Abstract

We examine the impact of the recovery time of a semiconductor saturable absorber together with the value of its saturation fluence, total net gain, and cavity dispersion on femtosecond pulse generation by mode-locked fiber lasers resulting in a massive optimization of the system performance. Stable regimes of asymptotic single-pulse generation have been identified as zones in a parameter map. We demonstrate that a stable single-pulse regime leads to formation of pulses with chirp, width, and peak power strongly varying during one cavity round trip while slowly oscillating with a period that is much longer than a round trip.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Herda and O. G. Okhotnikov, “Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror,” IEEE J. Quantum Electron. 40, 893-899 (2004).
    [CrossRef]
  2. R. Herda, O. G. Okhotnikov, E. U. Rafailov, and A. Starodumov, “Semiconductor quantum-dot saturable mode-locked fiber laser,” IEEE Photon. Technol. Lett. 18, 157-159 (2006).
    [CrossRef]
  3. I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, G. Zhang, U. Keller, V. Scheuer, M. Tilsch, and T. Tschudi, “Self-starting 6.5-fs pulses from a Ti:sapphire laser,” Opt. Lett. 22, 1009-1011 (1997).
    [CrossRef] [PubMed]
  4. T. Brabec, C. Spielmann, P. F. Curley, and F. Krausz, “Kerr lens mode locking,” Opt. Lett. 17, 1292-1294 (1992).
    [CrossRef] [PubMed]
  5. M. E. Fermann, “Passive mode locking by using nonlinear polarization evolution in a polarization-maintaining erbium-doped fiber,” Opt. Lett. 18, 894-896 (1993).
    [CrossRef] [PubMed]
  6. M. Rusu, S. Karirinne, M. Guina, A. B. Grudinin, and O. G. Okhotnikov, IEEE Photon. Technol. Lett. 16, 1029-1031 (2004).
    [CrossRef]
  7. O. Okhotnikov, L. Gomes, N. Xiang, T. Jouhti, and A. Grudinin, “Mode-locked ytterbium fiber laser tunable in the 980-1070-nm spectral range,” Opt. Lett. 28, 1522-1524 (2003).
    [CrossRef] [PubMed]
  8. R. C. Sharp, D. E. Spock, N. Pan, and J. Elliot, “190-fs passively mode-locked thulium fiber laser with a low threshold,” Opt. Lett. 21, 881-883 (1996).
    [CrossRef] [PubMed]
  9. H. A. Haus and Y. Silberberg (Bell), “Theory of mode locking of a laser diode with a multiple-quantum-well structure,” J. Opt. Soc. Am. B 2, 1237-1243 (1985).
    [CrossRef]
  10. L. R. Brovelli, U. Keller, and T. H. Chiu, “Design and operation of antiresonant Fabry-Perot saturable semiconductor absorbers for mode-locked solid-state lasers,” J. Opt. Soc. Am. B 12, 311-322 (1995).
    [CrossRef]
  11. R. Herda and O. G. Okhotnikov, “Effect of amplified spontaneous emission and absorber mirror recovery time on the dynamics of mode-locked fiber lasers,” Appl. Phys. Lett. 86, 011113 (2005).
    [CrossRef]
  12. S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, G. A. Mourou, F. W. Smith, and A. R. Calawa, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 59, 3276-3278 (1991).
    [CrossRef]
  13. E. L. Delpon, J. L. Oudar, N. Bouché, R. Raj, A. Shen, N. Stelmakh, and J. M. Lourtioz, “Ultrafast excitonic saturable absorption in ion-implanted InGaAs/InAIAs multiple quantum wells,” Appl. Phys. Lett. 72, 759-761 (1998).
    [CrossRef]
  14. M. J. Lederer, B. Luther-Davies, H. H. Tan, and C. Jagadish, “GaAs based antiresonant Fabry-Perot saturable absorber fabricated by metal organic vapor phase epitaxy and ion implantation,” Appl. Phys. Lett. 70, 3428-3430 (1997).
    [CrossRef]
  15. E. U. Rafailov, S. J. White, A. A. Lagatsky, A. Miller, W. Sibbett, D. A. Livshits, A. E. Zhukov, and V. M. Ustinov, “Fast quantum-dot saturable absorber for passive mode-locking of solid-state lasers,” IEEE Photon. Technol. Lett. 16, 2439-2441 (2004).
    [CrossRef]
  16. T. Schreiber, B. Ortaç, J. Limpert, and A. Tünnermann, “On the study of pulse evolution in ultra-short pulse mode-locked fiber lasers by numerical simulations,” Opt. Express 15, 8252-8262 (2007).
    [CrossRef] [PubMed]
  17. H. Haus, “Theory of mode locking with a fast saturable absorber,” J. Appl. Phys. 46, 3049-3058 (1975).
    [CrossRef]
  18. S. M. J. Kelley, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28, 806-807 (1992).
    [CrossRef]
  19. H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31, 591-598 (1995).
    [CrossRef]
  20. S. K. Turitsyn, E. G. Shapiro, S. B. Medvedev, M. P. Fedoruk, and V. K. Mezentsev, “Physics and mathematics of dispersion-managed optical solitons,” C. R. Phys. Acad. Sci./Éd. Sci. méd. 4, 145-161 (2003).
  21. K. Tamura, L. E. Nelson, H. A. Haus and E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” Appl. Phys. Lett. 64, 149-151 (1994).
    [CrossRef]
  22. V. S. Grigoryan and T. S. Muradyan, “Evolution of light pulses into autosolitons in nonlinear amplifying media,” J. Opt. Soc. Am. B 8, 1757-1765 (1991).
    [CrossRef]

