “Lineshapes and optical selectivity in high-resolution double-resonance ionization mass spectrometry,” Spectrochim. Acta, Part B 54, 321-332 (1999).
[CrossRef]

1997 (1)

B. A. Bushaw and B. D. Cannon, “Diode laser based resonance ionization mass spectrometric measurement of strontium-90,” Spectrochim. Acta, Part B 52, 1839-1854 (1997).
[CrossRef]

1992 (1)

H. G. C. Werij, C. H. Greene, C. E. Theodosiou, and A. Gallagher, “Oscillator strengths and radiative branching ratios in atomic Sr,” Phys. Rev. A 46, 1248-1260 (1992).
[CrossRef] [PubMed]

1991 (1)

A. Aspect, J. Bauche, M. Godefroid, P. Grangier, J. E. Hansen, and N. Vaeck, “Experimental and MCHF isotope shifts of strongly perturbed levels in CaI and SrI,” J. Phys. B 24, 4077-4099 (1991).
[CrossRef]

1990 (1)

F. Buchinger, E. B. Ramsay, E. Arnold, W. Neu, R. Neugart, K. Wendt, R. E. Silverans, P. Lievens, L. Vermeeren, D. Berdichevsky, R. Flemming, D. W. L. Sprung, and G. Ulm, Phys. Rev. C 41, 2883-2897 (1990).
[CrossRef]

1985 (1)

F. Buchinger, R. Corriveau, E. B. Ramsey, D. Berdichevsky, and D. W. L. Sprung, “Influence of the N=50 shell closure on mean square charge radii of strontium,” Phys. Rev. C 32, 2058-2066 (1985).
[CrossRef]

1983 (1)

C.-J. Lorenzen, K. Niemax, and L. R. Pendrill, “Isotope shifts of energy levels in the naturally abundant isotopes of strontium and calcium,” Phys. Rev. A 28, 2051-2058 (1983).
[CrossRef]

1979 (1)

P. Zoller and P. Lambropoulos, “Non-Lorentzian laser lineshapes in intense field-atom interaction,” J. Phys. B 12, L547 (1979).
[CrossRef]

Arnold, E.

F. Buchinger, E. B. Ramsay, E. Arnold, W. Neu, R. Neugart, K. Wendt, R. E. Silverans, P. Lievens, L. Vermeeren, D. Berdichevsky, R. Flemming, D. W. L. Sprung, and G. Ulm, Phys. Rev. C 41, 2883-2897 (1990).
[CrossRef]

Aspect, A.

A. Aspect, J. Bauche, M. Godefroid, P. Grangier, J. E. Hansen, and N. Vaeck, “Experimental and MCHF isotope shifts of strongly perturbed levels in CaI and SrI,” J. Phys. B 24, 4077-4099 (1991).
[CrossRef]

Bauche, J.

A. Aspect, J. Bauche, M. Godefroid, P. Grangier, J. E. Hansen, and N. Vaeck, “Experimental and MCHF isotope shifts of strongly perturbed levels in CaI and SrI,” J. Phys. B 24, 4077-4099 (1991).
[CrossRef]

Bell, B.

R. L. Kurucz and B. Bell, 1995 Atomic Line Data Kurucz, CD-ROM No. 23 (Smithsonian Astrophysical Observatory, 1995).

Berdichevsky, D.

F. Buchinger, E. B. Ramsay, E. Arnold, W. Neu, R. Neugart, K. Wendt, R. E. Silverans, P. Lievens, L. Vermeeren, D. Berdichevsky, R. Flemming, D. W. L. Sprung, and G. Ulm, Phys. Rev. C 41, 2883-2897 (1990).
[CrossRef]

F. Buchinger, R. Corriveau, E. B. Ramsey, D. Berdichevsky, and D. W. L. Sprung, “Influence of the N=50 shell closure on mean square charge radii of strontium,” Phys. Rev. C 32, 2058-2066 (1985).
[CrossRef]

Blaum, K.

