Abstract

We report a model of microstructured nonzero dispersion shifted fiber (NZ-DSF) suitable for use in a future wavelength division multiplexing (WDM) system with more enhanced performance characteristics than conventional NZ-DSFs. A microstructured fiber has been chosen because of the flexibility in tailoring its dispersion properties, which helps to attain various desired configurations unachievable in conventional fibers. The refractive index profile has been modeled semi-analytically as well as numerically. The single mode fiber design is optimized for low dispersion, ultralow dispersion slope, and low confinement loss at 1550nm. A large mode area minimizes nonlinearities and facilitates its operation over the entire S, C, and L bands. The optimized dispersion slope has the lowest value among the reported results for conventional NZ-DSFs.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Kato, M. Hirano, A. Tada, K. Fukuada, T. Fujii, T. Ooishi, Y. Yokoyama, M. Yoshida, and M. Onishi, “Dispersion flattened transmission line consisting of wide band non-zero dispersion shifted fiber and dispersion compensating fiber module,” Opt. Fiber Technol. 8, 231-239 (2002).
    [CrossRef]
  2. R. K. Varshney, A. K. Ghatak, I. C. Goyal, and C. S. Antony, “Design of a flat field fiber with very small dispersion slope,” Opt. Fiber Technol. 9, 189-198 (2003).
    [CrossRef]
  3. N. Kumano, K. Mukasa, M. Sakano, and H. Moridaira, “Development of a non-zero dispersion-shifted fiber with ultra-low dispersion slope,” Furukawa Rev. 22, 1-6 (2002).
  4. K. Ohsono, T. Nishio, Y. Bing, T. Shirosawa, and T. Sukegawa, “High performance optical fibers for next generation transmission systems,” Hitachi Cable Rev. 22, 1-5 (2003).
  5. L. Gruner-Nielsen, M. Wandel, P. Kristensen, C. Jorgensen, L. V. Jorgensen, B. Edvold, B. Palsdottir, and D. Jakobsen, “Dispersion-compensating fibers,” J. Lightwave Technol. 23, 3566-3579 (2005).
    [CrossRef]
  6. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547-1549 (1996).
    [CrossRef] [PubMed]
  7. F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, and D. Felbacq, Foundations of Photonic Crystal Fibres (Imperial College Press, 2005).
    [CrossRef]
  8. J. C. Knight, “Photonic crystal fibers and fiber lasers,” J. Opt. Soc. Am. B 24, 1661-1668 (2007).
    [CrossRef]
  9. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961-963 (1997).
    [CrossRef] [PubMed]
  10. W. H. Reeves, J. C. Knight, P. St. J. Russell, and P. J. Roberts, “Demonstration of ultra-flattened dispersion in photonic crystal fibers,” Opt. Express 10, 609-613 (2002).
    [PubMed]
  11. G. Renversez, B. Kuhlmey, and R. McPhedran, “Dispersion management with microstructured optical fibers: ultraflattened chromatic dispersion with low losses,” Opt. Lett. 28, 989-991 (2003).
    [CrossRef] [PubMed]
  12. K. Saitoh, M. Koshiba, T. Hasegawa, and E. Sasaoka, “Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion,” Opt. Express 11, 843-852 (2003).
    [CrossRef] [PubMed]
  13. K. P. Hansen, “Dispersion flattened hybrid-core nonlinear photonic crystal fiber,” Opt. Express 11, 1503-1509 (2003).
    [CrossRef] [PubMed]
  14. F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, “Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers,” IEEE Photon. Technol. Lett. 16, 1065-1067 (2004).
    [CrossRef]
  15. Y. L. Hoo, W. Jin, J. Ju, H. L. Ho, and D. N. Wang, “Design of photonic crystal fibers with ultra-low, ultra-flattened chromatic dispersion,” Opt. Commun. 242, 327-332 (2004).
    [CrossRef]
  16. T. Wu and C. Chao, “A novel ultra-flattened dispersion photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 67-69 (2005).
    [CrossRef]
  17. F. Poletti, V. Finazzi, T. M. Monro, N. G. R. Broderick, V. Tse, and D. J. Richardson, “Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers,” Opt. Express 13, 3728-3736 (2005).
    [CrossRef] [PubMed]
  18. T. Matsui, J. Zhou, K. Nakajima, and I. Sankawa, “Dispersion-flattened photonic crystal fiber with large effective area and low confinement loss,” J. Lightwave Technol. 23, 4178-4183 (2005).
    [CrossRef]
  19. H. Ademgil and S. Haxha, “Highly birefringent photonic crystal fibers with ultra-low chromatic dispersion and low confinement losses,” J. Lightwave Technol. 26, 441-448 (2008).
    [CrossRef]
  20. P. J. Roberts, B. J. Mangan, H. Sabert, F. Couny, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Control of dispersion in photonic crystal fibers,” J. Opt. Fiber. Commun. Rep. 2, 435-461 (2005).
    [CrossRef]
  21. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. Martijn de Sterke, and L. C. Botten, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322-2330 (2002).
    [CrossRef]
  22. M. Koshiba, “Full-vector analysis of photonic crystal fibers using the finite element method,” IEICE Trans. Electron. E85-C, 881-888 (2002).
  23. M. Midrio, M. P. Singh, and C. G. Someda, “The space filling mode of holey fibers: an analytical vectorial solution,” J. Lightwave Technol. 18, 1031-1037 (2000).
    [CrossRef]
  24. Y. Li, C. Wang, and M. Hu, “A fully vectorial effective index method for photonic crystal fibers: application to dispersion calculation.” Opt. Commun. 238, 29-33 (2004).
    [CrossRef]
  25. Y. Li, C. Wang, Y. Chen, M. Hu, B. Liu, and L. Chai, “Solution of the fundamental space-filling mode of photonic crystal fibers: numerical method versus analytical approaches,” Appl. Phys. B 85, 597-601 (2006).
    [CrossRef]
  26. Y. Li, C. Wang, Z. Wang, M. Hu, and L. Chai, “Analytical solution of the fundamental space filling mode of photonic crystal fibers,” Opt. Laser Technol. 39, 322-326 (2007).
    [CrossRef]
  27. R. K. Sinha and A. D. Varshney, “Dispersion properties of photonic crystal fiber: comparison by scalar and fully vectorial effective index methods,” Opt. Quantum Electron. 37, 711-722 (2005).
    [CrossRef]
  28. A. Ferrando, E. Silvestre, P. Andres, J. J. Miret, and M. V. Andres, “Designing the properties of dispersion-flattened photonic crystal fibers,” Opt. Express 9, 687-697 (2001).
    [CrossRef] [PubMed]
  29. A. Ferrando, E. Silvestre, J. J. Miret, and P. Andres, “Nearly zero ultraflattened dispersion in photonic crystal fibers,” Opt. Lett. 25, 790-792 (2000).
    [CrossRef]
  30. M. Koshiba and K. Saitoh, “Applicability of classical optical fiber theories to holey fibers,” Opt. Lett. 29, 1739-1741 (2004).
    [CrossRef] [PubMed]
  31. K. Saitoh and M. Koshiba, “Emperical relations for simple design of photonic crystal fibers,” Opt. Express 13, 267-274 (2005).
    [CrossRef] [PubMed]
  32. K. Saitoh and M. Koshiba, “Numerical modeling of photonic crystal fibers,” J. Lightwave Technol. 23, 3580-3590 (2005).
    [CrossRef]
  33. B. T. Kuhlmey, R. C. McPhedran, and C. Martijn de Sterke, “Modal cut-off in microstructured optical fibers,” Opt. Lett. 27, 1684-1686 (2002).
    [CrossRef]
  34. G. Renversez, F. Bordas, and B. T. Kuhlmey, “Second mode transition in microstructured optical fibers: determination of the critical geometrical parameter and study of the matrix refractive index and effects of cladding size,” Opt. Lett. 30, 1264-1266 (2005).
    [CrossRef] [PubMed]
  35. T. P. White, R. C. McPhedran, C. M. de Sterke, L. C. Botten, and M. J. Steel, “Confinement losses in microstructured optical fibers,” Opt. Lett. 26, 1660-1662 (2001).
    [CrossRef]
  36. D. Ferrarini, L. Vincetti, M. Zoboli, A. Cucinotta, and S. Selleri, “Leakage properties of photonic crystal fibers,” Opt. Express 10, 1314-1319 (2002).
    [PubMed]
  37. A. K. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge U. Press, 1999).