2007 (1)

2006 (1)

R. Herda, O. G. Okhotnikov, E. U. Rafailov, and A. Starodumov, “Semiconductor quantum-dot saturable mode-locked fiber laser,” IEEE Photon. Technol. Lett. 18, 157-159 (2006).
[CrossRef]

2005 (1)

R. Herda and O. G. Okhotnikov, “Effect of amplified spontaneous emission and absorber mirror recovery time on the dynamics of mode-locked fiber lasers,” Appl. Phys. Lett. 86, 011113 (2005).
[CrossRef]

2004 (3)

M. Rusu, S. Karirinne, M. Guina, A. B. Grudinin, and O. G. Okhotnikov, IEEE Photon. Technol. Lett. 16, 1029-1031 (2004).
[CrossRef]

E. U. Rafailov, S. J. White, A. A. Lagatsky, A. Miller, W. Sibbett, D. A. Livshits, A. E. Zhukov, and V. M. Ustinov, “Fast quantum-dot saturable absorber for passive mode-locking of solid-state lasers,” IEEE Photon. Technol. Lett. 16, 2439-2441 (2004).
[CrossRef]

R. Herda and O. G. Okhotnikov, “Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror,” IEEE J. Quantum Electron. 40, 893-899 (2004).
[CrossRef]

2003 (2)

S. K. Turitsyn, E. G. Shapiro, S. B. Medvedev, M. P. Fedoruk, and V. K. Mezentsev, “Physics and mathematics of dispersion-managed optical solitons,” C. R. Phys. Acad. Sci./Éd. Sci. méd. 4, 145-161 (2003).

O. Okhotnikov, L. Gomes, N. Xiang, T. Jouhti, and A. Grudinin, “Mode-locked ytterbium fiber laser tunable in the 980-1070-nm spectral range,” Opt. Lett. 28, 1522-1524 (2003).
[CrossRef] [PubMed]

1998 (1)

E. L. Delpon, J. L. Oudar, N. Bouché, R. Raj, A. Shen, N. Stelmakh, and J. M. Lourtioz, “Ultrafast excitonic saturable absorption in ion-implanted InGaAs/InAIAs multiple quantum wells,” Appl. Phys. Lett. 72, 759-761 (1998).
[CrossRef]

1997 (2)

M. J. Lederer, B. Luther-Davies, H. H. Tan, and C. Jagadish, “GaAs based antiresonant Fabry-Perot saturable absorber fabricated by metal organic vapor phase epitaxy and ion implantation,” Appl. Phys. Lett. 70, 3428-3430 (1997).
[CrossRef]

I. D. Jung, F. X. Kärtner, N. Matuschek, D. H. Sutter, F. Morier-Genoud, G. Zhang, U. Keller, V. Scheuer, M. Tilsch, and T. Tschudi, “Self-starting 6.5-fs pulses from a Ti:sapphire laser,” Opt. Lett. 22, 1009-1011 (1997).
[CrossRef] [PubMed]

1996 (1)

1995 (2)