P. Muller, K. Blaum, B. A. Bushaw, S. Diel, Ch. Geppert, A. Nahler, W. Nortershauser, N. Trautmann, and K. Wendt, “Trace detection of Ca41 in nuclear reactor concrete by diode-laser-based resonance ionization mass spectrometry,” Radiochim. Acta 88, 487-493 (2000).
[CrossRef]

Buchinger, F.

F. Buchinger, E. B. Ramsay, E. Arnold, W. Neu, R. Neugart, K. Wendt, R. E. Silverans, P. Lievens, L. Vermeeren, D. Berdichevsky, R. Flemming, D. W. L. Sprung, and G. Ulm, Phys. Rev. C 41, 2883-2897 (1990).
[CrossRef]

F. Buchinger, R. Corriveau, E. B. Ramsey, D. Berdichevsky, and D. W. L. Sprung, “Influence of the N=50 shell closure on mean square charge radii of strontium,” Phys. Rev. C 32, 2058-2066 (1985).
[CrossRef]

Bushaw, B. A.

P. Muller, K. Blaum, B. A. Bushaw, S. Diel, Ch. Geppert, A. Nahler, W. Nortershauser, N. Trautmann, and K. Wendt, “Trace detection of Ca41 in nuclear reactor concrete by diode-laser-based resonance ionization mass spectrometry,” Radiochim. Acta 88, 487-493 (2000).
[CrossRef]

B. A. Bushaw and W. Nortershauser, “Resonance ionization spectroscopy of stable strontium isotopes and Sr90 via 5s2S01-->λ15s5pP101-->λ25s5dD21-->λ35s11fF31-->λ4Sr+,” Spectrochim. Acta, Part B 55, 1679-1692 (2000).
[CrossRef]

W. Nortershauser, B. A. Bushaw, P. Muller, and K. Wendt, “Line shapes in triple-resonance ionization spectroscopy,” Appl. Opt. 39, 5590-5600 (2000).
[CrossRef]

B. A. Bushaw, W. Nortershauser, and K. Wendt, “Lineshapes and optical selectivity in high-resolution double-resonance ionization mass spectrometry,” Spectrochim. Acta, Part B 54, 321-332 (1999).
[CrossRef]

B. A. Bushaw and B. D. Cannon, “Diode laser based resonance ionization mass spectrometric measurement of strontium-90,” Spectrochim. Acta, Part B 52, 1839-1854 (1997).
[CrossRef]

Cannon, B. D.

B. A. Bushaw and B. D. Cannon, “Diode laser based resonance ionization mass spectrometric measurement of strontium-90,” Spectrochim. Acta, Part B 52, 1839-1854 (1997).
[CrossRef]

Corriveau, R.

F. Buchinger, R. Corriveau, E. B. Ramsey, D. Berdichevsky, and D. W. L. Sprung, “Influence of the N=50 shell closure on mean square charge radii of strontium,” Phys. Rev. C 32, 2058-2066 (1985).
[CrossRef]

Diel, S.

P. Muller, K. Blaum, B. A. Bushaw, S. Diel, Ch. Geppert, A. Nahler, W. Nortershauser, N. Trautmann, and K. Wendt, “Trace detection of Ca41 in nuclear reactor concrete by diode-laser-based resonance ionization mass spectrometry,” Radiochim. Acta 88, 487-493 (2000).
[CrossRef]

Eisenbud, M.

M. Eisenbud, Environmental Radioactivity (Academic, 1987).

Flemming, R.

F. Buchinger, E. B. Ramsay, E. Arnold, W. Neu, R. Neugart, K. Wendt, R. E. Silverans, P. Lievens, L. Vermeeren, D. Berdichevsky, R. Flemming, D. W. L. Sprung, and G. Ulm, Phys. Rev. C 41, 2883-2897 (1990).
[CrossRef]

Gallagher, A.

H. G. C. Werij, C. H. Greene, C. E. Theodosiou, and A. Gallagher, “Oscillator strengths and radiative branching ratios in atomic Sr,” Phys. Rev. A 46, 1248-1260 (1992).
[CrossRef] [PubMed]

Geppert, Ch.

