Abstract

Detailed experimental characterization is performed for 1550nm semi-insulating regrown buried heterostructure Fabry–Perot (FP) lasers having 20 InGaAsPInGaAlAs strain-balanced quantum wells (QWs) in the active region. Light-current-voltage performance, electrical impedance, small-signal response below and above threshold, amplified spontaneous emission spectrum below threshold and relative intensity noise spectrum are measured. Different laser parameters such as external differential quantum efficiency ηd, background optical loss αi, K-factor, D-factor, characteristic temperature T0, differential gain dgdn, gain-compression factor ϵ, carrier density versus current, differential carrier lifetime τd, optical gain spectrum below threshold, and chirp parameter α are extracted from these measurements. The FP lasers exhibited a high T0 (7886.5°C) and very high-resonance frequency (23.7GHz). The results indicate that appropriately designed lasers having a large number of InGaAsP well/InGaAlAs barrier QWs with shallow valence-band discontinuity can be useful for uncooled high-speed direct-modulated laser applications.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, and B. S. L. Backbom, “30 Ghz direct modulation bandwidth in detuned loaded InGaAsP DBR lasers at 1.55 μm wavelength,” Electron. Lett. 33, 488-489 (1997).
    [CrossRef]
  2. O. Kjebon, M. N. Akram, and R. Schatz, “40 Gb/s transmission experiment using directly modulated 1.55 μm DBR lasers,” in Indium Phosphide and Related Materials (IEEE, 2003), pp. 495-498.
  3. Y. Matsui, H. Murai, S. Arahira, S. Kutsuzawa, and Y. Ogawa, “30-GHz bandwidth 1.55 μm strain-compensated InGaAlAs-InGaAsP MQW laser,” IEEE Photon. Technol. Lett. 9, 25-27 (1997).
    [CrossRef]
  4. Y. Matsui, H. Murai, S. Arahira, Y. Ogawa, and A. Suzuki, “Enhanced modulation bandwidth for strain-compensated InGaAlAs-InGaAsP MQW lasers,” IEEE J. Quantum Electron. 34, 1970-1978 (1998).
    [CrossRef]
  5. Y. Matsui, H. Murai, S. Arahira, Y. Ogawa, and A. Suzuki, “Novel design scheme for high-speed MQW lasers with enhanced differential gain and reduced carrier transport effect,” IEEE J. Quantum Electron. 34, 2340-2349 (1998).
    [CrossRef]
  6. M. N. Akram, C. Silfvenius, O. Kjebon, and R. Schatz, “Design optimization of InGaAsP-InGaAlAs 1.55 μm strain compensated MQW lasers for direct modulation applications,” Semicond. Sci. Technol. 19, 615-625 (2004).
    [CrossRef]
  7. L. A. Coldren and S. W. Corzine, “Diode Lasers and Photonic Integrated Circuits,” in Microwave and Optical Engineering (Wiley, 1995).
  8. J. Piprek, P. Abraham, and J. E. Bowers, “Carrier non-uniformity effects on the internal efficiency of multiquantum well laser,” Appl. Phys. Lett. 74, 489-491 (1999).
    [CrossRef]
  9. C. Silfvenius, G. Landgren, and S. Marcinkevicius, “Hole distribution in InGaAsP 1.3 μm multiple quantum well laser structures with different hole confinement energies,” IEEE J. Quantum Electron. 35, 603-607 (1999).