L. R. Brovelli, U. Keller, and T. H. Chiu, “Design and operation of antiresonant Fabry-Perot saturable semiconductor absorbers for mode-locked solid-state lasers,” J. Opt. Soc. Am. B 12, 311-322 (1995).
[CrossRef]

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31, 591-598 (1995).
[CrossRef]

1994 (1)

K. Tamura, L. E. Nelson, H. A. Haus and E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” Appl. Phys. Lett. 64, 149-151 (1994).
[CrossRef]

1993 (1)

1992 (2)

T. Brabec, C. Spielmann, P. F. Curley, and F. Krausz, “Kerr lens mode locking,” Opt. Lett. 17, 1292-1294 (1992).
[CrossRef] [PubMed]

S. M. J. Kelley, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28, 806-807 (1992).
[CrossRef]

1991 (2)

V. S. Grigoryan and T. S. Muradyan, “Evolution of light pulses into autosolitons in nonlinear amplifying media,” J. Opt. Soc. Am. B 8, 1757-1765 (1991).
[CrossRef]

S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, G. A. Mourou, F. W. Smith, and A. R. Calawa, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 59, 3276-3278 (1991).
[CrossRef]

1985 (1)

1975 (1)

H. Haus, “Theory of mode locking with a fast saturable absorber,” J. Appl. Phys. 46, 3049-3058 (1975).
[CrossRef]

Bouché, N.

E. L. Delpon, J. L. Oudar, N. Bouché, R. Raj, A. Shen, N. Stelmakh, and J. M. Lourtioz, “Ultrafast excitonic saturable absorption in ion-implanted InGaAs/InAIAs multiple quantum wells,” Appl. Phys. Lett. 72, 759-761 (1998).
[CrossRef]

Brabec, T.

Brovelli, L. R.

Calawa, A. R.

S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, G. A. Mourou, F. W. Smith, and A. R. Calawa, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 59, 3276-3278 (1991).
[CrossRef]

Chiu, T. H.

Curley, P. F.

Delpon, E. L.

E. L. Delpon, J. L. Oudar, N. Bouché, R. Raj, A. Shen, N. Stelmakh, and J. M. Lourtioz, “Ultrafast excitonic saturable absorption in ion-implanted InGaAs/InAIAs multiple quantum wells,” Appl. Phys. Lett. 72, 759-761 (1998).
[CrossRef]

Elliot, J.

Fedoruk, M. P.

S. K. Turitsyn, E. G. Shapiro, S. B. Medvedev, M. P. Fedoruk, and V. K. Mezentsev, “Physics and mathematics of dispersion-managed optical solitons,” C. R. Phys. Acad. Sci./Éd. Sci. méd. 4, 145-161 (2003).

Fermann, M. E.

Frankel, M. Y.

S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, G. A. Mourou, F. W. Smith, and A. R. Calawa, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 59, 3276-3278 (1991).
[CrossRef]

Gomes, L.

Grigoryan, V. S.

Grudinin, A.

Grudinin, A. B.

M. Rusu, S. Karirinne, M. Guina, A. B. Grudinin, and O. G. Okhotnikov, IEEE Photon. Technol. Lett. 16, 1029-1031 (2004).
[CrossRef]

Guina, M.

M. Rusu, S. Karirinne, M. Guina, A. B. Grudinin, and O. G. Okhotnikov, IEEE Photon. Technol. Lett. 16, 1029-1031 (2004).
[CrossRef]

Gupta, S.

S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, G. A. Mourou, F. W. Smith, and A. R. Calawa, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 59, 3276-3278 (1991).
[CrossRef]

Haus, H.

H. Haus, “Theory of mode locking with a fast saturable absorber,” J. Appl. Phys. 46, 3049-3058 (1975).
[CrossRef]

Haus, H. A.

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31, 591-598 (1995).
[CrossRef]

K. Tamura, L. E. Nelson, H. A. Haus and E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” Appl. Phys. Lett. 64, 149-151 (1994).
[CrossRef]

H. A. Haus and Y. Silberberg (Bell), “Theory of mode locking of a laser diode with a multiple-quantum-well structure,” J. Opt. Soc. Am. B 2, 1237-1243 (1985).
[CrossRef]

Herda, R.