P. Muller, K. Blaum, B. A. Bushaw, S. Diel, Ch. Geppert, A. Nahler, W. Nortershauser, N. Trautmann, and K. Wendt, “Trace detection of Ca41 in nuclear reactor concrete by diode-laser-based resonance ionization mass spectrometry,” Radiochim. Acta 88, 487-493 (2000).
[CrossRef]

Godefroid, M.

A. Aspect, J. Bauche, M. Godefroid, P. Grangier, J. E. Hansen, and N. Vaeck, “Experimental and MCHF isotope shifts of strongly perturbed levels in CaI and SrI,” J. Phys. B 24, 4077-4099 (1991).
[CrossRef]

Grangier, P.

A. Aspect, J. Bauche, M. Godefroid, P. Grangier, J. E. Hansen, and N. Vaeck, “Experimental and MCHF isotope shifts of strongly perturbed levels in CaI and SrI,” J. Phys. B 24, 4077-4099 (1991).
[CrossRef]

Greene, C. H.

H. G. C. Werij, C. H. Greene, C. E. Theodosiou, and A. Gallagher, “Oscillator strengths and radiative branching ratios in atomic Sr,” Phys. Rev. A 46, 1248-1260 (1992).
[CrossRef] [PubMed]

Hansen, J. E.

A. Aspect, J. Bauche, M. Godefroid, P. Grangier, J. E. Hansen, and N. Vaeck, “Experimental and MCHF isotope shifts of strongly perturbed levels in CaI and SrI,” J. Phys. B 24, 4077-4099 (1991).
[CrossRef]

King, W. H.

W. H. King, Isotope Shifts in Atomic Spectra (Plenum, 1984).

Kumar, P. V. Kiran

Kurucz, R. L.

R. L. Kurucz and B. Bell, 1995 Atomic Line Data Kurucz, CD-ROM No. 23 (Smithsonian Astrophysical Observatory, 1995).

Lambropoulos, P.

P. Zoller and P. Lambropoulos, “Non-Lorentzian laser lineshapes in intense field-atom interaction,” J. Phys. B 12, L547 (1979).
[CrossRef]

Lievens, P.

F. Buchinger, E. B. Ramsay, E. Arnold, W. Neu, R. Neugart, K. Wendt, R. E. Silverans, P. Lievens, L. Vermeeren, D. Berdichevsky, R. Flemming, D. W. L. Sprung, and G. Ulm, Phys. Rev. C 41, 2883-2897 (1990).
[CrossRef]

Lorenzen, C.-J.

C.-J. Lorenzen, K. Niemax, and L. R. Pendrill, “Isotope shifts of energy levels in the naturally abundant isotopes of strontium and calcium,” Phys. Rev. A 28, 2051-2058 (1983).
[CrossRef]

Muller, P.

W. Nortershauser, B. A. Bushaw, P. Muller, and K. Wendt, “Line shapes in triple-resonance ionization spectroscopy,” Appl. Opt. 39, 5590-5600 (2000).
[CrossRef]

P. Muller, K. Blaum, B. A. Bushaw, S. Diel, Ch. Geppert, A. Nahler, W. Nortershauser, N. Trautmann, and K. Wendt, “Trace detection of Ca41 in nuclear reactor concrete by diode-laser-based resonance ionization mass spectrometry,” Radiochim. Acta 88, 487-493 (2000).
[CrossRef]

Nahler, A.

P. Muller, K. Blaum, B. A. Bushaw, S. Diel, Ch. Geppert, A. Nahler, W. Nortershauser, N. Trautmann, and K. Wendt, “Trace detection of Ca41 in nuclear reactor concrete by diode-laser-based resonance ionization mass spectrometry,” Radiochim. Acta 88, 487-493 (2000).
[CrossRef]

Neu, W.

F. Buchinger, E. B. Ramsay, E. Arnold, W. Neu, R. Neugart, K. Wendt, R. E. Silverans, P. Lievens, L. Vermeeren, D. Berdichevsky, R. Flemming, D. W. L. Sprung, and G. Ulm, Phys. Rev. C 41, 2883-2897 (1990).
[CrossRef]

Neugart, R.