    [CrossRef]
  10. M. A. Alam, M. H. Hybertsen, R. K. Smith, and G. A. Baraff, “Simulation of semiconductor quantum well lasers,” IEEE Trans. Electron Devices 47, 1917-1925 (2000).
    [CrossRef]
  11. K. Fröjdh and S. Marcinkevicius, “Interwell carrier transport in InGaAsP multiple quantum well laser structures,” Appl. Phys. Lett. 69, 3695-3697 (1996).
    [CrossRef]
  12. M. N. Akram, O. Kjebon, S. Marcinkevicius, R. Schatz, J. Berggren, F. Olsson, and S. Lourdudoss, “The effect of barrier composition on the vertical carrier transport and lasing properties of 1.55 μm multiple quantum well structures,” IEEE J. Quantum Electron. 42, 713-724 (2006).
    [CrossRef]
  13. T. Ishikawa and J. E. Bowers, “Band lineup and in-plane effective mass of InGaAsP or InGaAlAs on InP strained layer quantum well,” IEEE J. Quantum Electron. 30, 562-570 (1994).
    [CrossRef]
  14. C.-E. Zah, R. Bhat, B. N. Pathak, F. Favire, W. Lin, M. C. Wang, N. C. Andreadakis, D. M. Hwang, M. A. Koza, T.-P. Lee, Z. Wang, D. Darby, D. Flanders, and J. J. Hsieh, “High-performance uncooled 1.3 μmAl(x)Ga(y)In(1-x-y)As/InP strained layer quantum-well lasers for subscriber loop applications,” IEEE J. Quantum Electron. 30, 511-523 (1994).
    [CrossRef]
  15. S. H. Park, “Barrier height effects on lasing characteristics of InGaAs/InGaAlAs strained quantum well lasers,” J. Korean Phys. Soc. 32, 713-717 (1998).
  16. J. Minch, S. H. Park, T. Keating, and S. L. Chuang, “Theory and experiment of In1−xGaxAsyP1−y and In1−x−yGaxAlyAs long-wavelength strained quantum-well lasers,” IEEE J. Quantum Electron. 35, 771-782 (1999).
    [CrossRef]
  17. M. N. Akram, O. Kjebon, M. Chacinski, R. Schatz, J. Berggren, F. Olsson, S. Lourdudoss, and A. Berrier, “High speed performance of 1.55 μm buried hetero-structure lasers with 20 InGaAsP/InGaAlAs quantum wells,” in European Conference on Optical Communication, Vol. 1 (2006), pp. 35-36.
  18. B. W. Hakki and T. L. Paoli, “Gain spectra in GaAs double heterostructure injection lasers,” J. Appl. Phys. 46, 3096-3099 (1975).
    [CrossRef]
  19. C.-S. Chang, S. L. Chuang, J. R. Minch, W. W. Fang, Y. K. Chen, and T. Tanbun-Ek, “Amplified spontaneous emission spectroscopy in strained quantum-well lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 1100-1107 (1995).
    [CrossRef]
  20. J. Nilsson, “Measurement of wavelength and current dependence of gain, refractive index and internal loss in semiconductor lasers,” Tech. Rep. (Royal Institute of Technology, IMIT Department, Stockholm 16440, Sweden, 1996).
  21. E. Berglind and L. Gillner, “Optical quantum noise treated with classical electrical network theory,” IEEE J. Quantum Electron. 30, 846-853 (1994).
    [CrossRef]
  22. O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, and B. Stålnacke, “Modulation response measurements and evaluation of MQW InGaAsP lasers of various designs,” High Speed Semiconductor Laser Sources 2684, 138-152 (1996).