R. Herda, O. G. Okhotnikov, E. U. Rafailov, and A. Starodumov, “Semiconductor quantum-dot saturable mode-locked fiber laser,” IEEE Photon. Technol. Lett. 18, 157-159 (2006).
[CrossRef]

R. Herda and O. G. Okhotnikov, “Effect of amplified spontaneous emission and absorber mirror recovery time on the dynamics of mode-locked fiber lasers,” Appl. Phys. Lett. 86, 011113 (2005).
[CrossRef]

R. Herda and O. G. Okhotnikov, “Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror,” IEEE J. Quantum Electron. 40, 893-899 (2004).
[CrossRef]

Ippen, E. P.

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31, 591-598 (1995).
[CrossRef]

K. Tamura, L. E. Nelson, H. A. Haus and E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” Appl. Phys. Lett. 64, 149-151 (1994).
[CrossRef]

Jagadish, C.

M. J. Lederer, B. Luther-Davies, H. H. Tan, and C. Jagadish, “GaAs based antiresonant Fabry-Perot saturable absorber fabricated by metal organic vapor phase epitaxy and ion implantation,” Appl. Phys. Lett. 70, 3428-3430 (1997).
[CrossRef]

Jouhti, T.

Jung, I. D.

Karirinne, S.

M. Rusu, S. Karirinne, M. Guina, A. B. Grudinin, and O. G. Okhotnikov, IEEE Photon. Technol. Lett. 16, 1029-1031 (2004).
[CrossRef]

Kärtner, F. X.

Keller, U.

Kelley, S. M. J.

S. M. J. Kelley, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28, 806-807 (1992).
[CrossRef]

Krausz, F.

Lagatsky, A. A.

E. U. Rafailov, S. J. White, A. A. Lagatsky, A. Miller, W. Sibbett, D. A. Livshits, A. E. Zhukov, and V. M. Ustinov, “Fast quantum-dot saturable absorber for passive mode-locking of solid-state lasers,” IEEE Photon. Technol. Lett. 16, 2439-2441 (2004).
[CrossRef]

Lederer, M. J.

M. J. Lederer, B. Luther-Davies, H. H. Tan, and C. Jagadish, “GaAs based antiresonant Fabry-Perot saturable absorber fabricated by metal organic vapor phase epitaxy and ion implantation,” Appl. Phys. Lett. 70, 3428-3430 (1997).
[CrossRef]

Limpert, J.

Livshits, D. A.

E. U. Rafailov, S. J. White, A. A. Lagatsky, A. Miller, W. Sibbett, D. A. Livshits, A. E. Zhukov, and V. M. Ustinov, “Fast quantum-dot saturable absorber for passive mode-locking of solid-state lasers,” IEEE Photon. Technol. Lett. 16, 2439-2441 (2004).
[CrossRef]

Lourtioz, J. M.

E. L. Delpon, J. L. Oudar, N. Bouché, R. Raj, A. Shen, N. Stelmakh, and J. M. Lourtioz, “Ultrafast excitonic saturable absorption in ion-implanted InGaAs/InAIAs multiple quantum wells,” Appl. Phys. Lett. 72, 759-761 (1998).
[CrossRef]

Luther-Davies, B.

M. J. Lederer, B. Luther-Davies, H. H. Tan, and C. Jagadish, “GaAs based antiresonant Fabry-Perot saturable absorber fabricated by metal organic vapor phase epitaxy and ion implantation,” Appl. Phys. Lett. 70, 3428-3430 (1997).
[CrossRef]

Matuschek, N.

Medvedev, S. B.

S. K. Turitsyn, E. G. Shapiro, S. B. Medvedev, M. P. Fedoruk, and V. K. Mezentsev, “Physics and mathematics of dispersion-managed optical solitons,” C. R. Phys. Acad. Sci./Éd. Sci. méd. 4, 145-161 (2003).

Mezentsev, V. K.

S. K. Turitsyn, E. G. Shapiro, S. B. Medvedev, M. P. Fedoruk, and V. K. Mezentsev, “Physics and mathematics of dispersion-managed optical solitons,” C. R. Phys. Acad. Sci./Éd. Sci. méd. 4, 145-161 (2003).

Miller, A.

E. U. Rafailov, S. J. White, A. A. Lagatsky, A. Miller, W. Sibbett, D. A. Livshits, A. E. Zhukov, and V. M. Ustinov, “Fast quantum-dot saturable absorber for passive mode-locking of solid-state lasers,” IEEE Photon. Technol. Lett. 16, 2439-2441 (2004).
[CrossRef]

Morier-Genoud, F.

