Abstract

K+Na+ ion-exchanged channel waveguide amplifiers have been fabricated in Er3+Yb3+ codoped acid-resistant aluminum germanate (NMAG) glasses. The Judd–Ofelt parameters indicate high asymmetry and strong covalent environment in the glass substrates. The optical gain and the relative gain (the signal enhancement) of a 2.5cm long waveguide amplifier were measured to be 9.10 and 8.16dB, respectively, and after compensating both the propagation loss and the absorption loss, a maximum internal gain of 2.0dB at 1.534μm was obtained, which reveals the successful employment of the thermal ion-exchange technology on the low phonon energy glasses. Based on this work, ion-exchanged Pr3+, Tm3+, and Ho3+ doped NMAG glass waveguides will bring surprises in developing O-, S- and U-band waveguide amplifiers, infrared UV-writing grating waveguide lasers, and compact integrated optical devices.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Shen, L. Huang, P. Joshi, and A. Jha, “Gain characteristics of Er3+/Ce3+ codoped tellurite short fibre amplifier pumped at 980 nm,” Electron. Lett. 39, 1797-1799 (2003).
    [CrossRef]
  2. S. I. Najafi, T. Touam, R. Sara, M. P. Andrews, and M. A. Fardad, “Sol-gel glass waveguide and grating on silicon,” J. Lightwave Technol. 16, 1640-1646 (1998).
    [CrossRef]
  3. J. S. Wang, E. Snitzer, E. M. Vogel, and G. H. Sigel, “1.47, 1.88 and 2.8 μm emissions of Tm3+ and Tm3+-Ho3+-codoped tellurite glasses,” J. Lumin. 60, 145-149 (1994).
    [CrossRef]
  4. J. H. Choi, F. G. Shi, A. Margaryan, A. Margaryan, and W. V. D. Veer, “Novel alkaline-free Er3+-doped fluorophosphate glasses for broadband optical fiber lasers and amplifiers,” J. Alloys Compd. 450, 540-545 (2008).
    [CrossRef]
  5. Z. M. Yang, S. Q. Xu, L. L. Hu, and Z. H. Jiang, “Thermal analysis and optical properties of Yb3+/Er3+-codoped oxyfluoride germanate glasses,” J. Opt. Soc. Am. B 21, 951-957 (2004).
    [CrossRef]
  6. C. B. E. Gawith, T. Bhutta, D. P. Shepherd, P. Hua, J. Wang, G. W. Ross, and P. G. R. Smith, “Buried laser waveguides in neodymium-doped BK-7 by K+-Na+ ion-exchange across a direct-bonded interface,” Appl. Phys. Lett. 75, 3757-3759 (1999).
    [CrossRef]
  7. E. Daran, D. P. Shepherd, T. Bhutta, and C. Serrano, “Laser operation of Nd:LaF3 thin film grown by molecular beam epitaxy,” Electron. Lett. 35, 398-400 (1999).
    [CrossRef]
  8. R. Gvishi, G. Strum, N. Shitrit, and R. Dror, “Optical waveguide fabrication using a fast sol-gel method,” Opt. Mater. 30, 1755-1758 (2008).
    [CrossRef]
  9. A. Saliminia, R. Vallee, and S. L. Chin, “Waveguide writing in silica glass with femtosecond pulses from an optical parametric amplifier at 1.5 μm,” Opt. Commun. 256, 422-427 (2005).
    [CrossRef]
  10. A. A. Bettiol, S. Venugopal Rao, T. C. Sum, J. A. van Kan, and F. Watt, “Fabrication of optical waveguides using proton beam writing,” J. Cryst. Growth 288, 209-212 (2006).
    [CrossRef]
  11. B. Svecova, J. Spirkova, S. Janakova, and M. Mika, “Ion-exchanged optical waveguides fabricated in novel Er3+ and Er3+/Yb3+ doped silicate glasses: relations between glass composition, basicity and waveguide properties,” Mater. Sci. Eng., B 149, 177-180 (2008).
    [CrossRef]
  12. D. L. Veasey, D. S. Funk, P. M. Peters, W. C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263, 369-381 (2000).
    [CrossRef]
  13. H. Lin, X. Y. Wang, C. M. Li, H. X. Yang, E. Y. B. Pun, and S. Tanabe, “Near-infrared emissions and quantum efficiencies in Tm3+-doped heavy metal gallate glasses for S- and U-band amplifiers and 1.8 μm infrared laser,” J. Lumin. 128, 74-80 (2008).
    [CrossRef]
  14. R. M. El-Agmy, W. Lüthy, Th. Graf, and H. P. Weber, “1.47 μmTm3+: ZBLAN fiber laser pumped at 1.064 μm,” Electron. Lett. 39, 507-508 (2003).
    [CrossRef]
  15. T. Bhutta, D. P. Shepherd, C. Serrano, and E. Daran, “Low phonon energy, Nd: LaF3 channel waveguide lasers fabricated by molecular beam epitaxy,” IEEE J. Quantum Electron. 37, 1469-1477 (2001).
    [CrossRef]
  16. T. Kosuge, Y. Benino, V. Dimitrov, R. Sato, and T. Komatsu, “Thermal stability and heat capacity changes at the glass transition in K2O-WO3-TeO2 glasses,” J. Non-Cryst. Solids 242, 154-164 (1998).
    [CrossRef]
  17. H. Lin, S. Tanabe, L. Lin, Y. Y. Hou, K. Liu, D. L. Yang, T. C. Ma, J. Y. Yu, and E. Y. B. Pun, “Near-infrared emissions with widely different widths in two kinds of Er3+-doped oxide glasses with high refractive indices and low phonon energies,” J. Lumin. 124, 167-172 (2007).
    [CrossRef]
  18. J. H. Song, Y. G. Choi, K. Kadono, K. Fukumi, H. Kageyama, and J. Heo, “Emission properties and local structure of Tm3+ in Ge-Ga-S-Br glass,” J. Non-Cryst. Solids 353, 1676-1680 (2007).
    [CrossRef]
  19. D. P. Shepherd, D. C. Hanna, A. C. Tropper, T. J. Warburton, B. Ferrand, D. Pelenc, A. Rameix, and P. Thony, “A low threshold, room temperature 1.64 μmYb:Er:Y3Al5O12 waveguide laser,” J. Appl. Phys. 76, 7651-7653 (1994).
    [CrossRef]
  20. S. I. Najafi, Introduction to Glass Integrated Optics (Artech House, 1992).
  21. B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750-761 (1962).
    [CrossRef]
  22. G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511-520 (1962).
    [CrossRef]
  23. W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424-4442 (1964).
    [CrossRef]
  24. W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49, 4412-4423 (1964).
    [CrossRef]
  25. D. E. McCumber, “Theory of phonon-terminated optical masers,” Phys. Rev. 134, A299-A306 (1964).
    [CrossRef]
  26. H. Lin, E. Y. B. Pun, and X. R. Liu, “Er3+-doped Na2O⋅Cd3Al2Si3O12 glass for infrared and upconversion applications,” J. Non-Cryst. Solids 283, 27-33 (2001).
    [CrossRef]
  27. S. Jiang, T. Luo, B. Hwang, G. Nunzi-Conti, M. Myers, D. Rhonehouse, S. Honkanen, and N. Peyghambarian, “New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers,” Opt. Eng. (Bellingham) 37, 3282-3286 (1998).
    [CrossRef]
  28. Z. P. Cai, A. Chardon, H. Y. Xu, P. Feron, and G. M. Stephan, “Laser characteristics at 1535 nm and thermal effects of an Er:Yb phosphate glass microchip pumped by Ti:sapphire laser,” Opt. Commun. 203, 301-313 (2002).
    [CrossRef]
  29. N. D. Psaila, R. R. Thomson, H. T. Bookey, and A. K. Kar, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90, 131102-131104 (2007).
    [CrossRef]
  30. G. Mahlke and P. Gossing, Fiber Optic Cables (Publicis MCD Corporate Publishing, 2001).
  31. D. A. Guilhot, G. D. Emmerson, C. B. E. Gawith, S. P. Watts, D. P. Shepherd, R. B. Williams, and P. G. R. Smith, “Single-mode direct-ultraviolet-written channel waveguide laser in neodymium-doped silica on silicon,” Opt. Lett. 29, 947-949 (2004).
    [CrossRef] [PubMed]
  32. Y. Miyajima, T. Sugawa, and T. Komukai, “20 dB gain at 1.55 μm wavelength in 50 cm long Er3+-doped fluoride fiber amplifier,” Electron. Lett. 26, 1527-1528 (1990).
    [CrossRef]
  33. T. Kitagawa, K. Hattori, K. Shuto, M. Yasu, M. Kobayashi, and M. Horiguch, “Amplification in erbium-doped silica based planar lightwave circuits,” Electron. Lett. 28, 1818-1819 (1992).
    [CrossRef]
  34. R. R. Thomson, H. T. Bookey, N. Psaila, S. Campbell, D. T. Reid, S. Shen, A. Jha, K. Kar, and A. K. Kar, “Internal gain from an erbium-doped oxyfluoride-silicate glass waveguide fabricated using femtosecond waveguide inscription,” IEEE Photon. Technol. Lett. 18, 1515-1517 (2006).
    [CrossRef]
  35. T. C. Sun, A. A. Bettiol, K. Liu, M. Q. Ren, E. Y. B. Pun, S. Venugopal Rao, J. A. van Kan, F. Watt, “Proton beam writing of erbrium-doped waveguide amplifiers,” Nucl. Instrum. Methods Phys. Res. B 231, 394-399 (2005).
    [CrossRef]