2006 (1)

M. N. Akram, O. Kjebon, S. Marcinkevicius, R. Schatz, J. Berggren, F. Olsson, and S. Lourdudoss, “The effect of barrier composition on the vertical carrier transport and lasing properties of 1.55 μm multiple quantum well structures,” IEEE J. Quantum Electron. 42, 713-724 (2006).
[CrossRef]

2004 (1)

M. N. Akram, C. Silfvenius, O. Kjebon, and R. Schatz, “Design optimization of InGaAsP-InGaAlAs 1.55 μm strain compensated MQW lasers for direct modulation applications,” Semicond. Sci. Technol. 19, 615-625 (2004).
[CrossRef]

2000 (1)

M. A. Alam, M. H. Hybertsen, R. K. Smith, and G. A. Baraff, “Simulation of semiconductor quantum well lasers,” IEEE Trans. Electron Devices 47, 1917-1925 (2000).
[CrossRef]

1999 (3)

J. Piprek, P. Abraham, and J. E. Bowers, “Carrier non-uniformity effects on the internal efficiency of multiquantum well laser,” Appl. Phys. Lett. 74, 489-491 (1999).
[CrossRef]

C. Silfvenius, G. Landgren, and S. Marcinkevicius, “Hole distribution in InGaAsP 1.3 μm multiple quantum well laser structures with different hole confinement energies,” IEEE J. Quantum Electron. 35, 603-607 (1999).
[CrossRef]

J. Minch, S. H. Park, T. Keating, and S. L. Chuang, “Theory and experiment of In1−xGaxAsyP1−y and In1−x−yGaxAlyAs long-wavelength strained quantum-well lasers,” IEEE J. Quantum Electron. 35, 771-782 (1999).
[CrossRef]

1998 (3)

S. H. Park, “Barrier height effects on lasing characteristics of InGaAs/InGaAlAs strained quantum well lasers,” J. Korean Phys. Soc. 32, 713-717 (1998).

Y. Matsui, H. Murai, S. Arahira, Y. Ogawa, and A. Suzuki, “Enhanced modulation bandwidth for strain-compensated InGaAlAs-InGaAsP MQW lasers,” IEEE J. Quantum Electron. 34, 1970-1978 (1998).
[CrossRef]

Y. Matsui, H. Murai, S. Arahira, Y. Ogawa, and A. Suzuki, “Novel design scheme for high-speed MQW lasers with enhanced differential gain and reduced carrier transport effect,” IEEE J. Quantum Electron. 34, 2340-2349 (1998).
[CrossRef]

1997 (2)

O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, and B. S. L. Backbom, “30 Ghz direct modulation bandwidth in detuned loaded InGaAsP DBR lasers at 1.55 μm wavelength,” Electron. Lett. 33, 488-489 (1997).
[CrossRef]

Y. Matsui, H. Murai, S. Arahira, S. Kutsuzawa, and Y. Ogawa, “30-GHz bandwidth 1.55 μm strain-compensated InGaAlAs-InGaAsP MQW laser,” IEEE Photon. Technol. Lett. 9, 25-27 (1997).
[CrossRef]

1996 (2)

K. Fröjdh and S. Marcinkevicius, “Interwell carrier transport in InGaAsP multiple quantum well laser structures,” Appl. Phys. Lett. 69, 3695-3697 (1996).
[CrossRef]

O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, and B. Stålnacke, “Modulation response measurements and evaluation of MQW InGaAsP lasers of various designs,” High Speed Semiconductor Laser Sources 2684, 138-152 (1996).

1995 (1)

C.-S. Chang, S. L. Chuang, J. R. Minch, W. W. Fang, Y. K. Chen, and T. Tanbun-Ek, “Amplified spontaneous emission spectroscopy in strained quantum-well lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 1100-1107 (1995).
[CrossRef]

1994 (3)

E. Berglind and L. Gillner, “Optical quantum noise treated with classical electrical network theory,” IEEE J. Quantum Electron. 30, 846-853 (1994).
[CrossRef]

T. Ishikawa and J. E. Bowers, “Band lineup and in-plane effective mass of InGaAsP or InGaAlAs on InP strained layer quantum well,” IEEE J. Quantum Electron. 30, 562-570 (1994).
[CrossRef]

C.-E. Zah, R. Bhat, B. N. Pathak, F. Favire, W. Lin, M. C. Wang, N. C. Andreadakis, D. M. Hwang, M. A. Koza, T.-P. Lee, Z. Wang, D. Darby, D. Flanders, and J. J. Hsieh, “High-performance uncooled 1.3 μmAl(x)Ga(y)In(1-x-y)As/InP strained layer quantum-well lasers for subscriber loop applications,” IEEE J. Quantum Electron. 30, 511-523 (1994).
[CrossRef]

1975 (1)

B. W. Hakki and T. L. Paoli, “Gain spectra in GaAs double heterostructure injection lasers,” J. Appl. Phys. 46, 3096-3099 (1975).
[CrossRef]

Abraham, P.