Mourou, G. A.

S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, G. A. Mourou, F. W. Smith, and A. R. Calawa, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 59, 3276-3278 (1991).
[CrossRef]

Muradyan, T. S.

Nelson, L. E.

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31, 591-598 (1995).
[CrossRef]

K. Tamura, L. E. Nelson, H. A. Haus and E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” Appl. Phys. Lett. 64, 149-151 (1994).
[CrossRef]

Okhotnikov, O.

Okhotnikov, O. G.

R. Herda, O. G. Okhotnikov, E. U. Rafailov, and A. Starodumov, “Semiconductor quantum-dot saturable mode-locked fiber laser,” IEEE Photon. Technol. Lett. 18, 157-159 (2006).
[CrossRef]

R. Herda and O. G. Okhotnikov, “Effect of amplified spontaneous emission and absorber mirror recovery time on the dynamics of mode-locked fiber lasers,” Appl. Phys. Lett. 86, 011113 (2005).
[CrossRef]

M. Rusu, S. Karirinne, M. Guina, A. B. Grudinin, and O. G. Okhotnikov, IEEE Photon. Technol. Lett. 16, 1029-1031 (2004).
[CrossRef]

R. Herda and O. G. Okhotnikov, “Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror,” IEEE J. Quantum Electron. 40, 893-899 (2004).
[CrossRef]

Ortaç, B.

Oudar, J. L.

E. L. Delpon, J. L. Oudar, N. Bouché, R. Raj, A. Shen, N. Stelmakh, and J. M. Lourtioz, “Ultrafast excitonic saturable absorption in ion-implanted InGaAs/InAIAs multiple quantum wells,” Appl. Phys. Lett. 72, 759-761 (1998).
[CrossRef]

Pan, N.

Rafailov, E. U.

R. Herda, O. G. Okhotnikov, E. U. Rafailov, and A. Starodumov, “Semiconductor quantum-dot saturable mode-locked fiber laser,” IEEE Photon. Technol. Lett. 18, 157-159 (2006).
[CrossRef]

E. U. Rafailov, S. J. White, A. A. Lagatsky, A. Miller, W. Sibbett, D. A. Livshits, A. E. Zhukov, and V. M. Ustinov, “Fast quantum-dot saturable absorber for passive mode-locking of solid-state lasers,” IEEE Photon. Technol. Lett. 16, 2439-2441 (2004).
[CrossRef]

Raj, R.

E. L. Delpon, J. L. Oudar, N. Bouché, R. Raj, A. Shen, N. Stelmakh, and J. M. Lourtioz, “Ultrafast excitonic saturable absorption in ion-implanted InGaAs/InAIAs multiple quantum wells,” Appl. Phys. Lett. 72, 759-761 (1998).
[CrossRef]

Rusu, M.

M. Rusu, S. Karirinne, M. Guina, A. B. Grudinin, and O. G. Okhotnikov, IEEE Photon. Technol. Lett. 16, 1029-1031 (2004).
[CrossRef]

Scheuer, V.

Schreiber, T.

Shapiro, E. G.

S. K. Turitsyn, E. G. Shapiro, S. B. Medvedev, M. P. Fedoruk, and V. K. Mezentsev, “Physics and mathematics of dispersion-managed optical solitons,” C. R. Phys. Acad. Sci./Éd. Sci. méd. 4, 145-161 (2003).

Sharp, R. C.

Shen, A.

E. L. Delpon, J. L. Oudar, N. Bouché, R. Raj, A. Shen, N. Stelmakh, and J. M. Lourtioz, “Ultrafast excitonic saturable absorption in ion-implanted InGaAs/InAIAs multiple quantum wells,” Appl. Phys. Lett. 72, 759-761 (1998).
[CrossRef]

Sibbett, W.

E. U. Rafailov, S. J. White, A. A. Lagatsky, A. Miller, W. Sibbett, D. A. Livshits, A. E. Zhukov, and V. M. Ustinov, “Fast quantum-dot saturable absorber for passive mode-locking of solid-state lasers,” IEEE Photon. Technol. Lett. 16, 2439-2441 (2004).
[CrossRef]

Silberberg (Bell), Y.

Smith, F. W.