2008 (4)

J. H. Choi, F. G. Shi, A. Margaryan, A. Margaryan, and W. V. D. Veer, “Novel alkaline-free Er3+-doped fluorophosphate glasses for broadband optical fiber lasers and amplifiers,” J. Alloys Compd. 450, 540-545 (2008).
[CrossRef]

R. Gvishi, G. Strum, N. Shitrit, and R. Dror, “Optical waveguide fabrication using a fast sol-gel method,” Opt. Mater. 30, 1755-1758 (2008).
[CrossRef]

H. Lin, X. Y. Wang, C. M. Li, H. X. Yang, E. Y. B. Pun, and S. Tanabe, “Near-infrared emissions and quantum efficiencies in Tm3+-doped heavy metal gallate glasses for S- and U-band amplifiers and 1.8 μm infrared laser,” J. Lumin. 128, 74-80 (2008).
[CrossRef]

B. Svecova, J. Spirkova, S. Janakova, and M. Mika, “Ion-exchanged optical waveguides fabricated in novel Er3+ and Er3+/Yb3+ doped silicate glasses: relations between glass composition, basicity and waveguide properties,” Mater. Sci. Eng., B 149, 177-180 (2008).
[CrossRef]

2007 (3)

N. D. Psaila, R. R. Thomson, H. T. Bookey, and A. K. Kar, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90, 131102-131104 (2007).
[CrossRef]

H. Lin, S. Tanabe, L. Lin, Y. Y. Hou, K. Liu, D. L. Yang, T. C. Ma, J. Y. Yu, and E. Y. B. Pun, “Near-infrared emissions with widely different widths in two kinds of Er3+-doped oxide glasses with high refractive indices and low phonon energies,” J. Lumin. 124, 167-172 (2007).
[CrossRef]

J. H. Song, Y. G. Choi, K. Kadono, K. Fukumi, H. Kageyama, and J. Heo, “Emission properties and local structure of Tm3+ in Ge-Ga-S-Br glass,” J. Non-Cryst. Solids 353, 1676-1680 (2007).
[CrossRef]

2006 (2)

R. R. Thomson, H. T. Bookey, N. Psaila, S. Campbell, D. T. Reid, S. Shen, A. Jha, K. Kar, and A. K. Kar, “Internal gain from an erbium-doped oxyfluoride-silicate glass waveguide fabricated using femtosecond waveguide inscription,” IEEE Photon. Technol. Lett. 18, 1515-1517 (2006).
[CrossRef]

A. A. Bettiol, S. Venugopal Rao, T. C. Sum, J. A. van Kan, and F. Watt, “Fabrication of optical waveguides using proton beam writing,” J. Cryst. Growth 288, 209-212 (2006).
[CrossRef]

2005 (2)

T. C. Sun, A. A. Bettiol, K. Liu, M. Q. Ren, E. Y. B. Pun, S. Venugopal Rao, J. A. van Kan, F. Watt, “Proton beam writing of erbrium-doped waveguide amplifiers,” Nucl. Instrum. Methods Phys. Res. B 231, 394-399 (2005).
[CrossRef]

A. Saliminia, R. Vallee, and S. L. Chin, “Waveguide writing in silica glass with femtosecond pulses from an optical parametric amplifier at 1.5 μm,” Opt. Commun. 256, 422-427 (2005).
[CrossRef]

2004 (2)

2003 (2)

S. Shen, L. Huang, P. Joshi, and A. Jha, “Gain characteristics of Er3+/Ce3+ codoped tellurite short fibre amplifier pumped at 980 nm,” Electron. Lett. 39, 1797-1799 (2003).
[CrossRef]

R. M. El-Agmy, W. Lüthy, Th. Graf, and H. P. Weber, “1.47 μmTm3+: ZBLAN fiber laser pumped at 1.064 μm,” Electron. Lett. 39, 507-508 (2003).
[CrossRef]

2002 (1)

Z. P. Cai, A. Chardon, H. Y. Xu, P. Feron, and G. M. Stephan, “Laser characteristics at 1535 nm and thermal effects of an Er:Yb phosphate glass microchip pumped by Ti:sapphire laser,” Opt. Commun. 203, 301-313 (2002).
[CrossRef]

2001 (2)

H. Lin, E. Y. B. Pun, and X. R. Liu, “Er3+-doped Na2O⋅Cd3Al2Si3O12 glass for infrared and upconversion applications,” J. Non-Cryst. Solids 283, 27-33 (2001).
[CrossRef]

T. Bhutta, D. P. Shepherd, C. Serrano, and E. Daran, “Low phonon energy, Nd: LaF3 channel waveguide lasers fabricated by molecular beam epitaxy,” IEEE J. Quantum Electron. 37, 1469-1477 (2001).
[CrossRef]

2000 (1)

D. L. Veasey, D. S. Funk, P. M. Peters, W. C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263, 369-381 (2000).
[CrossRef]

1999 (2)

C. B. E. Gawith, T. Bhutta, D. P. Shepherd, P. Hua, J. Wang, G. W. Ross, and P. G. R. Smith, “Buried laser waveguides in neodymium-doped BK-7 by K+-Na+ ion-exchange across a direct-bonded interface,” Appl. Phys. Lett. 75, 3757-3759 (1999).
[CrossRef]

E. Daran, D. P. Shepherd, T. Bhutta, and C. Serrano, “Laser operation of Nd:LaF3 thin film grown by molecular beam epitaxy,” Electron. Lett. 35, 398-400 (1999).
[CrossRef]

1998 (3)

S. I. Najafi, T. Touam, R. Sara, M. P. Andrews, and M. A. Fardad, “Sol-gel glass waveguide and grating on silicon,” J. Lightwave Technol. 16, 1640-1646 (1998).
[CrossRef]

T. Kosuge, Y. Benino, V. Dimitrov, R. Sato, and T. Komatsu, “Thermal stability and heat capacity changes at the glass transition in K2O-WO3-TeO2 glasses,” J. Non-Cryst. Solids 242, 154-164 (1998).
[CrossRef]

S. Jiang, T. Luo, B. Hwang, G. Nunzi-Conti, M. Myers, D. Rhonehouse, S. Honkanen, and N. Peyghambarian, “New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers,” Opt. Eng. (Bellingham) 37, 3282-3286 (1998).
[CrossRef]

1994 (2)

D. P. Shepherd, D. C. Hanna, A. C. Tropper, T. J. Warburton, B. Ferrand, D. Pelenc, A. Rameix, and P. Thony, “A low threshold, room temperature 1.64 μmYb:Er:Y3Al5O12 waveguide laser,” J. Appl. Phys. 76, 7651-7653 (1994).
[CrossRef]

J. S. Wang, E. Snitzer, E. M. Vogel, and G. H. Sigel, “1.47, 1.88 and 2.8 μm emissions of Tm3+ and Tm3+-Ho3+-codoped tellurite glasses,” J. Lumin. 60, 145-149 (1994).
[CrossRef]

1992 (1)

T. Kitagawa, K. Hattori, K. Shuto, M. Yasu, M. Kobayashi, and M. Horiguch, “Amplification in erbium-doped silica based planar lightwave circuits,” Electron. Lett. 28, 1818-1819 (1992).
[CrossRef]

1990 (1)

Y. Miyajima, T. Sugawa, and T. Komukai, “20 dB gain at 1.55 μm wavelength in 50 cm long Er3+-doped fluoride fiber amplifier,” Electron. Lett. 26, 1527-1528 (1990).
[CrossRef]

1964 (3)

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424-4442 (1964).
[CrossRef]

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49, 4412-4423 (1964).
[CrossRef]

D. E. McCumber, “Theory of phonon-terminated optical masers,” Phys. Rev. 134, A299-A306 (1964).
[CrossRef]

1962 (2)

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750-761 (1962).
[CrossRef]

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511-520 (1962).
[CrossRef]

Andrews, M. P.

Benino, Y.

T. Kosuge, Y. Benino, V. Dimitrov, R. Sato, and T. Komatsu, “Thermal stability and heat capacity changes at the glass transition in K2O-WO3-TeO2 glasses,” J. Non-Cryst. Solids 242, 154-164 (1998).
[CrossRef]

Bettiol, A. A.

A. A. Bettiol, S. Venugopal Rao, T. C. Sum, J. A. van Kan, and F. Watt, “Fabrication of optical waveguides using proton beam writing,” J. Cryst. Growth 288, 209-212 (2006).
[CrossRef]

T. C. Sun, A. A. Bettiol, K. Liu, M. Q. Ren, E. Y. B. Pun, S. Venugopal Rao, J. A. van Kan, F. Watt, “Proton beam writing of erbrium-doped waveguide amplifiers,” Nucl. Instrum. Methods Phys. Res. B 231, 394-399 (2005).
[CrossRef]

Bhutta, T.