2008 (1)

2007 (2)

J. C. Knight, “Photonic crystal fibers and fiber lasers,” J. Opt. Soc. Am. B 24, 1661-1668 (2007).
[CrossRef]

Y. Li, C. Wang, Z. Wang, M. Hu, and L. Chai, “Analytical solution of the fundamental space filling mode of photonic crystal fibers,” Opt. Laser Technol. 39, 322-326 (2007).
[CrossRef]

2006 (1)

Y. Li, C. Wang, Y. Chen, M. Hu, B. Liu, and L. Chai, “Solution of the fundamental space-filling mode of photonic crystal fibers: numerical method versus analytical approaches,” Appl. Phys. B 85, 597-601 (2006).
[CrossRef]

2005 (9)

R. K. Sinha and A. D. Varshney, “Dispersion properties of photonic crystal fiber: comparison by scalar and fully vectorial effective index methods,” Opt. Quantum Electron. 37, 711-722 (2005).
[CrossRef]

T. Wu and C. Chao, “A novel ultra-flattened dispersion photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 67-69 (2005).
[CrossRef]

P. J. Roberts, B. J. Mangan, H. Sabert, F. Couny, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Control of dispersion in photonic crystal fibers,” J. Opt. Fiber. Commun. Rep. 2, 435-461 (2005).
[CrossRef]

K. Saitoh and M. Koshiba, “Emperical relations for simple design of photonic crystal fibers,” Opt. Express 13, 267-274 (2005).
[CrossRef] [PubMed]

F. Poletti, V. Finazzi, T. M. Monro, N. G. R. Broderick, V. Tse, and D. J. Richardson, “Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers,” Opt. Express 13, 3728-3736 (2005).
[CrossRef] [PubMed]

G. Renversez, F. Bordas, and B. T. Kuhlmey, “Second mode transition in microstructured optical fibers: determination of the critical geometrical parameter and study of the matrix refractive index and effects of cladding size,” Opt. Lett. 30, 1264-1266 (2005).
[CrossRef] [PubMed]