J. Piprek, P. Abraham, and J. E. Bowers, “Carrier non-uniformity effects on the internal efficiency of multiquantum well laser,” Appl. Phys. Lett. 74, 489-491 (1999).
[CrossRef]

Akram, M. N.

M. N. Akram, O. Kjebon, S. Marcinkevicius, R. Schatz, J. Berggren, F. Olsson, and S. Lourdudoss, “The effect of barrier composition on the vertical carrier transport and lasing properties of 1.55 μm multiple quantum well structures,” IEEE J. Quantum Electron. 42, 713-724 (2006).
[CrossRef]

M. N. Akram, C. Silfvenius, O. Kjebon, and R. Schatz, “Design optimization of InGaAsP-InGaAlAs 1.55 μm strain compensated MQW lasers for direct modulation applications,” Semicond. Sci. Technol. 19, 615-625 (2004).
[CrossRef]

O. Kjebon, M. N. Akram, and R. Schatz, “40 Gb/s transmission experiment using directly modulated 1.55 μm DBR lasers,” in Indium Phosphide and Related Materials (IEEE, 2003), pp. 495-498.

M. N. Akram, O. Kjebon, M. Chacinski, R. Schatz, J. Berggren, F. Olsson, S. Lourdudoss, and A. Berrier, “High speed performance of 1.55 μm buried hetero-structure lasers with 20 InGaAsP/InGaAlAs quantum wells,” in European Conference on Optical Communication, Vol. 1 (2006), pp. 35-36.

Alam, M. A.

M. A. Alam, M. H. Hybertsen, R. K. Smith, and G. A. Baraff, “Simulation of semiconductor quantum well lasers,” IEEE Trans. Electron Devices 47, 1917-1925 (2000).
[CrossRef]

Andreadakis, N. C.

C.-E. Zah, R. Bhat, B. N. Pathak, F. Favire, W. Lin, M. C. Wang, N. C. Andreadakis, D. M. Hwang, M. A. Koza, T.-P. Lee, Z. Wang, D. Darby, D. Flanders, and J. J. Hsieh, “High-performance uncooled 1.3 μmAl(x)Ga(y)In(1-x-y)As/InP strained layer quantum-well lasers for subscriber loop applications,” IEEE J. Quantum Electron. 30, 511-523 (1994).
[CrossRef]

Arahira, S.

Y. Matsui, H. Murai, S. Arahira, Y. Ogawa, and A. Suzuki, “Novel design scheme for high-speed MQW lasers with enhanced differential gain and reduced carrier transport effect,” IEEE J. Quantum Electron. 34, 2340-2349 (1998).
[CrossRef]

Y. Matsui, H. Murai, S. Arahira, Y. Ogawa, and A. Suzuki, “Enhanced modulation bandwidth for strain-compensated InGaAlAs-InGaAsP MQW lasers,” IEEE J. Quantum Electron. 34, 1970-1978 (1998).
[CrossRef]

Y. Matsui, H. Murai, S. Arahira, S. Kutsuzawa, and Y. Ogawa, “30-GHz bandwidth 1.55 μm strain-compensated InGaAlAs-InGaAsP MQW laser,” IEEE Photon. Technol. Lett. 9, 25-27 (1997).
[CrossRef]

Backbom, B. S. L.

O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, and B. S. L. Backbom, “30 Ghz direct modulation bandwidth in detuned loaded InGaAsP DBR lasers at 1.55 μm wavelength,” Electron. Lett. 33, 488-489 (1997).
[CrossRef]

Baraff, G. A.