T. Bhutta, D. P. Shepherd, C. Serrano, and E. Daran, “Low phonon energy, Nd: LaF3 channel waveguide lasers fabricated by molecular beam epitaxy,” IEEE J. Quantum Electron. 37, 1469-1477 (2001).
[CrossRef]

C. B. E. Gawith, T. Bhutta, D. P. Shepherd, P. Hua, J. Wang, G. W. Ross, and P. G. R. Smith, “Buried laser waveguides in neodymium-doped BK-7 by K+-Na+ ion-exchange across a direct-bonded interface,” Appl. Phys. Lett. 75, 3757-3759 (1999).
[CrossRef]

E. Daran, D. P. Shepherd, T. Bhutta, and C. Serrano, “Laser operation of Nd:LaF3 thin film grown by molecular beam epitaxy,” Electron. Lett. 35, 398-400 (1999).
[CrossRef]

Bookey, H. T.

N. D. Psaila, R. R. Thomson, H. T. Bookey, and A. K. Kar, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90, 131102-131104 (2007).
[CrossRef]

R. R. Thomson, H. T. Bookey, N. Psaila, S. Campbell, D. T. Reid, S. Shen, A. Jha, K. Kar, and A. K. Kar, “Internal gain from an erbium-doped oxyfluoride-silicate glass waveguide fabricated using femtosecond waveguide inscription,” IEEE Photon. Technol. Lett. 18, 1515-1517 (2006).
[CrossRef]

Cai, Z. P.

Z. P. Cai, A. Chardon, H. Y. Xu, P. Feron, and G. M. Stephan, “Laser characteristics at 1535 nm and thermal effects of an Er:Yb phosphate glass microchip pumped by Ti:sapphire laser,” Opt. Commun. 203, 301-313 (2002).
[CrossRef]

Campbell, S.

R. R. Thomson, H. T. Bookey, N. Psaila, S. Campbell, D. T. Reid, S. Shen, A. Jha, K. Kar, and A. K. Kar, “Internal gain from an erbium-doped oxyfluoride-silicate glass waveguide fabricated using femtosecond waveguide inscription,” IEEE Photon. Technol. Lett. 18, 1515-1517 (2006).
[CrossRef]

Carnall, W. T.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424-4442 (1964).
[CrossRef]

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49, 4412-4423 (1964).
[CrossRef]

Chardon, A.

Z. P. Cai, A. Chardon, H. Y. Xu, P. Feron, and G. M. Stephan, “Laser characteristics at 1535 nm and thermal effects of an Er:Yb phosphate glass microchip pumped by Ti:sapphire laser,” Opt. Commun. 203, 301-313 (2002).
[CrossRef]

Chin, S. L.

A. Saliminia, R. Vallee, and S. L. Chin, “Waveguide writing in silica glass with femtosecond pulses from an optical parametric amplifier at 1.5 μm,” Opt. Commun. 256, 422-427 (2005).
[CrossRef]

Choi, J. H.

J. H. Choi, F. G. Shi, A. Margaryan, A. Margaryan, and W. V. D. Veer, “Novel alkaline-free Er3+-doped fluorophosphate glasses for broadband optical fiber lasers and amplifiers,” J. Alloys Compd. 450, 540-545 (2008).
[CrossRef]

Choi, Y. G.

J. H. Song, Y. G. Choi, K. Kadono, K. Fukumi, H. Kageyama, and J. Heo, “Emission properties and local structure of Tm3+ in Ge-Ga-S-Br glass,” J. Non-Cryst. Solids 353, 1676-1680 (2007).
[CrossRef]

Daran, E.

T. Bhutta, D. P. Shepherd, C. Serrano, and E. Daran, “Low phonon energy, Nd: LaF3 channel waveguide lasers fabricated by molecular beam epitaxy,” IEEE J. Quantum Electron. 37, 1469-1477 (2001).
[CrossRef]

E. Daran, D. P. Shepherd, T. Bhutta, and C. Serrano, “Laser operation of Nd:LaF3 thin film grown by molecular beam epitaxy,” Electron. Lett. 35, 398-400 (1999).
[CrossRef]

Dimitrov, V.

T. Kosuge, Y. Benino, V. Dimitrov, R. Sato, and T. Komatsu, “Thermal stability and heat capacity changes at the glass transition in K2O-WO3-TeO2 glasses,” J. Non-Cryst. Solids 242, 154-164 (1998).
[CrossRef]

Dror, R.

R. Gvishi, G. Strum, N. Shitrit, and R. Dror, “Optical waveguide fabrication using a fast sol-gel method,” Opt. Mater. 30, 1755-1758 (2008).
[CrossRef]

El-Agmy, R. M.

R. M. El-Agmy, W. Lüthy, Th. Graf, and H. P. Weber, “1.47 μmTm3+: ZBLAN fiber laser pumped at 1.064 μm,” Electron. Lett. 39, 507-508 (2003).
[CrossRef]

Emmerson, G. D.

Fardad, M. A.

Feron, P.

Z. P. Cai, A. Chardon, H. Y. Xu, P. Feron, and G. M. Stephan, “Laser characteristics at 1535 nm and thermal effects of an Er:Yb phosphate glass microchip pumped by Ti:sapphire laser,” Opt. Commun. 203, 301-313 (2002).
[CrossRef]

Ferrand, B.

D. P. Shepherd, D. C. Hanna, A. C. Tropper, T. J. Warburton, B. Ferrand, D. Pelenc, A. Rameix, and P. Thony, “A low threshold, room temperature 1.64 μmYb:Er:Y3Al5O12 waveguide laser,” J. Appl. Phys. 76, 7651-7653 (1994).
[CrossRef]

Fields, P. R.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49, 4412-4423 (1964).
[CrossRef]

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424-4442 (1964).
[CrossRef]

Fukumi, K.

J. H. Song, Y. G. Choi, K. Kadono, K. Fukumi, H. Kageyama, and J. Heo, “Emission properties and local structure of Tm3+ in Ge-Ga-S-Br glass,” J. Non-Cryst. Solids 353, 1676-1680 (2007).
[CrossRef]

Funk, D. S.

D. L. Veasey, D. S. Funk, P. M. Peters, W. C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263, 369-381 (2000).
[CrossRef]

Gawith, C. B. E.

D. A. Guilhot, G. D. Emmerson, C. B. E. Gawith, S. P. Watts, D. P. Shepherd, R. B. Williams, and P. G. R. Smith, “Single-mode direct-ultraviolet-written channel waveguide laser in neodymium-doped silica on silicon,” Opt. Lett. 29, 947-949 (2004).
[CrossRef] [PubMed]

C. B. E. Gawith, T. Bhutta, D. P. Shepherd, P. Hua, J. Wang, G. W. Ross, and P. G. R. Smith, “Buried laser waveguides in neodymium-doped BK-7 by K+-Na+ ion-exchange across a direct-bonded interface,” Appl. Phys. Lett. 75, 3757-3759 (1999).
[CrossRef]

Gossing, P.

G. Mahlke and P. Gossing, Fiber Optic Cables (Publicis MCD Corporate Publishing, 2001).

Graf, Th.

R. M. El-Agmy, W. Lüthy, Th. Graf, and H. P. Weber, “1.47 μmTm3+: ZBLAN fiber laser pumped at 1.064 μm,” Electron. Lett. 39, 507-508 (2003).
[CrossRef]

Guilhot, D. A.

Gvishi, R.

R. Gvishi, G. Strum, N. Shitrit, and R. Dror, “Optical waveguide fabrication using a fast sol-gel method,” Opt. Mater. 30, 1755-1758 (2008).
[CrossRef]

Hanna, D. C.

D. P. Shepherd, D. C. Hanna, A. C. Tropper, T. J. Warburton, B. Ferrand, D. Pelenc, A. Rameix, and P. Thony, “A low threshold, room temperature 1.64 μmYb:Er:Y3Al5O12 waveguide laser,” J. Appl. Phys. 76, 7651-7653 (1994).
[CrossRef]

Hattori, K.

T. Kitagawa, K. Hattori, K. Shuto, M. Yasu, M. Kobayashi, and M. Horiguch, “Amplification in erbium-doped silica based planar lightwave circuits,” Electron. Lett. 28, 1818-1819 (1992).
[CrossRef]

Hayden, J. S.

D. L. Veasey, D. S. Funk, P. M. Peters, W. C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263, 369-381 (2000).
[CrossRef]

Heo, J.

J. H. Song, Y. G. Choi, K. Kadono, K. Fukumi, H. Kageyama, and J. Heo, “Emission properties and local structure of Tm3+ in Ge-Ga-S-Br glass,” J. Non-Cryst. Solids 353, 1676-1680 (2007).
[CrossRef]

Honkanen, S.