L. Gruner-Nielsen, M. Wandel, P. Kristensen, C. Jorgensen, L. V. Jorgensen, B. Edvold, B. Palsdottir, and D. Jakobsen, “Dispersion-compensating fibers,” J. Lightwave Technol. 23, 3566-3579 (2005).
[CrossRef]

K. Saitoh and M. Koshiba, “Numerical modeling of photonic crystal fibers,” J. Lightwave Technol. 23, 3580-3590 (2005).
[CrossRef]

T. Matsui, J. Zhou, K. Nakajima, and I. Sankawa, “Dispersion-flattened photonic crystal fiber with large effective area and low confinement loss,” J. Lightwave Technol. 23, 4178-4183 (2005).
[CrossRef]

2004 (4)

M. Koshiba and K. Saitoh, “Applicability of classical optical fiber theories to holey fibers,” Opt. Lett. 29, 1739-1741 (2004).
[CrossRef] [PubMed]

Y. Li, C. Wang, and M. Hu, “A fully vectorial effective index method for photonic crystal fibers: application to dispersion calculation.” Opt. Commun. 238, 29-33 (2004).
[CrossRef]

F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, “Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers,” IEEE Photon. Technol. Lett. 16, 1065-1067 (2004).
[CrossRef]

Y. L. Hoo, W. Jin, J. Ju, H. L. Ho, and D. N. Wang, “Design of photonic crystal fibers with ultra-low, ultra-flattened chromatic dispersion,” Opt. Commun. 242, 327-332 (2004).
[CrossRef]

2003 (5)

2002 (7)

W. H. Reeves, J. C. Knight, P. St. J. Russell, and P. J. Roberts, “Demonstration of ultra-flattened dispersion in photonic crystal fibers,” Opt. Express 10, 609-613 (2002).
[PubMed]

T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. Martijn de Sterke, and L. C. Botten, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322-2330 (2002).
[CrossRef]

B. T. Kuhlmey, R. C. McPhedran, and C. Martijn de Sterke, “Modal cut-off in microstructured optical fibers,” Opt. Lett. 27, 1684-1686 (2002).
[CrossRef]

D. Ferrarini, L. Vincetti, M. Zoboli, A. Cucinotta, and S. Selleri, “Leakage properties of photonic crystal fibers,” Opt. Express 10, 1314-1319 (2002).
[PubMed]

T. Kato, M. Hirano, A. Tada, K. Fukuada, T. Fujii, T. Ooishi, Y. Yokoyama, M. Yoshida, and M. Onishi, “Dispersion flattened transmission line consisting of wide band non-zero dispersion shifted fiber and dispersion compensating fiber module,” Opt. Fiber Technol. 8, 231-239 (2002).
[CrossRef]

N. Kumano, K. Mukasa, M. Sakano, and H. Moridaira, “Development of a non-zero dispersion-shifted fiber with ultra-low dispersion slope,” Furukawa Rev. 22, 1-6 (2002).

M. Koshiba, “Full-vector analysis of photonic crystal fibers using the finite element method,” IEICE Trans. Electron. E85-C, 881-888 (2002).

2001 (2)

2000 (2)

1997 (1)

1996 (1)

Ademgil, H.

Andres, M. V.

Andres, P.

Antony, C. S.

R. K. Varshney, A. K. Ghatak, I. C. Goyal, and C. S. Antony, “Design of a flat field fiber with very small dispersion slope,” Opt. Fiber Technol. 9, 189-198 (2003).
[CrossRef]

Atkin, D. M.

Bing, Y.

K. Ohsono, T. Nishio, Y. Bing, T. Shirosawa, and T. Sukegawa, “High performance optical fibers for next generation transmission systems,” Hitachi Cable Rev. 22, 1-5 (2003).

Birks, T. A.

Bordas, F.

Botten, L. C.

Bouk, A. H.

F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, “Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers,” IEEE Photon. Technol. Lett. 16, 1065-1067 (2004).
[CrossRef]

Broderick, N. G. R.

Chai, L.

Y. Li, C. Wang, Z. Wang, M. Hu, and L. Chai, “Analytical solution of the fundamental space filling mode of photonic crystal fibers,” Opt. Laser Technol. 39, 322-326 (2007).
[CrossRef]

Y. Li, C. Wang, Y. Chen, M. Hu, B. Liu, and L. Chai, “Solution of the fundamental space-filling mode of photonic crystal fibers: numerical method versus analytical approaches,” Appl. Phys. B 85, 597-601 (2006).
[CrossRef]

Chao, C.

T. Wu and C. Chao, “A novel ultra-flattened dispersion photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 67-69 (2005).
[CrossRef]

Chen, Y.

Y. Li, C. Wang, Y. Chen, M. Hu, B. Liu, and L. Chai, “Solution of the fundamental space-filling mode of photonic crystal fibers: numerical method versus analytical approaches,” Appl. Phys. B 85, 597-601 (2006).
[CrossRef]

Couny, F.

P. J. Roberts, B. J. Mangan, H. Sabert, F. Couny, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Control of dispersion in photonic crystal fibers,” J. Opt. Fiber. Commun. Rep. 2, 435-461 (2005).
[CrossRef]

Cucinotta, A.