F. Buchinger, E. B. Ramsay, E. Arnold, W. Neu, R. Neugart, K. Wendt, R. E. Silverans, P. Lievens, L. Vermeeren, D. Berdichevsky, R. Flemming, D. W. L. Sprung, and G. Ulm, Phys. Rev. C 41, 2883-2897 (1990).
[CrossRef]

Niemax, K.

C.-J. Lorenzen, K. Niemax, and L. R. Pendrill, “Isotope shifts of energy levels in the naturally abundant isotopes of strontium and calcium,” Phys. Rev. A 28, 2051-2058 (1983).
[CrossRef]

Nortershauser, W.

P. Muller, K. Blaum, B. A. Bushaw, S. Diel, Ch. Geppert, A. Nahler, W. Nortershauser, N. Trautmann, and K. Wendt, “Trace detection of Ca41 in nuclear reactor concrete by diode-laser-based resonance ionization mass spectrometry,” Radiochim. Acta 88, 487-493 (2000).
[CrossRef]

B. A. Bushaw and W. Nortershauser, “Resonance ionization spectroscopy of stable strontium isotopes and Sr90 via 5s2S01-->λ15s5pP101-->λ25s5dD21-->λ35s11fF31-->λ4Sr+,” Spectrochim. Acta, Part B 55, 1679-1692 (2000).
[CrossRef]

W. Nortershauser, B. A. Bushaw, P. Muller, and K. Wendt, “Line shapes in triple-resonance ionization spectroscopy,” Appl. Opt. 39, 5590-5600 (2000).
[CrossRef]

B. A. Bushaw, W. Nortershauser, and K. Wendt, “Lineshapes and optical selectivity in high-resolution double-resonance ionization mass spectrometry,” Spectrochim. Acta, Part B 54, 321-332 (1999).
[CrossRef]

Pendrill, L. R.

C.-J. Lorenzen, K. Niemax, and L. R. Pendrill, “Isotope shifts of energy levels in the naturally abundant isotopes of strontium and calcium,” Phys. Rev. A 28, 2051-2058 (1983).
[CrossRef]

Ramsay, E. B.

F. Buchinger, E. B. Ramsay, E. Arnold, W. Neu, R. Neugart, K. Wendt, R. E. Silverans, P. Lievens, L. Vermeeren, D. Berdichevsky, R. Flemming, D. W. L. Sprung, and G. Ulm, Phys. Rev. C 41, 2883-2897 (1990).
[CrossRef]

Ramsey, E. B.

F. Buchinger, R. Corriveau, E. B. Ramsey, D. Berdichevsky, and D. W. L. Sprung, “Influence of the N=50 shell closure on mean square charge radii of strontium,” Phys. Rev. C 32, 2058-2066 (1985).
[CrossRef]

Sankari, M.

Shore, B. W.

B. W. Shore, The Theory of Coherent Atomic Excitation (Wiley, 1990).

Silverans, R. E.

F. Buchinger, E. B. Ramsay, E. Arnold, W. Neu, R. Neugart, K. Wendt, R. E. Silverans, P. Lievens, L. Vermeeren, D. Berdichevsky, R. Flemming, D. W. L. Sprung, and G. Ulm, Phys. Rev. C 41, 2883-2897 (1990).
[CrossRef]

Sprung, D. W. L.

F. Buchinger, E. B. Ramsay, E. Arnold, W. Neu, R. Neugart, K. Wendt, R. E. Silverans, P. Lievens, L. Vermeeren, D. Berdichevsky, R. Flemming, D. W. L. Sprung, and G. Ulm, Phys. Rev. C 41, 2883-2897 (1990).
[CrossRef]

F. Buchinger, R. Corriveau, E. B. Ramsey, D. Berdichevsky, and D. W. L. Sprung, “Influence of the N=50 shell closure on mean square charge radii of strontium,” Phys. Rev. C 32, 2058-2066 (1985).
[CrossRef]

Suryanarayana, M. V.

Theodosiou, C. E.

H. G. C. Werij, C. H. Greene, C. E. Theodosiou, and A. Gallagher, “Oscillator strengths and radiative branching ratios in atomic Sr,” Phys. Rev. A 46, 1248-1260 (1992).
[CrossRef] [PubMed]

Trautmann, N.