M. A. Alam, M. H. Hybertsen, R. K. Smith, and G. A. Baraff, “Simulation of semiconductor quantum well lasers,” IEEE Trans. Electron Devices 47, 1917-1925 (2000).
[CrossRef]

Berggren, J.

M. N. Akram, O. Kjebon, S. Marcinkevicius, R. Schatz, J. Berggren, F. Olsson, and S. Lourdudoss, “The effect of barrier composition on the vertical carrier transport and lasing properties of 1.55 μm multiple quantum well structures,” IEEE J. Quantum Electron. 42, 713-724 (2006).
[CrossRef]

M. N. Akram, O. Kjebon, M. Chacinski, R. Schatz, J. Berggren, F. Olsson, S. Lourdudoss, and A. Berrier, “High speed performance of 1.55 μm buried hetero-structure lasers with 20 InGaAsP/InGaAlAs quantum wells,” in European Conference on Optical Communication, Vol. 1 (2006), pp. 35-36.

Berglind, E.

E. Berglind and L. Gillner, “Optical quantum noise treated with classical electrical network theory,” IEEE J. Quantum Electron. 30, 846-853 (1994).
[CrossRef]

Berrier, A.

M. N. Akram, O. Kjebon, M. Chacinski, R. Schatz, J. Berggren, F. Olsson, S. Lourdudoss, and A. Berrier, “High speed performance of 1.55 μm buried hetero-structure lasers with 20 InGaAsP/InGaAlAs quantum wells,” in European Conference on Optical Communication, Vol. 1 (2006), pp. 35-36.

Bhat, R.

C.-E. Zah, R. Bhat, B. N. Pathak, F. Favire, W. Lin, M. C. Wang, N. C. Andreadakis, D. M. Hwang, M. A. Koza, T.-P. Lee, Z. Wang, D. Darby, D. Flanders, and J. J. Hsieh, “High-performance uncooled 1.3 μmAl(x)Ga(y)In(1-x-y)As/InP strained layer quantum-well lasers for subscriber loop applications,” IEEE J. Quantum Electron. 30, 511-523 (1994).
[CrossRef]

Bowers, J. E.

J. Piprek, P. Abraham, and J. E. Bowers, “Carrier non-uniformity effects on the internal efficiency of multiquantum well laser,” Appl. Phys. Lett. 74, 489-491 (1999).
[CrossRef]

T. Ishikawa and J. E. Bowers, “Band lineup and in-plane effective mass of InGaAsP or InGaAlAs on InP strained layer quantum well,” IEEE J. Quantum Electron. 30, 562-570 (1994).
[CrossRef]

Chacinski, M.

M. N. Akram, O. Kjebon, M. Chacinski, R. Schatz, J. Berggren, F. Olsson, S. Lourdudoss, and A. Berrier, “High speed performance of 1.55 μm buried hetero-structure lasers with 20 InGaAsP/InGaAlAs quantum wells,” in European Conference on Optical Communication, Vol. 1 (2006), pp. 35-36.

Chang, C.-S.

C.-S. Chang, S. L. Chuang, J. R. Minch, W. W. Fang, Y. K. Chen, and T. Tanbun-Ek, “Amplified spontaneous emission spectroscopy in strained quantum-well lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 1100-1107 (1995).
[CrossRef]

Chen, Y. K.

C.-S. Chang, S. L. Chuang, J. R. Minch, W. W. Fang, Y. K. Chen, and T. Tanbun-Ek, “Amplified spontaneous emission spectroscopy in strained quantum-well lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 1100-1107 (1995).
[CrossRef]

Chuang, S. L.