F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, “Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers,” IEEE Photon. Technol. Lett. 16, 1065-1067 (2004).
[CrossRef]

D. Ferrarini, L. Vincetti, M. Zoboli, A. Cucinotta, and S. Selleri, “Leakage properties of photonic crystal fibers,” Opt. Express 10, 1314-1319 (2002).
[PubMed]

de Sterke, C. M.

de Sterke, C. Martijn

Edvold, B.

Felbacq, D.

F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, and D. Felbacq, Foundations of Photonic Crystal Fibres (Imperial College Press, 2005).
[CrossRef]

Ferrando, A.

Ferrarini, D.

Finazzi, V.

Fujii, T.

T. Kato, M. Hirano, A. Tada, K. Fukuada, T. Fujii, T. Ooishi, Y. Yokoyama, M. Yoshida, and M. Onishi, “Dispersion flattened transmission line consisting of wide band non-zero dispersion shifted fiber and dispersion compensating fiber module,” Opt. Fiber Technol. 8, 231-239 (2002).
[CrossRef]

Fukuada, K.

T. Kato, M. Hirano, A. Tada, K. Fukuada, T. Fujii, T. Ooishi, Y. Yokoyama, M. Yoshida, and M. Onishi, “Dispersion flattened transmission line consisting of wide band non-zero dispersion shifted fiber and dispersion compensating fiber module,” Opt. Fiber Technol. 8, 231-239 (2002).
[CrossRef]

Ghatak, A. K.

R. K. Varshney, A. K. Ghatak, I. C. Goyal, and C. S. Antony, “Design of a flat field fiber with very small dispersion slope,” Opt. Fiber Technol. 9, 189-198 (2003).
[CrossRef]

A. K. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge U. Press, 1999).

Goyal, I. C.

R. K. Varshney, A. K. Ghatak, I. C. Goyal, and C. S. Antony, “Design of a flat field fiber with very small dispersion slope,” Opt. Fiber Technol. 9, 189-198 (2003).
[CrossRef]

Gruner-Nielsen, L.

Guenneau, S.

F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, and D. Felbacq, Foundations of Photonic Crystal Fibres (Imperial College Press, 2005).
[CrossRef]

Hansen, K. P.

Hasegawa, T.

Haxha, S.

Hirano, M.

T. Kato, M. Hirano, A. Tada, K. Fukuada, T. Fujii, T. Ooishi, Y. Yokoyama, M. Yoshida, and M. Onishi, “Dispersion flattened transmission line consisting of wide band non-zero dispersion shifted fiber and dispersion compensating fiber module,” Opt. Fiber Technol. 8, 231-239 (2002).
[CrossRef]

Ho, H. L.

Y. L. Hoo, W. Jin, J. Ju, H. L. Ho, and D. N. Wang, “Design of photonic crystal fibers with ultra-low, ultra-flattened chromatic dispersion,” Opt. Commun. 242, 327-332 (2004).
[CrossRef]

Hoo, Y. L.

Y. L. Hoo, W. Jin, J. Ju, H. L. Ho, and D. N. Wang, “Design of photonic crystal fibers with ultra-low, ultra-flattened chromatic dispersion,” Opt. Commun. 242, 327-332 (2004).
[CrossRef]

Hu, M.

Y. Li, C. Wang, Z. Wang, M. Hu, and L. Chai, “Analytical solution of the fundamental space filling mode of photonic crystal fibers,” Opt. Laser Technol. 39, 322-326 (2007).
[CrossRef]

Y. Li, C. Wang, Y. Chen, M. Hu, B. Liu, and L. Chai, “Solution of the fundamental space-filling mode of photonic crystal fibers: numerical method versus analytical approaches,” Appl. Phys. B 85, 597-601 (2006).
[CrossRef]

Y. Li, C. Wang, and M. Hu, “A fully vectorial effective index method for photonic crystal fibers: application to dispersion calculation.” Opt. Commun. 238, 29-33 (2004).
[CrossRef]

Jakobsen, D.

Jin, W.

Y. L. Hoo, W. Jin, J. Ju, H. L. Ho, and D. N. Wang, “Design of photonic crystal fibers with ultra-low, ultra-flattened chromatic dispersion,” Opt. Commun. 242, 327-332 (2004).
[CrossRef]

Jorgensen, C.

Jorgensen, L. V.

Ju, J.

Y. L. Hoo, W. Jin, J. Ju, H. L. Ho, and D. N. Wang, “Design of photonic crystal fibers with ultra-low, ultra-flattened chromatic dispersion,” Opt. Commun. 242, 327-332 (2004).
[CrossRef]

Kato, T.

T. Kato, M. Hirano, A. Tada, K. Fukuada, T. Fujii, T. Ooishi, Y. Yokoyama, M. Yoshida, and M. Onishi, “Dispersion flattened transmission line consisting of wide band non-zero dispersion shifted fiber and dispersion compensating fiber module,” Opt. Fiber Technol. 8, 231-239 (2002).
[CrossRef]

Knight, J. C.

Koshiba, M.

Kristensen, P.

Kuhlmey, B.

Kuhlmey, B. T.

Kumano, N.

N. Kumano, K. Mukasa, M. Sakano, and H. Moridaira, “Development of a non-zero dispersion-shifted fiber with ultra-low dispersion slope,” Furukawa Rev. 22, 1-6 (2002).