P. Muller, K. Blaum, B. A. Bushaw, S. Diel, Ch. Geppert, A. Nahler, W. Nortershauser, N. Trautmann, and K. Wendt, “Trace detection of Ca41 in nuclear reactor concrete by diode-laser-based resonance ionization mass spectrometry,” Radiochim. Acta 88, 487-493 (2000).
[CrossRef]

Ulm, G.

F. Buchinger, E. B. Ramsay, E. Arnold, W. Neu, R. Neugart, K. Wendt, R. E. Silverans, P. Lievens, L. Vermeeren, D. Berdichevsky, R. Flemming, D. W. L. Sprung, and G. Ulm, Phys. Rev. C 41, 2883-2897 (1990).
[CrossRef]

Vaeck, N.

A. Aspect, J. Bauche, M. Godefroid, P. Grangier, J. E. Hansen, and N. Vaeck, “Experimental and MCHF isotope shifts of strongly perturbed levels in CaI and SrI,” J. Phys. B 24, 4077-4099 (1991).
[CrossRef]

Vermeeren, L.

F. Buchinger, E. B. Ramsay, E. Arnold, W. Neu, R. Neugart, K. Wendt, R. E. Silverans, P. Lievens, L. Vermeeren, D. Berdichevsky, R. Flemming, D. W. L. Sprung, and G. Ulm, Phys. Rev. C 41, 2883-2897 (1990).
[CrossRef]

Wendt, K.

P. Muller, K. Blaum, B. A. Bushaw, S. Diel, Ch. Geppert, A. Nahler, W. Nortershauser, N. Trautmann, and K. Wendt, “Trace detection of Ca41 in nuclear reactor concrete by diode-laser-based resonance ionization mass spectrometry,” Radiochim. Acta 88, 487-493 (2000).
[CrossRef]

W. Nortershauser, B. A. Bushaw, P. Muller, and K. Wendt, “Line shapes in triple-resonance ionization spectroscopy,” Appl. Opt. 39, 5590-5600 (2000).
[CrossRef]

B. A. Bushaw, W. Nortershauser, and K. Wendt, “Lineshapes and optical selectivity in high-resolution double-resonance ionization mass spectrometry,” Spectrochim. Acta, Part B 54, 321-332 (1999).
[CrossRef]

F. Buchinger, E. B. Ramsay, E. Arnold, W. Neu, R. Neugart, K. Wendt, R. E. Silverans, P. Lievens, L. Vermeeren, D. Berdichevsky, R. Flemming, D. W. L. Sprung, and G. Ulm, Phys. Rev. C 41, 2883-2897 (1990).
[CrossRef]

Werij, H. G. C.

H. G. C. Werij, C. H. Greene, C. E. Theodosiou, and A. Gallagher, “Oscillator strengths and radiative branching ratios in atomic Sr,” Phys. Rev. A 46, 1248-1260 (1992).
[CrossRef] [PubMed]

Zoller, P.

P. Zoller and P. Lambropoulos, “Non-Lorentzian laser lineshapes in intense field-atom interaction,” J. Phys. B 12, L547 (1979).
[CrossRef]

Appl. Opt. (1)

J. Opt. Soc. Am. B (1)

J. Phys. B (2)

A. Aspect, J. Bauche, M. Godefroid, P. Grangier, J. E. Hansen, and N. Vaeck, “Experimental and MCHF isotope shifts of strongly perturbed levels in CaI and SrI,” J. Phys. B 24, 4077-4099 (1991).
[CrossRef]

P. Zoller and P. Lambropoulos, “Non-Lorentzian laser lineshapes in intense field-atom interaction,” J. Phys. B 12, L547 (1979).
[CrossRef]

Phys. Rev. A (2)

H. G. C. Werij, C. H. Greene, C. E. Theodosiou, and A. Gallagher, “Oscillator strengths and radiative branching ratios in atomic Sr,” Phys. Rev. A 46, 1248-1260 (1992).
[CrossRef] [PubMed]