J. Minch, S. H. Park, T. Keating, and S. L. Chuang, “Theory and experiment of In1−xGaxAsyP1−y and In1−x−yGaxAlyAs long-wavelength strained quantum-well lasers,” IEEE J. Quantum Electron. 35, 771-782 (1999).
[CrossRef]

C.-S. Chang, S. L. Chuang, J. R. Minch, W. W. Fang, Y. K. Chen, and T. Tanbun-Ek, “Amplified spontaneous emission spectroscopy in strained quantum-well lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 1100-1107 (1995).
[CrossRef]

Coldren, L. A.

L. A. Coldren and S. W. Corzine, “Diode Lasers and Photonic Integrated Circuits,” in Microwave and Optical Engineering (Wiley, 1995).

Corzine, S. W.

L. A. Coldren and S. W. Corzine, “Diode Lasers and Photonic Integrated Circuits,” in Microwave and Optical Engineering (Wiley, 1995).

Darby, D.

C.-E. Zah, R. Bhat, B. N. Pathak, F. Favire, W. Lin, M. C. Wang, N. C. Andreadakis, D. M. Hwang, M. A. Koza, T.-P. Lee, Z. Wang, D. Darby, D. Flanders, and J. J. Hsieh, “High-performance uncooled 1.3 μmAl(x)Ga(y)In(1-x-y)As/InP strained layer quantum-well lasers for subscriber loop applications,” IEEE J. Quantum Electron. 30, 511-523 (1994).
[CrossRef]

Fang, W. W.

C.-S. Chang, S. L. Chuang, J. R. Minch, W. W. Fang, Y. K. Chen, and T. Tanbun-Ek, “Amplified spontaneous emission spectroscopy in strained quantum-well lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 1100-1107 (1995).
[CrossRef]

Favire, F.

C.-E. Zah, R. Bhat, B. N. Pathak, F. Favire, W. Lin, M. C. Wang, N. C. Andreadakis, D. M. Hwang, M. A. Koza, T.-P. Lee, Z. Wang, D. Darby, D. Flanders, and J. J. Hsieh, “High-performance uncooled 1.3 μmAl(x)Ga(y)In(1-x-y)As/InP strained layer quantum-well lasers for subscriber loop applications,” IEEE J. Quantum Electron. 30, 511-523 (1994).
[CrossRef]

Flanders, D.

C.-E. Zah, R. Bhat, B. N. Pathak, F. Favire, W. Lin, M. C. Wang, N. C. Andreadakis, D. M. Hwang, M. A. Koza, T.-P. Lee, Z. Wang, D. Darby, D. Flanders, and J. J. Hsieh, “High-performance uncooled 1.3 μmAl(x)Ga(y)In(1-x-y)As/InP strained layer quantum-well lasers for subscriber loop applications,” IEEE J. Quantum Electron. 30, 511-523 (1994).
[CrossRef]

Fröjdh, K.

K. Fröjdh and S. Marcinkevicius, “Interwell carrier transport in InGaAsP multiple quantum well laser structures,” Appl. Phys. Lett. 69, 3695-3697 (1996).
[CrossRef]

Gillner, L.

E. Berglind and L. Gillner, “Optical quantum noise treated with classical electrical network theory,” IEEE J. Quantum Electron. 30, 846-853 (1994).
[CrossRef]

Hakki, B. W.

B. W. Hakki and T. L. Paoli, “Gain spectra in GaAs double heterostructure injection lasers,” J. Appl. Phys. 46, 3096-3099 (1975).
[CrossRef]

Hsieh, J. J.

C.-E. Zah, R. Bhat, B. N. Pathak, F. Favire, W. Lin, M. C. Wang, N. C. Andreadakis, D. M. Hwang, M. A. Koza, T.-P. Lee, Z. Wang, D. Darby, D. Flanders, and J. J. Hsieh, “High-performance uncooled 1.3 μmAl(x)Ga(y)In(1-x-y)As/InP strained layer quantum-well lasers for subscriber loop applications,” IEEE J. Quantum Electron. 30, 511-523 (1994).
[CrossRef]

Hwang, D. M.