S. Jiang, T. Luo, B. Hwang, G. Nunzi-Conti, M. Myers, D. Rhonehouse, S. Honkanen, and N. Peyghambarian, “New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers,” Opt. Eng. (Bellingham) 37, 3282-3286 (1998).
[CrossRef]

Horiguch, M.

T. Kitagawa, K. Hattori, K. Shuto, M. Yasu, M. Kobayashi, and M. Horiguch, “Amplification in erbium-doped silica based planar lightwave circuits,” Electron. Lett. 28, 1818-1819 (1992).
[CrossRef]

Hou, Y. Y.

H. Lin, S. Tanabe, L. Lin, Y. Y. Hou, K. Liu, D. L. Yang, T. C. Ma, J. Y. Yu, and E. Y. B. Pun, “Near-infrared emissions with widely different widths in two kinds of Er3+-doped oxide glasses with high refractive indices and low phonon energies,” J. Lumin. 124, 167-172 (2007).
[CrossRef]

Houde-Walter, S. N.

D. L. Veasey, D. S. Funk, P. M. Peters, W. C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263, 369-381 (2000).
[CrossRef]

Hu, L. L.

Hua, P.

C. B. E. Gawith, T. Bhutta, D. P. Shepherd, P. Hua, J. Wang, G. W. Ross, and P. G. R. Smith, “Buried laser waveguides in neodymium-doped BK-7 by K+-Na+ ion-exchange across a direct-bonded interface,” Appl. Phys. Lett. 75, 3757-3759 (1999).
[CrossRef]

Huang, L.

S. Shen, L. Huang, P. Joshi, and A. Jha, “Gain characteristics of Er3+/Ce3+ codoped tellurite short fibre amplifier pumped at 980 nm,” Electron. Lett. 39, 1797-1799 (2003).
[CrossRef]

Hwang, B.

S. Jiang, T. Luo, B. Hwang, G. Nunzi-Conti, M. Myers, D. Rhonehouse, S. Honkanen, and N. Peyghambarian, “New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers,” Opt. Eng. (Bellingham) 37, 3282-3286 (1998).
[CrossRef]

Janakova, S.

B. Svecova, J. Spirkova, S. Janakova, and M. Mika, “Ion-exchanged optical waveguides fabricated in novel Er3+ and Er3+/Yb3+ doped silicate glasses: relations between glass composition, basicity and waveguide properties,” Mater. Sci. Eng., B 149, 177-180 (2008).
[CrossRef]

Jha, A.

R. R. Thomson, H. T. Bookey, N. Psaila, S. Campbell, D. T. Reid, S. Shen, A. Jha, K. Kar, and A. K. Kar, “Internal gain from an erbium-doped oxyfluoride-silicate glass waveguide fabricated using femtosecond waveguide inscription,” IEEE Photon. Technol. Lett. 18, 1515-1517 (2006).
[CrossRef]

S. Shen, L. Huang, P. Joshi, and A. Jha, “Gain characteristics of Er3+/Ce3+ codoped tellurite short fibre amplifier pumped at 980 nm,” Electron. Lett. 39, 1797-1799 (2003).
[CrossRef]

Jiang, S.

S. Jiang, T. Luo, B. Hwang, G. Nunzi-Conti, M. Myers, D. Rhonehouse, S. Honkanen, and N. Peyghambarian, “New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers,” Opt. Eng. (Bellingham) 37, 3282-3286 (1998).
[CrossRef]

Jiang, Z. H.

Joshi, P.

S. Shen, L. Huang, P. Joshi, and A. Jha, “Gain characteristics of Er3+/Ce3+ codoped tellurite short fibre amplifier pumped at 980 nm,” Electron. Lett. 39, 1797-1799 (2003).
[CrossRef]

Judd, B. R.

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750-761 (1962).
[CrossRef]

Kadono, K.

J. H. Song, Y. G. Choi, K. Kadono, K. Fukumi, H. Kageyama, and J. Heo, “Emission properties and local structure of Tm3+ in Ge-Ga-S-Br glass,” J. Non-Cryst. Solids 353, 1676-1680 (2007).
[CrossRef]

Kageyama, H.

J. H. Song, Y. G. Choi, K. Kadono, K. Fukumi, H. Kageyama, and J. Heo, “Emission properties and local structure of Tm3+ in Ge-Ga-S-Br glass,” J. Non-Cryst. Solids 353, 1676-1680 (2007).
[CrossRef]

Kar, A. K.

N. D. Psaila, R. R. Thomson, H. T. Bookey, and A. K. Kar, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90, 131102-131104 (2007).
[CrossRef]

R. R. Thomson, H. T. Bookey, N. Psaila, S. Campbell, D. T. Reid, S. Shen, A. Jha, K. Kar, and A. K. Kar, “Internal gain from an erbium-doped oxyfluoride-silicate glass waveguide fabricated using femtosecond waveguide inscription,” IEEE Photon. Technol. Lett. 18, 1515-1517 (2006).
[CrossRef]

Kar, K.

R. R. Thomson, H. T. Bookey, N. Psaila, S. Campbell, D. T. Reid, S. Shen, A. Jha, K. Kar, and A. K. Kar, “Internal gain from an erbium-doped oxyfluoride-silicate glass waveguide fabricated using femtosecond waveguide inscription,” IEEE Photon. Technol. Lett. 18, 1515-1517 (2006).
[CrossRef]

Kitagawa, T.

T. Kitagawa, K. Hattori, K. Shuto, M. Yasu, M. Kobayashi, and M. Horiguch, “Amplification in erbium-doped silica based planar lightwave circuits,” Electron. Lett. 28, 1818-1819 (1992).
[CrossRef]

Kobayashi, M.

T. Kitagawa, K. Hattori, K. Shuto, M. Yasu, M. Kobayashi, and M. Horiguch, “Amplification in erbium-doped silica based planar lightwave circuits,” Electron. Lett. 28, 1818-1819 (1992).
[CrossRef]

Komatsu, T.

T. Kosuge, Y. Benino, V. Dimitrov, R. Sato, and T. Komatsu, “Thermal stability and heat capacity changes at the glass transition in K2O-WO3-TeO2 glasses,” J. Non-Cryst. Solids 242, 154-164 (1998).
[CrossRef]

Komukai, T.

Y. Miyajima, T. Sugawa, and T. Komukai, “20 dB gain at 1.55 μm wavelength in 50 cm long Er3+-doped fluoride fiber amplifier,” Electron. Lett. 26, 1527-1528 (1990).
[CrossRef]

Kosuge, T.

T. Kosuge, Y. Benino, V. Dimitrov, R. Sato, and T. Komatsu, “Thermal stability and heat capacity changes at the glass transition in K2O-WO3-TeO2 glasses,” J. Non-Cryst. Solids 242, 154-164 (1998).
[CrossRef]

Li, C. M.

H. Lin, X. Y. Wang, C. M. Li, H. X. Yang, E. Y. B. Pun, and S. Tanabe, “Near-infrared emissions and quantum efficiencies in Tm3+-doped heavy metal gallate glasses for S- and U-band amplifiers and 1.8 μm infrared laser,” J. Lumin. 128, 74-80 (2008).
[CrossRef]

Lin, H.

H. Lin, X. Y. Wang, C. M. Li, H. X. Yang, E. Y. B. Pun, and S. Tanabe, “Near-infrared emissions and quantum efficiencies in Tm3+-doped heavy metal gallate glasses for S- and U-band amplifiers and 1.8 μm infrared laser,” J. Lumin. 128, 74-80 (2008).
[CrossRef]

H. Lin, S. Tanabe, L. Lin, Y. Y. Hou, K. Liu, D. L. Yang, T. C. Ma, J. Y. Yu, and E. Y. B. Pun, “Near-infrared emissions with widely different widths in two kinds of Er3+-doped oxide glasses with high refractive indices and low phonon energies,” J. Lumin. 124, 167-172 (2007).
[CrossRef]

H. Lin, E. Y. B. Pun, and X. R. Liu, “Er3+-doped Na2O⋅Cd3Al2Si3O12 glass for infrared and upconversion applications,” J. Non-Cryst. Solids 283, 27-33 (2001).
[CrossRef]

Lin, L.

H. Lin, S. Tanabe, L. Lin, Y. Y. Hou, K. Liu, D. L. Yang, T. C. Ma, J. Y. Yu, and E. Y. B. Pun, “Near-infrared emissions with widely different widths in two kinds of Er3+-doped oxide glasses with high refractive indices and low phonon energies,” J. Lumin. 124, 167-172 (2007).
[CrossRef]

Liu, K.

H. Lin, S. Tanabe, L. Lin, Y. Y. Hou, K. Liu, D. L. Yang, T. C. Ma, J. Y. Yu, and E. Y. B. Pun, “Near-infrared emissions with widely different widths in two kinds of Er3+-doped oxide glasses with high refractive indices and low phonon energies,” J. Lumin. 124, 167-172 (2007).
[CrossRef]

T. C. Sun, A. A. Bettiol, K. Liu, M. Q. Ren, E. Y. B. Pun, S. Venugopal Rao, J. A. van Kan, F. Watt, “Proton beam writing of erbrium-doped waveguide amplifiers,” Nucl. Instrum. Methods Phys. Res. B 231, 394-399 (2005).
[CrossRef]

Liu, W. C.