Li, Y.

Y. Li, C. Wang, Z. Wang, M. Hu, and L. Chai, “Analytical solution of the fundamental space filling mode of photonic crystal fibers,” Opt. Laser Technol. 39, 322-326 (2007).
[CrossRef]

Y. Li, C. Wang, Y. Chen, M. Hu, B. Liu, and L. Chai, “Solution of the fundamental space-filling mode of photonic crystal fibers: numerical method versus analytical approaches,” Appl. Phys. B 85, 597-601 (2006).
[CrossRef]

Y. Li, C. Wang, and M. Hu, “A fully vectorial effective index method for photonic crystal fibers: application to dispersion calculation.” Opt. Commun. 238, 29-33 (2004).
[CrossRef]

Liu, B.

Y. Li, C. Wang, Y. Chen, M. Hu, B. Liu, and L. Chai, “Solution of the fundamental space-filling mode of photonic crystal fibers: numerical method versus analytical approaches,” Appl. Phys. B 85, 597-601 (2006).
[CrossRef]

Mangan, B. J.

P. J. Roberts, B. J. Mangan, H. Sabert, F. Couny, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Control of dispersion in photonic crystal fibers,” J. Opt. Fiber. Commun. Rep. 2, 435-461 (2005).
[CrossRef]

Matsui, T.

Maystre, D.

McPhedran, R.

McPhedran, R. C.

Midrio, M.

Miret, J. J.

Monro, T. M.

Moridaira, H.

N. Kumano, K. Mukasa, M. Sakano, and H. Moridaira, “Development of a non-zero dispersion-shifted fiber with ultra-low dispersion slope,” Furukawa Rev. 22, 1-6 (2002).

Mukasa, K.

N. Kumano, K. Mukasa, M. Sakano, and H. Moridaira, “Development of a non-zero dispersion-shifted fiber with ultra-low dispersion slope,” Furukawa Rev. 22, 1-6 (2002).

Nakajima, K.

Nicolet, A.

F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, and D. Felbacq, Foundations of Photonic Crystal Fibres (Imperial College Press, 2005).
[CrossRef]

Nishio, T.

K. Ohsono, T. Nishio, Y. Bing, T. Shirosawa, and T. Sukegawa, “High performance optical fibers for next generation transmission systems,” Hitachi Cable Rev. 22, 1-5 (2003).

Ohsono, K.

K. Ohsono, T. Nishio, Y. Bing, T. Shirosawa, and T. Sukegawa, “High performance optical fibers for next generation transmission systems,” Hitachi Cable Rev. 22, 1-5 (2003).

Onishi, M.

T. Kato, M. Hirano, A. Tada, K. Fukuada, T. Fujii, T. Ooishi, Y. Yokoyama, M. Yoshida, and M. Onishi, “Dispersion flattened transmission line consisting of wide band non-zero dispersion shifted fiber and dispersion compensating fiber module,” Opt. Fiber Technol. 8, 231-239 (2002).
[CrossRef]

Ooishi, T.

T. Kato, M. Hirano, A. Tada, K. Fukuada, T. Fujii, T. Ooishi, Y. Yokoyama, M. Yoshida, and M. Onishi, “Dispersion flattened transmission line consisting of wide band non-zero dispersion shifted fiber and dispersion compensating fiber module,” Opt. Fiber Technol. 8, 231-239 (2002).
[CrossRef]

Palsdottir, B.

Poletti, F.

Poli, F.

F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, “Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers,” IEEE Photon. Technol. Lett. 16, 1065-1067 (2004).
[CrossRef]

Reeves, W. H.

Renversez, G.

Richardson, D. J.

Roberts, P. J.

P. J. Roberts, B. J. Mangan, H. Sabert, F. Couny, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Control of dispersion in photonic crystal fibers,” J. Opt. Fiber. Commun. Rep. 2, 435-461 (2005).
[CrossRef]

W. H. Reeves, J. C. Knight, P. St. J. Russell, and P. J. Roberts, “Demonstration of ultra-flattened dispersion in photonic crystal fibers,” Opt. Express 10, 609-613 (2002).
[PubMed]

Russell, P. St. J.

Sabert, H.

P. J. Roberts, B. J. Mangan, H. Sabert, F. Couny, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Control of dispersion in photonic crystal fibers,” J. Opt. Fiber. Commun. Rep. 2, 435-461 (2005).
[CrossRef]

Saitoh, K.

Sakano, M.

N. Kumano, K. Mukasa, M. Sakano, and H. Moridaira, “Development of a non-zero dispersion-shifted fiber with ultra-low dispersion slope,” Furukawa Rev. 22, 1-6 (2002).

Sankawa, I.

Sasaoka, E.

Selleri, S.

F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, “Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers,” IEEE Photon. Technol. Lett. 16, 1065-1067 (2004).
[CrossRef]

D. Ferrarini, L. Vincetti, M. Zoboli, A. Cucinotta, and S. Selleri, “Leakage properties of photonic crystal fibers,” Opt. Express 10, 1314-1319 (2002).
[PubMed]

Shirosawa, T.

K. Ohsono, T. Nishio, Y. Bing, T. Shirosawa, and T. Sukegawa, “High performance optical fibers for next generation transmission systems,” Hitachi Cable Rev. 22, 1-5 (2003).