C.-E. Zah, R. Bhat, B. N. Pathak, F. Favire, W. Lin, M. C. Wang, N. C. Andreadakis, D. M. Hwang, M. A. Koza, T.-P. Lee, Z. Wang, D. Darby, D. Flanders, and J. J. Hsieh, “High-performance uncooled 1.3 μmAl(x)Ga(y)In(1-x-y)As/InP strained layer quantum-well lasers for subscriber loop applications,” IEEE J. Quantum Electron. 30, 511-523 (1994).
[CrossRef]

Hybertsen, M. H.

M. A. Alam, M. H. Hybertsen, R. K. Smith, and G. A. Baraff, “Simulation of semiconductor quantum well lasers,” IEEE Trans. Electron Devices 47, 1917-1925 (2000).
[CrossRef]

Ishikawa, T.

T. Ishikawa and J. E. Bowers, “Band lineup and in-plane effective mass of InGaAsP or InGaAlAs on InP strained layer quantum well,” IEEE J. Quantum Electron. 30, 562-570 (1994).
[CrossRef]

Keating, T.

J. Minch, S. H. Park, T. Keating, and S. L. Chuang, “Theory and experiment of In1−xGaxAsyP1−y and In1−x−yGaxAlyAs long-wavelength strained quantum-well lasers,” IEEE J. Quantum Electron. 35, 771-782 (1999).
[CrossRef]

Kjebon, O.

M. N. Akram, O. Kjebon, S. Marcinkevicius, R. Schatz, J. Berggren, F. Olsson, and S. Lourdudoss, “The effect of barrier composition on the vertical carrier transport and lasing properties of 1.55 μm multiple quantum well structures,” IEEE J. Quantum Electron. 42, 713-724 (2006).
[CrossRef]

M. N. Akram, C. Silfvenius, O. Kjebon, and R. Schatz, “Design optimization of InGaAsP-InGaAlAs 1.55 μm strain compensated MQW lasers for direct modulation applications,” Semicond. Sci. Technol. 19, 615-625 (2004).
[CrossRef]

O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, and B. S. L. Backbom, “30 Ghz direct modulation bandwidth in detuned loaded InGaAsP DBR lasers at 1.55 μm wavelength,” Electron. Lett. 33, 488-489 (1997).
[CrossRef]

O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, and B. Stålnacke, “Modulation response measurements and evaluation of MQW InGaAsP lasers of various designs,” High Speed Semiconductor Laser Sources 2684, 138-152 (1996).

O. Kjebon, M. N. Akram, and R. Schatz, “40 Gb/s transmission experiment using directly modulated 1.55 μm DBR lasers,” in Indium Phosphide and Related Materials (IEEE, 2003), pp. 495-498.

M. N. Akram, O. Kjebon, M. Chacinski, R. Schatz, J. Berggren, F. Olsson, S. Lourdudoss, and A. Berrier, “High speed performance of 1.55 μm buried hetero-structure lasers with 20 InGaAsP/InGaAlAs quantum wells,” in European Conference on Optical Communication, Vol. 1 (2006), pp. 35-36.

Koza, M. A.

C.-E. Zah, R. Bhat, B. N. Pathak, F. Favire, W. Lin, M. C. Wang, N. C. Andreadakis, D. M. Hwang, M. A. Koza, T.-P. Lee, Z. Wang, D. Darby, D. Flanders, and J. J. Hsieh, “High-performance uncooled 1.3 μmAl(x)Ga(y)In(1-x-y)As/InP strained layer quantum-well lasers for subscriber loop applications,” IEEE J. Quantum Electron. 30, 511-523 (1994).
[CrossRef]

Kutsuzawa, S.

Y. Matsui, H. Murai, S. Arahira, S. Kutsuzawa, and Y. Ogawa, “30-GHz bandwidth 1.55 μm strain-compensated InGaAlAs-InGaAsP MQW laser,” IEEE Photon. Technol. Lett. 9, 25-27 (1997).
[CrossRef]

Landgren, G.