C.-J. Lorenzen, K. Niemax, and L. R. Pendrill, “Isotope shifts of energy levels in the naturally abundant isotopes of strontium and calcium,” Phys. Rev. A 28, 2051-2058 (1983).
[CrossRef]

Phys. Rev. C (2)

F. Buchinger, E. B. Ramsay, E. Arnold, W. Neu, R. Neugart, K. Wendt, R. E. Silverans, P. Lievens, L. Vermeeren, D. Berdichevsky, R. Flemming, D. W. L. Sprung, and G. Ulm, Phys. Rev. C 41, 2883-2897 (1990).
[CrossRef]

F. Buchinger, R. Corriveau, E. B. Ramsey, D. Berdichevsky, and D. W. L. Sprung, “Influence of the N=50 shell closure on mean square charge radii of strontium,” Phys. Rev. C 32, 2058-2066 (1985).
[CrossRef]

Radiochim. Acta (1)

P. Muller, K. Blaum, B. A. Bushaw, S. Diel, Ch. Geppert, A. Nahler, W. Nortershauser, N. Trautmann, and K. Wendt, “Trace detection of Ca41 in nuclear reactor concrete by diode-laser-based resonance ionization mass spectrometry,” Radiochim. Acta 88, 487-493 (2000).
[CrossRef]

Spectrochim. Acta, Part B (3)

B. A. Bushaw and W. Nortershauser, “Resonance ionization spectroscopy of stable strontium isotopes and Sr90 via 5s2S01-->λ15s5pP101-->λ25s5dD21-->λ35s11fF31-->λ4Sr+,” Spectrochim. Acta, Part B 55, 1679-1692 (2000).
[CrossRef]

B. A. Bushaw and B. D. Cannon, “Diode laser based resonance ionization mass spectrometric measurement of strontium-90,” Spectrochim. Acta, Part B 52, 1839-1854 (1997).
[CrossRef]

B. A. Bushaw, W. Nortershauser, and K. Wendt, “Lineshapes and optical selectivity in high-resolution double-resonance ionization mass spectrometry,” Spectrochim. Acta, Part B 54, 321-332 (1999).
[CrossRef]

Other (4)

M. Eisenbud, Environmental Radioactivity (Academic, 1987).

R. L. Kurucz and B. Bell, 1995 Atomic Line Data Kurucz, CD-ROM No. 23 (Smithsonian Astrophysical Observatory, 1995).

W. H. King, Isotope Shifts in Atomic Spectra (Plenum, 1984).

B. W. Shore, The Theory of Coherent Atomic Excitation (Wiley, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

King’s plots for the second excitation transitions of Schemes 1 to 10. A Modified δ r 2 versus modified isotope shift. B Modified isotope shift of 460.7 nm transition versus modified isotope shift of the other transitions. a— 1124.132 nm , b— 621.3148 nm , c— 597.0074 nm , d— 655.0240 nm , e— 445.1203 nm , f— 417.5461 nm , g— 516.5447 nm , h— 376.5245 nm , i— 646.5767 nm , j— 441.2033 nm .

Fig. 2
Fig. 2

King’s plots for the transitions of Schemes 11 and 12. A Modified δ r 2 versus modified isotope shift. B Modified isotope shift of 460.7 nm transition versus modified isotope shift of the other transitions. a— 767.3073 nm , b— 687.6891 nm , c— 972.0689 nm , d— 689.4008 nm , e— 460.7327 nm .

Fig. 3
Fig. 3

Logarithmic contour plots of two-dimensional line shape for DOR ionization. The cross indicates the position of the Sr 90 isotope.

Fig. 4
Fig. 4

One-dimensional line shape with laser 1 detuned from resonance (at 200 MHz ) and laser 2 is scanned.

Fig. 5
Fig. 5

Logarithmic contour plots of two-dimensional line shape for DOR ionization. The cross indicates the position of the Sr 90 isotope.

Fig. 6
Fig. 6

Logarithmic contour plots of two-dimensional line shape for DOR ionization. The cross indicates the position of the Sr 90 isotope.

Fig. 7
Fig. 7

Logarithmic contour plots of two-dimensional line shape for DOR ionization. The cross indicates the position of the Sr 90 isotope.