S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, G. A. Mourou, F. W. Smith, and A. R. Calawa, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 59, 3276-3278 (1991).
[CrossRef]

Spielmann, C.

Spock, D. E.

Starodumov, A.

R. Herda, O. G. Okhotnikov, E. U. Rafailov, and A. Starodumov, “Semiconductor quantum-dot saturable mode-locked fiber laser,” IEEE Photon. Technol. Lett. 18, 157-159 (2006).
[CrossRef]

Stelmakh, N.

E. L. Delpon, J. L. Oudar, N. Bouché, R. Raj, A. Shen, N. Stelmakh, and J. M. Lourtioz, “Ultrafast excitonic saturable absorption in ion-implanted InGaAs/InAIAs multiple quantum wells,” Appl. Phys. Lett. 72, 759-761 (1998).
[CrossRef]

Sutter, D. H.

Tamura, K.

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31, 591-598 (1995).
[CrossRef]

K. Tamura, L. E. Nelson, H. A. Haus and E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” Appl. Phys. Lett. 64, 149-151 (1994).
[CrossRef]

Tan, H. H.

M. J. Lederer, B. Luther-Davies, H. H. Tan, and C. Jagadish, “GaAs based antiresonant Fabry-Perot saturable absorber fabricated by metal organic vapor phase epitaxy and ion implantation,” Appl. Phys. Lett. 70, 3428-3430 (1997).
[CrossRef]

Tilsch, M.

Tschudi, T.

Tünnermann, A.

Turitsyn, S. K.

S. K. Turitsyn, E. G. Shapiro, S. B. Medvedev, M. P. Fedoruk, and V. K. Mezentsev, “Physics and mathematics of dispersion-managed optical solitons,” C. R. Phys. Acad. Sci./Éd. Sci. méd. 4, 145-161 (2003).

Ustinov, V. M.

E. U. Rafailov, S. J. White, A. A. Lagatsky, A. Miller, W. Sibbett, D. A. Livshits, A. E. Zhukov, and V. M. Ustinov, “Fast quantum-dot saturable absorber for passive mode-locking of solid-state lasers,” IEEE Photon. Technol. Lett. 16, 2439-2441 (2004).
[CrossRef]

Valdmanis, J. A.

S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, G. A. Mourou, F. W. Smith, and A. R. Calawa, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 59, 3276-3278 (1991).
[CrossRef]

Whitaker, J. F.

S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, G. A. Mourou, F. W. Smith, and A. R. Calawa, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 59, 3276-3278 (1991).
[CrossRef]

White, S. J.

E. U. Rafailov, S. J. White, A. A. Lagatsky, A. Miller, W. Sibbett, D. A. Livshits, A. E. Zhukov, and V. M. Ustinov, “Fast quantum-dot saturable absorber for passive mode-locking of solid-state lasers,” IEEE Photon. Technol. Lett. 16, 2439-2441 (2004).
[CrossRef]

Xiang, N.

Zhang, G.

Zhukov, A. E.

E. U. Rafailov, S. J. White, A. A. Lagatsky, A. Miller, W. Sibbett, D. A. Livshits, A. E. Zhukov, and V. M. Ustinov, “Fast quantum-dot saturable absorber for passive mode-locking of solid-state lasers,” IEEE Photon. Technol. Lett. 16, 2439-2441 (2004).
[CrossRef]

Appl. Phys. Lett. (5)

R. Herda and O. G. Okhotnikov, “Effect of amplified spontaneous emission and absorber mirror recovery time on the dynamics of mode-locked fiber lasers,” Appl. Phys. Lett. 86, 011113 (2005).
[CrossRef]

S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, G. A. Mourou, F. W. Smith, and A. R. Calawa, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 59, 3276-3278 (1991).
[CrossRef]

E. L. Delpon, J. L. Oudar, N. Bouché, R. Raj, A. Shen, N. Stelmakh, and J. M. Lourtioz, “Ultrafast excitonic saturable absorption in ion-implanted InGaAs/InAIAs multiple quantum wells,” Appl. Phys. Lett. 72, 759-761 (1998).
[CrossRef]

M. J. Lederer, B. Luther-Davies, H. H. Tan, and C. Jagadish, “GaAs based antiresonant Fabry-Perot saturable absorber fabricated by metal organic vapor phase epitaxy and ion implantation,” Appl. Phys. Lett. 70, 3428-3430 (1997).
[CrossRef]

K. Tamura, L. E. Nelson, H. A. Haus and E. P. Ippen, “Soliton versus nonsoliton operation of fiber ring lasers,” Appl. Phys. Lett. 64, 149-151 (1994).
[CrossRef]

C. R. Phys. Acad. Sci./Éd. Sci. méd. (1)

S. K. Turitsyn, E. G. Shapiro, S. B. Medvedev, M. P. Fedoruk, and V. K. Mezentsev, “Physics and mathematics of dispersion-managed optical solitons,” C. R. Phys. Acad. Sci./Éd. Sci. méd. 4, 145-161 (2003).