Silvestre, E.

Singh, M. P.

Sinha, R. K.

R. K. Sinha and A. D. Varshney, “Dispersion properties of photonic crystal fiber: comparison by scalar and fully vectorial effective index methods,” Opt. Quantum Electron. 37, 711-722 (2005).
[CrossRef]

Someda, C. G.

Steel, M. J.

Sukegawa, T.

K. Ohsono, T. Nishio, Y. Bing, T. Shirosawa, and T. Sukegawa, “High performance optical fibers for next generation transmission systems,” Hitachi Cable Rev. 22, 1-5 (2003).

Tada, A.

T. Kato, M. Hirano, A. Tada, K. Fukuada, T. Fujii, T. Ooishi, Y. Yokoyama, M. Yoshida, and M. Onishi, “Dispersion flattened transmission line consisting of wide band non-zero dispersion shifted fiber and dispersion compensating fiber module,” Opt. Fiber Technol. 8, 231-239 (2002).
[CrossRef]

Thyagarajan, K.

A. K. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge U. Press, 1999).

Tse, V.

Varshney, A. D.

R. K. Sinha and A. D. Varshney, “Dispersion properties of photonic crystal fiber: comparison by scalar and fully vectorial effective index methods,” Opt. Quantum Electron. 37, 711-722 (2005).
[CrossRef]

Varshney, R. K.

R. K. Varshney, A. K. Ghatak, I. C. Goyal, and C. S. Antony, “Design of a flat field fiber with very small dispersion slope,” Opt. Fiber Technol. 9, 189-198 (2003).
[CrossRef]

Vincetti, L.

Wandel, M.

Wang, C.

Y. Li, C. Wang, Z. Wang, M. Hu, and L. Chai, “Analytical solution of the fundamental space filling mode of photonic crystal fibers,” Opt. Laser Technol. 39, 322-326 (2007).
[CrossRef]

Y. Li, C. Wang, Y. Chen, M. Hu, B. Liu, and L. Chai, “Solution of the fundamental space-filling mode of photonic crystal fibers: numerical method versus analytical approaches,” Appl. Phys. B 85, 597-601 (2006).
[CrossRef]

Y. Li, C. Wang, and M. Hu, “A fully vectorial effective index method for photonic crystal fibers: application to dispersion calculation.” Opt. Commun. 238, 29-33 (2004).
[CrossRef]

Wang, D. N.

Y. L. Hoo, W. Jin, J. Ju, H. L. Ho, and D. N. Wang, “Design of photonic crystal fibers with ultra-low, ultra-flattened chromatic dispersion,” Opt. Commun. 242, 327-332 (2004).
[CrossRef]

Wang, Z.

Y. Li, C. Wang, Z. Wang, M. Hu, and L. Chai, “Analytical solution of the fundamental space filling mode of photonic crystal fibers,” Opt. Laser Technol. 39, 322-326 (2007).
[CrossRef]

White, T. P.

Wu, T.

T. Wu and C. Chao, “A novel ultra-flattened dispersion photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 67-69 (2005).
[CrossRef]

Yokoyama, Y.

T. Kato, M. Hirano, A. Tada, K. Fukuada, T. Fujii, T. Ooishi, Y. Yokoyama, M. Yoshida, and M. Onishi, “Dispersion flattened transmission line consisting of wide band non-zero dispersion shifted fiber and dispersion compensating fiber module,” Opt. Fiber Technol. 8, 231-239 (2002).
[CrossRef]

Yoshida, M.

T. Kato, M. Hirano, A. Tada, K. Fukuada, T. Fujii, T. Ooishi, Y. Yokoyama, M. Yoshida, and M. Onishi, “Dispersion flattened transmission line consisting of wide band non-zero dispersion shifted fiber and dispersion compensating fiber module,” Opt. Fiber Technol. 8, 231-239 (2002).
[CrossRef]

Zhou, J.

Zoboli, M.

Zolla, F.

F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, and D. Felbacq, Foundations of Photonic Crystal Fibres (Imperial College Press, 2005).
[CrossRef]

Appl. Phys. B (1)

Y. Li, C. Wang, Y. Chen, M. Hu, B. Liu, and L. Chai, “Solution of the fundamental space-filling mode of photonic crystal fibers: numerical method versus analytical approaches,” Appl. Phys. B 85, 597-601 (2006).
[CrossRef]

Furukawa Rev. (1)

N. Kumano, K. Mukasa, M. Sakano, and H. Moridaira, “Development of a non-zero dispersion-shifted fiber with ultra-low dispersion slope,” Furukawa Rev. 22, 1-6 (2002).

Hitachi Cable Rev. (1)

K. Ohsono, T. Nishio, Y. Bing, T. Shirosawa, and T. Sukegawa, “High performance optical fibers for next generation transmission systems,” Hitachi Cable Rev. 22, 1-5 (2003).

IEEE Photon. Technol. Lett. (2)

F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, “Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers,” IEEE Photon. Technol. Lett. 16, 1065-1067 (2004).
[CrossRef]

T. Wu and C. Chao, “A novel ultra-flattened dispersion photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 67-69 (2005).
[CrossRef]

IEICE Trans. Electron. (1)

M. Koshiba, “Full-vector analysis of photonic crystal fibers using the finite element method,” IEICE Trans. Electron. E85-C, 881-888 (2002).