D. L. Veasey, D. S. Funk, P. M. Peters, W. C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263, 369-381 (2000).
[CrossRef]

Liu, X. R.

H. Lin, E. Y. B. Pun, and X. R. Liu, “Er3+-doped Na2O⋅Cd3Al2Si3O12 glass for infrared and upconversion applications,” J. Non-Cryst. Solids 283, 27-33 (2001).
[CrossRef]

Luo, T.

S. Jiang, T. Luo, B. Hwang, G. Nunzi-Conti, M. Myers, D. Rhonehouse, S. Honkanen, and N. Peyghambarian, “New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers,” Opt. Eng. (Bellingham) 37, 3282-3286 (1998).
[CrossRef]

Lüthy, W.

R. M. El-Agmy, W. Lüthy, Th. Graf, and H. P. Weber, “1.47 μmTm3+: ZBLAN fiber laser pumped at 1.064 μm,” Electron. Lett. 39, 507-508 (2003).
[CrossRef]

Ma, T. C.

H. Lin, S. Tanabe, L. Lin, Y. Y. Hou, K. Liu, D. L. Yang, T. C. Ma, J. Y. Yu, and E. Y. B. Pun, “Near-infrared emissions with widely different widths in two kinds of Er3+-doped oxide glasses with high refractive indices and low phonon energies,” J. Lumin. 124, 167-172 (2007).
[CrossRef]

Mahlke, G.

G. Mahlke and P. Gossing, Fiber Optic Cables (Publicis MCD Corporate Publishing, 2001).

Margaryan, A.

J. H. Choi, F. G. Shi, A. Margaryan, A. Margaryan, and W. V. D. Veer, “Novel alkaline-free Er3+-doped fluorophosphate glasses for broadband optical fiber lasers and amplifiers,” J. Alloys Compd. 450, 540-545 (2008).
[CrossRef]

J. H. Choi, F. G. Shi, A. Margaryan, A. Margaryan, and W. V. D. Veer, “Novel alkaline-free Er3+-doped fluorophosphate glasses for broadband optical fiber lasers and amplifiers,” J. Alloys Compd. 450, 540-545 (2008).
[CrossRef]

McCumber, D. E.

D. E. McCumber, “Theory of phonon-terminated optical masers,” Phys. Rev. 134, A299-A306 (1964).
[CrossRef]

Mika, M.

B. Svecova, J. Spirkova, S. Janakova, and M. Mika, “Ion-exchanged optical waveguides fabricated in novel Er3+ and Er3+/Yb3+ doped silicate glasses: relations between glass composition, basicity and waveguide properties,” Mater. Sci. Eng., B 149, 177-180 (2008).
[CrossRef]

Miyajima, Y.

Y. Miyajima, T. Sugawa, and T. Komukai, “20 dB gain at 1.55 μm wavelength in 50 cm long Er3+-doped fluoride fiber amplifier,” Electron. Lett. 26, 1527-1528 (1990).
[CrossRef]

Myers, M.

S. Jiang, T. Luo, B. Hwang, G. Nunzi-Conti, M. Myers, D. Rhonehouse, S. Honkanen, and N. Peyghambarian, “New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers,” Opt. Eng. (Bellingham) 37, 3282-3286 (1998).
[CrossRef]

Najafi, S. I.

Nunzi-Conti, G.

S. Jiang, T. Luo, B. Hwang, G. Nunzi-Conti, M. Myers, D. Rhonehouse, S. Honkanen, and N. Peyghambarian, “New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers,” Opt. Eng. (Bellingham) 37, 3282-3286 (1998).
[CrossRef]

Ofelt, G. S.

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511-520 (1962).
[CrossRef]

Pelenc, D.

D. P. Shepherd, D. C. Hanna, A. C. Tropper, T. J. Warburton, B. Ferrand, D. Pelenc, A. Rameix, and P. Thony, “A low threshold, room temperature 1.64 μmYb:Er:Y3Al5O12 waveguide laser,” J. Appl. Phys. 76, 7651-7653 (1994).
[CrossRef]

Peters, P. M.

D. L. Veasey, D. S. Funk, P. M. Peters, W. C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263, 369-381 (2000).
[CrossRef]

Peyghambarian, N.

S. Jiang, T. Luo, B. Hwang, G. Nunzi-Conti, M. Myers, D. Rhonehouse, S. Honkanen, and N. Peyghambarian, “New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers,” Opt. Eng. (Bellingham) 37, 3282-3286 (1998).
[CrossRef]

Psaila, N.

R. R. Thomson, H. T. Bookey, N. Psaila, S. Campbell, D. T. Reid, S. Shen, A. Jha, K. Kar, and A. K. Kar, “Internal gain from an erbium-doped oxyfluoride-silicate glass waveguide fabricated using femtosecond waveguide inscription,” IEEE Photon. Technol. Lett. 18, 1515-1517 (2006).
[CrossRef]

Psaila, N. D.

N. D. Psaila, R. R. Thomson, H. T. Bookey, and A. K. Kar, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90, 131102-131104 (2007).
[CrossRef]

Pun, E. Y. B.

H. Lin, X. Y. Wang, C. M. Li, H. X. Yang, E. Y. B. Pun, and S. Tanabe, “Near-infrared emissions and quantum efficiencies in Tm3+-doped heavy metal gallate glasses for S- and U-band amplifiers and 1.8 μm infrared laser,” J. Lumin. 128, 74-80 (2008).
[CrossRef]

H. Lin, S. Tanabe, L. Lin, Y. Y. Hou, K. Liu, D. L. Yang, T. C. Ma, J. Y. Yu, and E. Y. B. Pun, “Near-infrared emissions with widely different widths in two kinds of Er3+-doped oxide glasses with high refractive indices and low phonon energies,” J. Lumin. 124, 167-172 (2007).
[CrossRef]

T. C. Sun, A. A. Bettiol, K. Liu, M. Q. Ren, E. Y. B. Pun, S. Venugopal Rao, J. A. van Kan, F. Watt, “Proton beam writing of erbrium-doped waveguide amplifiers,” Nucl. Instrum. Methods Phys. Res. B 231, 394-399 (2005).
[CrossRef]

H. Lin, E. Y. B. Pun, and X. R. Liu, “Er3+-doped Na2O⋅Cd3Al2Si3O12 glass for infrared and upconversion applications,” J. Non-Cryst. Solids 283, 27-33 (2001).
[CrossRef]

Rajnak, K.

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49, 4412-4423 (1964).
[CrossRef]

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424-4442 (1964).
[CrossRef]

Rameix, A.

D. P. Shepherd, D. C. Hanna, A. C. Tropper, T. J. Warburton, B. Ferrand, D. Pelenc, A. Rameix, and P. Thony, “A low threshold, room temperature 1.64 μmYb:Er:Y3Al5O12 waveguide laser,” J. Appl. Phys. 76, 7651-7653 (1994).
[CrossRef]

Reid, D. T.

R. R. Thomson, H. T. Bookey, N. Psaila, S. Campbell, D. T. Reid, S. Shen, A. Jha, K. Kar, and A. K. Kar, “Internal gain from an erbium-doped oxyfluoride-silicate glass waveguide fabricated using femtosecond waveguide inscription,” IEEE Photon. Technol. Lett. 18, 1515-1517 (2006).
[CrossRef]

Ren, M. Q.

T. C. Sun, A. A. Bettiol, K. Liu, M. Q. Ren, E. Y. B. Pun, S. Venugopal Rao, J. A. van Kan, F. Watt, “Proton beam writing of erbrium-doped waveguide amplifiers,” Nucl. Instrum. Methods Phys. Res. B 231, 394-399 (2005).
[CrossRef]

Rhonehouse, D.

S. Jiang, T. Luo, B. Hwang, G. Nunzi-Conti, M. Myers, D. Rhonehouse, S. Honkanen, and N. Peyghambarian, “New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers,” Opt. Eng. (Bellingham) 37, 3282-3286 (1998).
[CrossRef]

Ross, G. W.

C. B. E. Gawith, T. Bhutta, D. P. Shepherd, P. Hua, J. Wang, G. W. Ross, and P. G. R. Smith, “Buried laser waveguides in neodymium-doped BK-7 by K+-Na+ ion-exchange across a direct-bonded interface,” Appl. Phys. Lett. 75, 3757-3759 (1999).
[CrossRef]

Saliminia, A.

A. Saliminia, R. Vallee, and S. L. Chin, “Waveguide writing in silica glass with femtosecond pulses from an optical parametric amplifier at 1.5 μm,” Opt. Commun. 256, 422-427 (2005).
[CrossRef]

Sara, R.

Sato, R.

T. Kosuge, Y. Benino, V. Dimitrov, R. Sato, and T. Komatsu, “Thermal stability and heat capacity changes at the glass transition in K2O-WO3-TeO2 glasses,” J. Non-Cryst. Solids 242, 154-164 (1998).
[CrossRef]

Serrano, C.