Electron. Lett. (1)

S. M. J. Kelley, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28, 806-807 (1992).
[CrossRef]

IEEE J. Quantum Electron. (2)

H. A. Haus, K. Tamura, L. E. Nelson, and E. P. Ippen, “Stretched-pulse additive pulse mode-locking in fiber ring lasers: theory and experiment,” IEEE J. Quantum Electron. 31, 591-598 (1995).
[CrossRef]

R. Herda and O. G. Okhotnikov, “Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror,” IEEE J. Quantum Electron. 40, 893-899 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

R. Herda, O. G. Okhotnikov, E. U. Rafailov, and A. Starodumov, “Semiconductor quantum-dot saturable mode-locked fiber laser,” IEEE Photon. Technol. Lett. 18, 157-159 (2006).
[CrossRef]

M. Rusu, S. Karirinne, M. Guina, A. B. Grudinin, and O. G. Okhotnikov, IEEE Photon. Technol. Lett. 16, 1029-1031 (2004).
[CrossRef]

E. U. Rafailov, S. J. White, A. A. Lagatsky, A. Miller, W. Sibbett, D. A. Livshits, A. E. Zhukov, and V. M. Ustinov, “Fast quantum-dot saturable absorber for passive mode-locking of solid-state lasers,” IEEE Photon. Technol. Lett. 16, 2439-2441 (2004).
[CrossRef]

J. Appl. Phys. (1)

H. Haus, “Theory of mode locking with a fast saturable absorber,” J. Appl. Phys. 46, 3049-3058 (1975).
[CrossRef]

J. Opt. Soc. Am. B (3)

Opt. Express (1)

Opt. Lett. (5)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Setup of a mode-locked fiber laser.

Fig. 2
Fig. 2

Pulse stability zones bounded by red curve—single-pulse regimes bounded by black curves—two and three pulse regimes. Pink and gray zones are explained in the text.

Fig. 3
Fig. 3

Pulse stability zones bounded by red curve—single-pulse regimes bounded by black curve—multipulse (more than two) regimes. Pink and gray zones are explained in the text.

Fig. 4
Fig. 4

Phase portrait of a pulse in the plane (chirp versus pulse width) g 0 = 5.5 dB , β 2 = 0.046 ps 2 , β 3 = 5 10 4 ps 3 , q 0 = 0.3 , E sat = 0.5 pJ , and τ sat = 10 ps .

Fig. 5
Fig. 5

Pulse waveform and spectral power; parameters as in Fig. 4.

Fig. 6
Fig. 6

Illustration of the mode-locking dynamics and asymptotic pulse generation; parameters as in Fig. 4.

Fig. 7
Fig. 7

Evolution of the typical single-pulse regime during one round trip time. Here all parameters are as for the case shown in Fig. 4.

Fig. 8
Fig. 8

Slow evolution typical single-pulse regime; parameters as in Fig. 4.

Fig. 9
Fig. 9

Contour plot of pulse width in the plane cumulative dispersion-gain.

Fig. 10
Fig. 10

Contour plot of pulse chirp in the plane cumulative dispersion-gain.

Fig. 11
Fig. 11

Contour plot of output peak power in the plane cumulative dispersion-gain.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

A z = i β 2 2 2 A τ 2 + β 3 6 3 A τ 3 + i γ A 2 A + g A .
g ( P ave ) = g 0 1 + P ave P sat , G ,
d q ( τ ) d τ = q ( τ ) q 0 τ A q ( τ ) P ( z * , τ ) τ A P sat ,
P out ( z * , τ ) = [ 1 q ( t , P in ( z * , τ ) ) ] P in ( z * , τ ) = T ( τ ) P in ( z * , τ ) .

Metrics