J. Lightwave Technol. (5)

J. Opt. Fiber. Commun. Rep. (1)

P. J. Roberts, B. J. Mangan, H. Sabert, F. Couny, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Control of dispersion in photonic crystal fibers,” J. Opt. Fiber. Commun. Rep. 2, 435-461 (2005).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (2)

Y. Li, C. Wang, and M. Hu, “A fully vectorial effective index method for photonic crystal fibers: application to dispersion calculation.” Opt. Commun. 238, 29-33 (2004).
[CrossRef]

Y. L. Hoo, W. Jin, J. Ju, H. L. Ho, and D. N. Wang, “Design of photonic crystal fibers with ultra-low, ultra-flattened chromatic dispersion,” Opt. Commun. 242, 327-332 (2004).
[CrossRef]

Opt. Express (7)

Opt. Fiber Technol. (2)

T. Kato, M. Hirano, A. Tada, K. Fukuada, T. Fujii, T. Ooishi, Y. Yokoyama, M. Yoshida, and M. Onishi, “Dispersion flattened transmission line consisting of wide band non-zero dispersion shifted fiber and dispersion compensating fiber module,” Opt. Fiber Technol. 8, 231-239 (2002).
[CrossRef]

R. K. Varshney, A. K. Ghatak, I. C. Goyal, and C. S. Antony, “Design of a flat field fiber with very small dispersion slope,” Opt. Fiber Technol. 9, 189-198 (2003).
[CrossRef]

Opt. Laser Technol. (1)

Y. Li, C. Wang, Z. Wang, M. Hu, and L. Chai, “Analytical solution of the fundamental space filling mode of photonic crystal fibers,” Opt. Laser Technol. 39, 322-326 (2007).
[CrossRef]

Opt. Lett. (8)

A. Ferrando, E. Silvestre, J. J. Miret, and P. Andres, “Nearly zero ultraflattened dispersion in photonic crystal fibers,” Opt. Lett. 25, 790-792 (2000).
[CrossRef]

T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961-963 (1997).
[CrossRef] [PubMed]

J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, 1547-1549 (1996).
[CrossRef] [PubMed]

T. P. White, R. C. McPhedran, C. M. de Sterke, L. C. Botten, and M. J. Steel, “Confinement losses in microstructured optical fibers,” Opt. Lett. 26, 1660-1662 (2001).
[CrossRef]

G. Renversez, F. Bordas, and B. T. Kuhlmey, “Second mode transition in microstructured optical fibers: determination of the critical geometrical parameter and study of the matrix refractive index and effects of cladding size,” Opt. Lett. 30, 1264-1266 (2005).
[CrossRef] [PubMed]

M. Koshiba and K. Saitoh, “Applicability of classical optical fiber theories to holey fibers,” Opt. Lett. 29, 1739-1741 (2004).
[CrossRef] [PubMed]

G. Renversez, B. Kuhlmey, and R. McPhedran, “Dispersion management with microstructured optical fibers: ultraflattened chromatic dispersion with low losses,” Opt. Lett. 28, 989-991 (2003).
[CrossRef] [PubMed]

B. T. Kuhlmey, R. C. McPhedran, and C. Martijn de Sterke, “Modal cut-off in microstructured optical fibers,” Opt. Lett. 27, 1684-1686 (2002).
[CrossRef]

Opt. Quantum Electron. (1)

R. K. Sinha and A. D. Varshney, “Dispersion properties of photonic crystal fiber: comparison by scalar and fully vectorial effective index methods,” Opt. Quantum Electron. 37, 711-722 (2005).
[CrossRef]

Other (2)

A. K. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge U. Press, 1999).

F. Zolla, G. Renversez, A. Nicolet, B. Kuhlmey, S. Guenneau, and D. Felbacq, Foundations of Photonic Crystal Fibres (Imperial College Press, 2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Two-dimensional fiber structure with radially increasing air holes showing the annular rings. The refractive index profile for the equivalent step index model is also shown, where the index of regions 1, 2, 3, 4, 5, and 6 are n s , n FSM ( 1 ) , n FSM ( 2 ) , n FSM ( 3 ) , n FSM ( 4 ) , and n FSM ( 5 ) , respectively. (The figure is not drawn to scale.)

Fig. 2
Fig. 2

Variation of λ 0 and A eff with Δ d keeping Λ and d 1 fixed.

Fig. 3
Fig. 3

Variation of λ 0 and A eff with Λ keeping Δ d and d 1 fixed.

Fig. 4
Fig. 4

Variation of λ 0 and A eff with d 1 keeping Δ d and Λ fixed.

Fig. 5
Fig. 5

Plot of relative intensity with Δ d at constant Λ and d 1 .

Fig. 6
Fig. 6

Plot of n eff with the wavelength using SEIM and FEM.

Fig. 7
Fig. 7

Dispersion characteristics (obtained by FEM) of the proposed MNZ-DSF showing the optimized results.

Fig. 8
Fig. 8

Variation of the V-parameter with Λ λ for different Δ d .

Fig. 9
Fig. 9

Plot of Im ( n eff ) as a function of the normalized wavelength for the optimized MNZ-DSF design.