Fig. 8
Fig. 8

Logarithmic contour plots of two-dimensional line shape for DOR ionization. The cross indicates the position of the Sr 90 isotope.

Fig. 9
Fig. 9

Logarithmic contour plots of two-dimensional line shape for DOR ionization. The cross indicates the position of the Sr 90 isotope.

Fig. 10
Fig. 10

Logarithmic contour plots of two-dimensional line shape for DOR ionization. The cross indicates the position of the Sr 90 isotope.

Fig. 11
Fig. 11

Resonance frequency positions of Sr 90 isotope originating from the A 460.7327 and B 689.4008 nm transitions.

Fig. 12
Fig. 12

Resonance frequency position of the Sr 90 isotope for Schemes 11 (S11) and 12 (S12).

Tables (3)

Tables Icon

Table 1 List of the Various Parameters That Have Been Used for the Computation of the Density Matrix Equations

Tables Icon

Table 2 Frequency Position of the Incoherent Excitation Peak for All 12 Photoionization Schemes

Tables Icon

Table 3 Optical Selectivities and Percentage Ionization Efficiency of the Different Photoionization Schemes

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

E i ( t ) = ε i ( t ) e i ω i t + ε i * ( t ) e i ω i t e i ,
ρ ̇ 11 = i 2 ( Ω 1 * ρ 21 Ω 1 ρ 12 ) + 2 Γ a ρ 22 ,
ρ ̇ 22 = i 2 ( ρ 12 Ω 1 ρ 21 Ω 1 * ) + i 2 ( ρ 32 Ω 2 * ρ 23 Ω 2 ) + 2 Γ b ρ 33 2 ( Γ a + γ a ) ρ 22 ,
ρ ̇ 33 = i 2 ( ρ 23 Ω 2 ρ 32 Ω 2 * ) 2 ( Γ b + γ b + γ I ) ρ 33 ,
ρ ̇ 12 = i ( ρ 12 Δ a ρ 13 Ω 1 2 ) + Ω 2 * 2 ( ρ 22 ρ 11 ) ( Γ a + γ a ) ρ 12 ,
ρ ̇ 21 = i ( ρ 21 Δ a ρ 31 Ω 1 * 2 ) Ω 2 2 ( ρ 22 ρ 11 ) ( Γ a + γ a ) ρ 21 ,
ρ ̇ 13 = [ i ρ 13 ( Δ a + Δ b ) + i 2 ρ 23 Ω 1 * i 2 ρ 12 Ω 2 * ] ( Γ b + γ b + γ I ) ρ 13 ,
ρ ̇ 31 = [ i ρ 31 ( Δ a + Δ b ) i 2 ρ 32 Ω 1 + i 2 ρ 21 Ω 2 ] ( Γ b + γ b + γ I ) ρ 31 ,
ρ ̇ 23 = [ i ρ 23 Δ b + i 2 ρ 13 Ω 1 ] + i 2 Ω 2 * ( ρ 33 ρ 22 ) ( Γ a + γ a + Γ b + γ b + γ I ) ρ 23 ,
ρ ̇ 32 = [ i ρ 32 Δ b + i 2 ρ 31 Ω 1 * ] i 2 Ω 2 ( ρ 33 ρ 22 ) ( Γ a + γ a + Γ b + γ b + γ I ) ρ 32 ,
Δ i D = Δ i + ω ( V sin θ c ) ,
Φ ( V ) = 2 V 0 4 V 3 exp [ ( V V 0 ) 2 ] ,
2 γ L i β i 2 Δ i D 2 + β i 2 , i = 1 , 2 .
P ion ( t ) = 1 σ 11 ( τ ) σ 22 ( τ ) σ 33 ( τ ) ,
S = I ( v = 0 ) I ( v = Δ ) ,
δ v A , A = F × δ r 2 A , A + M × A A A A ,
1 ω 1 2 ω 2 3 ,
( 1 ω 1 , ω 2 3 ) ,
Δ ν incoherent = Δ ν 1 ( λ 1 λ 2 ) ,

Metrics