T. Bhutta, D. P. Shepherd, C. Serrano, and E. Daran, “Low phonon energy, Nd: LaF3 channel waveguide lasers fabricated by molecular beam epitaxy,” IEEE J. Quantum Electron. 37, 1469-1477 (2001).
[CrossRef]

E. Daran, D. P. Shepherd, T. Bhutta, and C. Serrano, “Laser operation of Nd:LaF3 thin film grown by molecular beam epitaxy,” Electron. Lett. 35, 398-400 (1999).
[CrossRef]

Shen, S.

R. R. Thomson, H. T. Bookey, N. Psaila, S. Campbell, D. T. Reid, S. Shen, A. Jha, K. Kar, and A. K. Kar, “Internal gain from an erbium-doped oxyfluoride-silicate glass waveguide fabricated using femtosecond waveguide inscription,” IEEE Photon. Technol. Lett. 18, 1515-1517 (2006).
[CrossRef]

S. Shen, L. Huang, P. Joshi, and A. Jha, “Gain characteristics of Er3+/Ce3+ codoped tellurite short fibre amplifier pumped at 980 nm,” Electron. Lett. 39, 1797-1799 (2003).
[CrossRef]

Shepherd, D. P.

D. A. Guilhot, G. D. Emmerson, C. B. E. Gawith, S. P. Watts, D. P. Shepherd, R. B. Williams, and P. G. R. Smith, “Single-mode direct-ultraviolet-written channel waveguide laser in neodymium-doped silica on silicon,” Opt. Lett. 29, 947-949 (2004).
[CrossRef] [PubMed]

T. Bhutta, D. P. Shepherd, C. Serrano, and E. Daran, “Low phonon energy, Nd: LaF3 channel waveguide lasers fabricated by molecular beam epitaxy,” IEEE J. Quantum Electron. 37, 1469-1477 (2001).
[CrossRef]

E. Daran, D. P. Shepherd, T. Bhutta, and C. Serrano, “Laser operation of Nd:LaF3 thin film grown by molecular beam epitaxy,” Electron. Lett. 35, 398-400 (1999).
[CrossRef]

C. B. E. Gawith, T. Bhutta, D. P. Shepherd, P. Hua, J. Wang, G. W. Ross, and P. G. R. Smith, “Buried laser waveguides in neodymium-doped BK-7 by K+-Na+ ion-exchange across a direct-bonded interface,” Appl. Phys. Lett. 75, 3757-3759 (1999).
[CrossRef]

D. P. Shepherd, D. C. Hanna, A. C. Tropper, T. J. Warburton, B. Ferrand, D. Pelenc, A. Rameix, and P. Thony, “A low threshold, room temperature 1.64 μmYb:Er:Y3Al5O12 waveguide laser,” J. Appl. Phys. 76, 7651-7653 (1994).
[CrossRef]

Shi, F. G.

J. H. Choi, F. G. Shi, A. Margaryan, A. Margaryan, and W. V. D. Veer, “Novel alkaline-free Er3+-doped fluorophosphate glasses for broadband optical fiber lasers and amplifiers,” J. Alloys Compd. 450, 540-545 (2008).
[CrossRef]

Shitrit, N.

R. Gvishi, G. Strum, N. Shitrit, and R. Dror, “Optical waveguide fabrication using a fast sol-gel method,” Opt. Mater. 30, 1755-1758 (2008).
[CrossRef]

Shuto, K.

T. Kitagawa, K. Hattori, K. Shuto, M. Yasu, M. Kobayashi, and M. Horiguch, “Amplification in erbium-doped silica based planar lightwave circuits,” Electron. Lett. 28, 1818-1819 (1992).
[CrossRef]

Sigel, G. H.

J. S. Wang, E. Snitzer, E. M. Vogel, and G. H. Sigel, “1.47, 1.88 and 2.8 μm emissions of Tm3+ and Tm3+-Ho3+-codoped tellurite glasses,” J. Lumin. 60, 145-149 (1994).
[CrossRef]

Smith, P. G. R.

D. A. Guilhot, G. D. Emmerson, C. B. E. Gawith, S. P. Watts, D. P. Shepherd, R. B. Williams, and P. G. R. Smith, “Single-mode direct-ultraviolet-written channel waveguide laser in neodymium-doped silica on silicon,” Opt. Lett. 29, 947-949 (2004).
[CrossRef] [PubMed]

C. B. E. Gawith, T. Bhutta, D. P. Shepherd, P. Hua, J. Wang, G. W. Ross, and P. G. R. Smith, “Buried laser waveguides in neodymium-doped BK-7 by K+-Na+ ion-exchange across a direct-bonded interface,” Appl. Phys. Lett. 75, 3757-3759 (1999).
[CrossRef]

Snitzer, E.

J. S. Wang, E. Snitzer, E. M. Vogel, and G. H. Sigel, “1.47, 1.88 and 2.8 μm emissions of Tm3+ and Tm3+-Ho3+-codoped tellurite glasses,” J. Lumin. 60, 145-149 (1994).
[CrossRef]

Song, J. H.

J. H. Song, Y. G. Choi, K. Kadono, K. Fukumi, H. Kageyama, and J. Heo, “Emission properties and local structure of Tm3+ in Ge-Ga-S-Br glass,” J. Non-Cryst. Solids 353, 1676-1680 (2007).
[CrossRef]

Spirkova, J.

B. Svecova, J. Spirkova, S. Janakova, and M. Mika, “Ion-exchanged optical waveguides fabricated in novel Er3+ and Er3+/Yb3+ doped silicate glasses: relations between glass composition, basicity and waveguide properties,” Mater. Sci. Eng., B 149, 177-180 (2008).
[CrossRef]

Stephan, G. M.

Z. P. Cai, A. Chardon, H. Y. Xu, P. Feron, and G. M. Stephan, “Laser characteristics at 1535 nm and thermal effects of an Er:Yb phosphate glass microchip pumped by Ti:sapphire laser,” Opt. Commun. 203, 301-313 (2002).
[CrossRef]

Strum, G.

R. Gvishi, G. Strum, N. Shitrit, and R. Dror, “Optical waveguide fabrication using a fast sol-gel method,” Opt. Mater. 30, 1755-1758 (2008).
[CrossRef]

Sugawa, T.

Y. Miyajima, T. Sugawa, and T. Komukai, “20 dB gain at 1.55 μm wavelength in 50 cm long Er3+-doped fluoride fiber amplifier,” Electron. Lett. 26, 1527-1528 (1990).
[CrossRef]

Sum, T. C.

A. A. Bettiol, S. Venugopal Rao, T. C. Sum, J. A. van Kan, and F. Watt, “Fabrication of optical waveguides using proton beam writing,” J. Cryst. Growth 288, 209-212 (2006).
[CrossRef]

Sun, T. C.

T. C. Sun, A. A. Bettiol, K. Liu, M. Q. Ren, E. Y. B. Pun, S. Venugopal Rao, J. A. van Kan, F. Watt, “Proton beam writing of erbrium-doped waveguide amplifiers,” Nucl. Instrum. Methods Phys. Res. B 231, 394-399 (2005).
[CrossRef]

Svecova, B.

B. Svecova, J. Spirkova, S. Janakova, and M. Mika, “Ion-exchanged optical waveguides fabricated in novel Er3+ and Er3+/Yb3+ doped silicate glasses: relations between glass composition, basicity and waveguide properties,” Mater. Sci. Eng., B 149, 177-180 (2008).
[CrossRef]

Tanabe, S.

H. Lin, X. Y. Wang, C. M. Li, H. X. Yang, E. Y. B. Pun, and S. Tanabe, “Near-infrared emissions and quantum efficiencies in Tm3+-doped heavy metal gallate glasses for S- and U-band amplifiers and 1.8 μm infrared laser,” J. Lumin. 128, 74-80 (2008).
[CrossRef]

H. Lin, S. Tanabe, L. Lin, Y. Y. Hou, K. Liu, D. L. Yang, T. C. Ma, J. Y. Yu, and E. Y. B. Pun, “Near-infrared emissions with widely different widths in two kinds of Er3+-doped oxide glasses with high refractive indices and low phonon energies,” J. Lumin. 124, 167-172 (2007).
[CrossRef]

Thomson, R. R.

N. D. Psaila, R. R. Thomson, H. T. Bookey, and A. K. Kar, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90, 131102-131104 (2007).
[CrossRef]

R. R. Thomson, H. T. Bookey, N. Psaila, S. Campbell, D. T. Reid, S. Shen, A. Jha, K. Kar, and A. K. Kar, “Internal gain from an erbium-doped oxyfluoride-silicate glass waveguide fabricated using femtosecond waveguide inscription,” IEEE Photon. Technol. Lett. 18, 1515-1517 (2006).
[CrossRef]

Thony, P.

D. P. Shepherd, D. C. Hanna, A. C. Tropper, T. J. Warburton, B. Ferrand, D. Pelenc, A. Rameix, and P. Thony, “A low threshold, room temperature 1.64 μmYb:Er:Y3Al5O12 waveguide laser,” J. Appl. Phys. 76, 7651-7653 (1994).
[CrossRef]

Touam, T.