Fig. 10
Fig. 10

Variation of the Q-parameter with λ Λ for the proposed MNZ-DSF structure.

Fig. 11
Fig. 11

Modulus of the Poynting vector for the fundamental mode at λ = 1550 nm . The bright region at the center of the core shows the modal confinement while the darker region indicates lower intensity.

Fig. 12
Fig. 12

Modulus of the Poynting vector for the second mode at λ = 1550 nm . The bright region between the first and the second air hole rings shows the confinement of the mode and the darker region indicates lower intensity.

Tables (1)

Tables Icon

Table 1 Variation of Dispersion Slope with Changes in Δ d , Λ, and d 1

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

r m = 3 3 m π Λ , m = 1 5 .
W j I 1 ( W j ) I 0 ( W j ) [ J 0 ( U j ) Y 0 ( U j ) J 1 ( u j ) Y 1 ( u j ) ] = U j [ J 1 ( U j ) Y 1 ( U j ) J 1 ( u j ) Y 1 ( u j ) ] ,
U j = k a j n s 2 n FSM ( j ) 2 ,
W j = k a j n FSM ( j ) 2 n a 2 ,
u j = k b n s 2 n FSM ( j ) 2 .
ψ 1 = A J 1 ( U 0 r ) ; 0 < r < r 1 ,
ψ 2 = B I 1 ( U 1 r ) + C K 1 ( U 1 r ) ; r 1 < r < r 2 ,
ψ 3 = D I 1 ( U 2 r ) + E K 1 ( U 2 r ) ; r 2 < r < r 3 ,
ψ 4 = F I 1 ( U 3 r ) + G K 1 ( U 3 r ) ; r 3 < r < r 4 ,
ψ 5 = H I 1 ( U 4 r ) + M K 1 ( U 4 r ) ; r 4 < r < r 5 ,
ψ 6 = N K 1 ( U 5 r ) ; r > r 5 .
Z { U 3 I 0 ( U 3 r 4 ) I 1 ( U 4 r 4 ) U 4 I 0 ( U 4 r 4 ) I 1 ( U 3 r 4 ) } { U 3 K 0 ( U 3 r 4 ) I 1 ( U 4 r 4 ) + U 4 I 0 ( U 4 r 4 ) K 1 ( U 3 r 4 ) } U 4 K 1 ( U 5 r 5 ) I 0 ( U 4 r 5 ) + U 5 K 0 ( U 5 r 5 ) I 1 ( U 4 r 5 ) = U 3 K 0 ( U 3 r 4 ) K 1 ( U 4 r 4 ) U 4 K 0 ( U 4 r 4 ) K 1 ( U 3 r 4 ) Z { U 3 I 0 ( U 3 r 4 ) K 1 ( U 4 r 4 ) + U 4 I 1 ( U 3 r 4 ) K 0 ( U 4 r 4 ) } U 4 K 1 ( U 5 r 5 ) K 0 ( U 4 r 5 ) U 5 K 0 ( U 5 r 5 ) K 1 ( U 4 r 5 ) ,
Z = U 2 K 0 ( U 2 r 3 ) K 1 ( U 3 r 3 ) U 3 K 0 ( U 3 r 3 ) K 1 ( U 2 r 3 ) Y { U 2 I 0 ( U 2 r 3 ) K 1 ( U 3 r 3 ) + U 3 I 1 ( U 2 r 3 ) K 0 ( U 3 r 3 ) } Y { U 2 I 0 ( U 2 r 3 ) I 1 ( U 3 r 3 ) U 3 I 0 ( U 3 r 3 ) I 1 ( U 2 r 3 ) } { U 2 K 0 ( U 2 r 3 ) I 1 ( U 3 r 3 ) + U 3 I 0 ( U 3 r 3 ) K 1 ( U 2 r 3 ) } ,
Y = U 1 K 0 ( U 1 r 2 ) K 1 ( U 2 r 2 ) U 2 K 0 ( U 2 r 2 ) K 1 ( U 1 r 2 ) X { U 1 I 0 ( U 1 r 2 ) K 1 ( U 2 r 2 ) + U 2 K 0 ( U 2 r 2 ) I 1 ( U 1 r 2 ) } X { U 1 I 0 ( U 1 r 2 ) I 1 ( U 2 r 2 ) U 2 I 0 ( U 2 r 2 ) I 1 ( U 1 r 2 ) } { U 1 K 0 ( U 1 r 2 ) I 1 ( U 2 r 2 ) + U 2 I 0 ( U 2 r 2 ) K 1 ( U 1 r 2 ) } ,
X = U 0 J 0 ( U 0 r 1 ) K 1 ( U 1 r 1 ) + U 1 K 0 ( U 1 r 1 ) J 1 ( U 0 r 1 ) U 1 I 0 ( U 1 r 1 ) J 1 ( U 0 r 1 ) U 0 J 0 ( U 0 r 1 ) I 1 ( U 1 r 1 ) .
D = λ c d 2 n eff d λ 2 ,
D ( λ ) D m ( λ ) + D g ( λ ) .
S = d D d λ λ = λ .
V = 2 π λ b n co 2 n FSM ( M ) 2 .
Q = 2 [ log Im ( n eff ) ] [ log λ ] 2 .
α = 40 π ln ( 10 ) λ Im ( n eff ) 10 6 dB m .

Metrics