Tropper, A. C.

D. P. Shepherd, D. C. Hanna, A. C. Tropper, T. J. Warburton, B. Ferrand, D. Pelenc, A. Rameix, and P. Thony, “A low threshold, room temperature 1.64 μmYb:Er:Y3Al5O12 waveguide laser,” J. Appl. Phys. 76, 7651-7653 (1994).
[CrossRef]

Vallee, R.

A. Saliminia, R. Vallee, and S. L. Chin, “Waveguide writing in silica glass with femtosecond pulses from an optical parametric amplifier at 1.5 μm,” Opt. Commun. 256, 422-427 (2005).
[CrossRef]

van Kan, J. A.

A. A. Bettiol, S. Venugopal Rao, T. C. Sum, J. A. van Kan, and F. Watt, “Fabrication of optical waveguides using proton beam writing,” J. Cryst. Growth 288, 209-212 (2006).
[CrossRef]

T. C. Sun, A. A. Bettiol, K. Liu, M. Q. Ren, E. Y. B. Pun, S. Venugopal Rao, J. A. van Kan, F. Watt, “Proton beam writing of erbrium-doped waveguide amplifiers,” Nucl. Instrum. Methods Phys. Res. B 231, 394-399 (2005).
[CrossRef]

Veasey, D. L.

D. L. Veasey, D. S. Funk, P. M. Peters, W. C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263, 369-381 (2000).
[CrossRef]

Veer, W. V. D.

J. H. Choi, F. G. Shi, A. Margaryan, A. Margaryan, and W. V. D. Veer, “Novel alkaline-free Er3+-doped fluorophosphate glasses for broadband optical fiber lasers and amplifiers,” J. Alloys Compd. 450, 540-545 (2008).
[CrossRef]

Venugopal Rao, S.

A. A. Bettiol, S. Venugopal Rao, T. C. Sum, J. A. van Kan, and F. Watt, “Fabrication of optical waveguides using proton beam writing,” J. Cryst. Growth 288, 209-212 (2006).
[CrossRef]

T. C. Sun, A. A. Bettiol, K. Liu, M. Q. Ren, E. Y. B. Pun, S. Venugopal Rao, J. A. van Kan, F. Watt, “Proton beam writing of erbrium-doped waveguide amplifiers,” Nucl. Instrum. Methods Phys. Res. B 231, 394-399 (2005).
[CrossRef]

Vogel, E. M.

J. S. Wang, E. Snitzer, E. M. Vogel, and G. H. Sigel, “1.47, 1.88 and 2.8 μm emissions of Tm3+ and Tm3+-Ho3+-codoped tellurite glasses,” J. Lumin. 60, 145-149 (1994).
[CrossRef]

Wang, J.

C. B. E. Gawith, T. Bhutta, D. P. Shepherd, P. Hua, J. Wang, G. W. Ross, and P. G. R. Smith, “Buried laser waveguides in neodymium-doped BK-7 by K+-Na+ ion-exchange across a direct-bonded interface,” Appl. Phys. Lett. 75, 3757-3759 (1999).
[CrossRef]

Wang, J. S.

J. S. Wang, E. Snitzer, E. M. Vogel, and G. H. Sigel, “1.47, 1.88 and 2.8 μm emissions of Tm3+ and Tm3+-Ho3+-codoped tellurite glasses,” J. Lumin. 60, 145-149 (1994).
[CrossRef]

Wang, X. Y.

H. Lin, X. Y. Wang, C. M. Li, H. X. Yang, E. Y. B. Pun, and S. Tanabe, “Near-infrared emissions and quantum efficiencies in Tm3+-doped heavy metal gallate glasses for S- and U-band amplifiers and 1.8 μm infrared laser,” J. Lumin. 128, 74-80 (2008).
[CrossRef]

Warburton, T. J.

D. P. Shepherd, D. C. Hanna, A. C. Tropper, T. J. Warburton, B. Ferrand, D. Pelenc, A. Rameix, and P. Thony, “A low threshold, room temperature 1.64 μmYb:Er:Y3Al5O12 waveguide laser,” J. Appl. Phys. 76, 7651-7653 (1994).
[CrossRef]

Watt, F.

A. A. Bettiol, S. Venugopal Rao, T. C. Sum, J. A. van Kan, and F. Watt, “Fabrication of optical waveguides using proton beam writing,” J. Cryst. Growth 288, 209-212 (2006).
[CrossRef]

T. C. Sun, A. A. Bettiol, K. Liu, M. Q. Ren, E. Y. B. Pun, S. Venugopal Rao, J. A. van Kan, F. Watt, “Proton beam writing of erbrium-doped waveguide amplifiers,” Nucl. Instrum. Methods Phys. Res. B 231, 394-399 (2005).
[CrossRef]

Watts, S. P.

Weber, H. P.

R. M. El-Agmy, W. Lüthy, Th. Graf, and H. P. Weber, “1.47 μmTm3+: ZBLAN fiber laser pumped at 1.064 μm,” Electron. Lett. 39, 507-508 (2003).
[CrossRef]

Williams, R. B.

Xu, H. Y.

Z. P. Cai, A. Chardon, H. Y. Xu, P. Feron, and G. M. Stephan, “Laser characteristics at 1535 nm and thermal effects of an Er:Yb phosphate glass microchip pumped by Ti:sapphire laser,” Opt. Commun. 203, 301-313 (2002).
[CrossRef]

Xu, S. Q.

Yang, D. L.

H. Lin, S. Tanabe, L. Lin, Y. Y. Hou, K. Liu, D. L. Yang, T. C. Ma, J. Y. Yu, and E. Y. B. Pun, “Near-infrared emissions with widely different widths in two kinds of Er3+-doped oxide glasses with high refractive indices and low phonon energies,” J. Lumin. 124, 167-172 (2007).
[CrossRef]

Yang, H. X.

H. Lin, X. Y. Wang, C. M. Li, H. X. Yang, E. Y. B. Pun, and S. Tanabe, “Near-infrared emissions and quantum efficiencies in Tm3+-doped heavy metal gallate glasses for S- and U-band amplifiers and 1.8 μm infrared laser,” J. Lumin. 128, 74-80 (2008).
[CrossRef]

Yang, Z. M.

Yasu, M.

T. Kitagawa, K. Hattori, K. Shuto, M. Yasu, M. Kobayashi, and M. Horiguch, “Amplification in erbium-doped silica based planar lightwave circuits,” Electron. Lett. 28, 1818-1819 (1992).
[CrossRef]

Yu, J. Y.

H. Lin, S. Tanabe, L. Lin, Y. Y. Hou, K. Liu, D. L. Yang, T. C. Ma, J. Y. Yu, and E. Y. B. Pun, “Near-infrared emissions with widely different widths in two kinds of Er3+-doped oxide glasses with high refractive indices and low phonon energies,” J. Lumin. 124, 167-172 (2007).
[CrossRef]

Appl. Phys. Lett. (2)

C. B. E. Gawith, T. Bhutta, D. P. Shepherd, P. Hua, J. Wang, G. W. Ross, and P. G. R. Smith, “Buried laser waveguides in neodymium-doped BK-7 by K+-Na+ ion-exchange across a direct-bonded interface,” Appl. Phys. Lett. 75, 3757-3759 (1999).
[CrossRef]

N. D. Psaila, R. R. Thomson, H. T. Bookey, and A. K. Kar, “Er:Yb-doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90, 131102-131104 (2007).
[CrossRef]

Electron. Lett. (5)

S. Shen, L. Huang, P. Joshi, and A. Jha, “Gain characteristics of Er3+/Ce3+ codoped tellurite short fibre amplifier pumped at 980 nm,” Electron. Lett. 39, 1797-1799 (2003).
[CrossRef]

Y. Miyajima, T. Sugawa, and T. Komukai, “20 dB gain at 1.55 μm wavelength in 50 cm long Er3+-doped fluoride fiber amplifier,” Electron. Lett. 26, 1527-1528 (1990).
[CrossRef]

T. Kitagawa, K. Hattori, K. Shuto, M. Yasu, M. Kobayashi, and M. Horiguch, “Amplification in erbium-doped silica based planar lightwave circuits,” Electron. Lett. 28, 1818-1819 (1992).
[CrossRef]

E. Daran, D. P. Shepherd, T. Bhutta, and C. Serrano, “Laser operation of Nd:LaF3 thin film grown by molecular beam epitaxy,” Electron. Lett. 35, 398-400 (1999).
[CrossRef]

R. M. El-Agmy, W. Lüthy, Th. Graf, and H. P. Weber, “1.47 μmTm3+: ZBLAN fiber laser pumped at 1.064 μm,” Electron. Lett. 39, 507-508 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. Bhutta, D. P. Shepherd, C. Serrano, and E. Daran, “Low phonon energy, Nd: LaF3 channel waveguide lasers fabricated by molecular beam epitaxy,” IEEE J. Quantum Electron. 37, 1469-1477 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

R. R. Thomson, H. T. Bookey, N. Psaila, S. Campbell, D. T. Reid, S. Shen, A. Jha, K. Kar, and A. K. Kar, “Internal gain from an erbium-doped oxyfluoride-silicate glass waveguide fabricated using femtosecond waveguide inscription,” IEEE Photon. Technol. Lett. 18, 1515-1517 (2006).
[CrossRef]

J. Alloys Compd. (1)

J. H. Choi, F. G. Shi, A. Margaryan, A. Margaryan, and W. V. D. Veer, “Novel alkaline-free Er3+-doped fluorophosphate glasses for broadband optical fiber lasers and amplifiers,” J. Alloys Compd. 450, 540-545 (2008).
[CrossRef]

J. Appl. Phys. (1)

D. P. Shepherd, D. C. Hanna, A. C. Tropper, T. J. Warburton, B. Ferrand, D. Pelenc, A. Rameix, and P. Thony, “A low threshold, room temperature 1.64 μmYb:Er:Y3Al5O12 waveguide laser,” J. Appl. Phys. 76, 7651-7653 (1994).
[CrossRef]

J. Chem. Phys. (3)

G. S. Ofelt, “Intensities of crystal spectra of rare-earth ions,” J. Chem. Phys. 37, 511-520 (1962).
[CrossRef]

W. T. Carnall, P. R. Fields, and K. Rajnak, “Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+,” J. Chem. Phys. 49, 4424-4442 (1964).
[CrossRef]

W. T. Carnall, P. R. Fields, and K. Rajnak, “Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, and Ho3+,” J. Chem. Phys. 49, 4412-4423 (1964).
[CrossRef]

J. Cryst. Growth (1)

A. A. Bettiol, S. Venugopal Rao, T. C. Sum, J. A. van Kan, and F. Watt, “Fabrication of optical waveguides using proton beam writing,” J. Cryst. Growth 288, 209-212 (2006).
[CrossRef]

J. Lightwave Technol. (1)

J. Lumin. (3)

J. S. Wang, E. Snitzer, E. M. Vogel, and G. H. Sigel, “1.47, 1.88 and 2.8 μm emissions of Tm3+ and Tm3+-Ho3+-codoped tellurite glasses,” J. Lumin. 60, 145-149 (1994).
[CrossRef]

H. Lin, X. Y. Wang, C. M. Li, H. X. Yang, E. Y. B. Pun, and S. Tanabe, “Near-infrared emissions and quantum efficiencies in Tm3+-doped heavy metal gallate glasses for S- and U-band amplifiers and 1.8 μm infrared laser,” J. Lumin. 128, 74-80 (2008).
[CrossRef]

H. Lin, S. Tanabe, L. Lin, Y. Y. Hou, K. Liu, D. L. Yang, T. C. Ma, J. Y. Yu, and E. Y. B. Pun, “Near-infrared emissions with widely different widths in two kinds of Er3+-doped oxide glasses with high refractive indices and low phonon energies,” J. Lumin. 124, 167-172 (2007).
[CrossRef]

J. Non-Cryst. Solids (4)

J. H. Song, Y. G. Choi, K. Kadono, K. Fukumi, H. Kageyama, and J. Heo, “Emission properties and local structure of Tm3+ in Ge-Ga-S-Br glass,” J. Non-Cryst. Solids 353, 1676-1680 (2007).
[CrossRef]

T. Kosuge, Y. Benino, V. Dimitrov, R. Sato, and T. Komatsu, “Thermal stability and heat capacity changes at the glass transition in K2O-WO3-TeO2 glasses,” J. Non-Cryst. Solids 242, 154-164 (1998).
[CrossRef]

D. L. Veasey, D. S. Funk, P. M. Peters, W. C. Liu, S. N. Houde-Walter, and J. S. Hayden, “Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids 263, 369-381 (2000).
[CrossRef]

H. Lin, E. Y. B. Pun, and X. R. Liu, “Er3+-doped Na2O⋅Cd3Al2Si3O12 glass for infrared and upconversion applications,” J. Non-Cryst. Solids 283, 27-33 (2001).
[CrossRef]

J. Opt. Soc. Am. B (1)

Mater. Sci. Eng., B (1)

B. Svecova, J. Spirkova, S. Janakova, and M. Mika, “Ion-exchanged optical waveguides fabricated in novel Er3+ and Er3+/Yb3+ doped silicate glasses: relations between glass composition, basicity and waveguide properties,” Mater. Sci. Eng., B 149, 177-180 (2008).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. B (1)

T. C. Sun, A. A. Bettiol, K. Liu, M. Q. Ren, E. Y. B. Pun, S. Venugopal Rao, J. A. van Kan, F. Watt, “Proton beam writing of erbrium-doped waveguide amplifiers,” Nucl. Instrum. Methods Phys. Res. B 231, 394-399 (2005).
[CrossRef]

Opt. Commun. (2)

Z. P. Cai, A. Chardon, H. Y. Xu, P. Feron, and G. M. Stephan, “Laser characteristics at 1535 nm and thermal effects of an Er:Yb phosphate glass microchip pumped by Ti:sapphire laser,” Opt. Commun. 203, 301-313 (2002).
[CrossRef]

A. Saliminia, R. Vallee, and S. L. Chin, “Waveguide writing in silica glass with femtosecond pulses from an optical parametric amplifier at 1.5 μm,” Opt. Commun. 256, 422-427 (2005).
[CrossRef]

Opt. Eng. (Bellingham) (1)

S. Jiang, T. Luo, B. Hwang, G. Nunzi-Conti, M. Myers, D. Rhonehouse, S. Honkanen, and N. Peyghambarian, “New Er3+-doped phosphate glass for ion-exchanged waveguide amplifiers,” Opt. Eng. (Bellingham) 37, 3282-3286 (1998).
[CrossRef]

Opt. Lett. (1)

Opt. Mater. (1)

R. Gvishi, G. Strum, N. Shitrit, and R. Dror, “Optical waveguide fabrication using a fast sol-gel method,” Opt. Mater. 30, 1755-1758 (2008).
[CrossRef]

Phys. Rev. (2)

D. E. McCumber, “Theory of phonon-terminated optical masers,” Phys. Rev. 134, A299-A306 (1964).
[CrossRef]

B. R. Judd, “Optical absorption intensities of rare-earth ions,” Phys. Rev. 127, 750-761 (1962).
[CrossRef]

Other (2)

G. Mahlke and P. Gossing, Fiber Optic Cables (Publicis MCD Corporate Publishing, 2001).

S. I. Najafi, Introduction to Glass Integrated Optics (Artech House, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Absorption spectrum of 1 wt. % Er 2 O 3 and 2 wt. % Yb 2 O 3 codoped NMAG glasses.

Fig. 2
Fig. 2

1.53 μ m infrared radiation emission spectrum of Er 3 + Yb 3 + -codoped NMAG glass under 982 nm laser excitation. Inset: fluorescence decay curve for 1.53 μ m emission of Er 3 + in NMAG glasses.

Fig. 3
Fig. 3

Absorption (solid curve) and emission cross-section (dotted curve) profiles of Er 3 + in NMAG glasses.

Fig. 4
Fig. 4

Calculated gain spectra of the I 13 2 4 I 15 2 4 transition for various values of population inversion ( L = 1.0 cm ) .

Fig. 5
Fig. 5

(a) Picture of K + Na + ion-exchanged NMAG channel waveguide. (b) AFM image of the channel section. (c) Near-field mode pattern of the channel waveguide.

Fig. 6
Fig. 6

Optical gain and relative gain (signal enhancement) versus input pump powers at 1534 nm wavelength in a 2.5 cm long K + Na + ion-exchanged Er 3 + Yb 3 + codoped NMAG glass channel waveguide.

Fig. 7
Fig. 7

Total loss including propagation and absorption losses in a 2.5 cm long K + Na + ion-exchanged Er 3 + Yb 3 + codoped NMAG glass channel waveguide.

Fig. 8
Fig. 8

Internal gain versus signal wavelength under 250 mW incident pump power with 1 μ W signal input in a 2.5 cm long K + Na + ion-exchanged Er 3 + Yb 3 + codoped NMAG glass channel waveguide.

Tables (2)

Tables Icon

Table 1 Measured and Calculated Oscillator Strengths and the Judd–Ofelt Intensity Parameters of Er 3 + in NMAG Glasses

Tables Icon

Table 2 Predicted Spontaneous Emission Probabilities, Branching Ratios, and Radiative Lifetimes of Er 3 + in NMAG Glasses

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

A md = ( n n ) 3 A md ,
η q = τ meas τ cal ,
σ e ( v ) = σ a ( v ) exp { h ( ε v ) k T } ,
G ( λ , p ) = 10 log 10 exp [ N ( p σ e ( λ ) ( 1 p ) σ a ( λ ) ) L ] ,
NA = n 1 2 n 2 2 ,
λ c = π d V c NA ,
G O = 10 log 10 [ P Sig ( Pump On ) P Sig ( Pump Off ) ] ,
G R = 10 log 10 [ ( P Sig ( Pump On ) P ASE ) P Sig ( Pump Off ) ] ,
G INT = G R α P α A ,

Metrics