C. Silfvenius, G. Landgren, and S. Marcinkevicius, “Hole distribution in InGaAsP 1.3 μm multiple quantum well laser structures with different hole confinement energies,” IEEE J. Quantum Electron. 35, 603-607 (1999).
[CrossRef]

Lee, T.-P.

C.-E. Zah, R. Bhat, B. N. Pathak, F. Favire, W. Lin, M. C. Wang, N. C. Andreadakis, D. M. Hwang, M. A. Koza, T.-P. Lee, Z. Wang, D. Darby, D. Flanders, and J. J. Hsieh, “High-performance uncooled 1.3 μmAl(x)Ga(y)In(1-x-y)As/InP strained layer quantum-well lasers for subscriber loop applications,” IEEE J. Quantum Electron. 30, 511-523 (1994).
[CrossRef]

Lin, W.

C.-E. Zah, R. Bhat, B. N. Pathak, F. Favire, W. Lin, M. C. Wang, N. C. Andreadakis, D. M. Hwang, M. A. Koza, T.-P. Lee, Z. Wang, D. Darby, D. Flanders, and J. J. Hsieh, “High-performance uncooled 1.3 μmAl(x)Ga(y)In(1-x-y)As/InP strained layer quantum-well lasers for subscriber loop applications,” IEEE J. Quantum Electron. 30, 511-523 (1994).
[CrossRef]

Lourdudoss, S.

M. N. Akram, O. Kjebon, S. Marcinkevicius, R. Schatz, J. Berggren, F. Olsson, and S. Lourdudoss, “The effect of barrier composition on the vertical carrier transport and lasing properties of 1.55 μm multiple quantum well structures,” IEEE J. Quantum Electron. 42, 713-724 (2006).
[CrossRef]

O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, and B. S. L. Backbom, “30 Ghz direct modulation bandwidth in detuned loaded InGaAsP DBR lasers at 1.55 μm wavelength,” Electron. Lett. 33, 488-489 (1997).
[CrossRef]

O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, and B. Stålnacke, “Modulation response measurements and evaluation of MQW InGaAsP lasers of various designs,” High Speed Semiconductor Laser Sources 2684, 138-152 (1996).

M. N. Akram, O. Kjebon, M. Chacinski, R. Schatz, J. Berggren, F. Olsson, S. Lourdudoss, and A. Berrier, “High speed performance of 1.55 μm buried hetero-structure lasers with 20 InGaAsP/InGaAlAs quantum wells,” in European Conference on Optical Communication, Vol. 1 (2006), pp. 35-36.

Marcinkevicius, S.

M. N. Akram, O. Kjebon, S. Marcinkevicius, R. Schatz, J. Berggren, F. Olsson, and S. Lourdudoss, “The effect of barrier composition on the vertical carrier transport and lasing properties of 1.55 μm multiple quantum well structures,” IEEE J. Quantum Electron. 42, 713-724 (2006).
[CrossRef]

C. Silfvenius, G. Landgren, and S. Marcinkevicius, “Hole distribution in InGaAsP 1.3 μm multiple quantum well laser structures with different hole confinement energies,” IEEE J. Quantum Electron. 35, 603-607 (1999).
[CrossRef]

K. Fröjdh and S. Marcinkevicius, “Interwell carrier transport in InGaAsP multiple quantum well laser structures,” Appl. Phys. Lett. 69, 3695-3697 (1996).
[CrossRef]

Matsui, Y.

Y. Matsui, H. Murai, S. Arahira, Y. Ogawa, and A. Suzuki, “Novel design scheme for high-speed MQW lasers with enhanced differential gain and reduced carrier transport effect,” IEEE J. Quantum Electron. 34, 2340-2349 (1998).
[CrossRef]

Y. Matsui, H. Murai, S. Arahira, Y. Ogawa, and A. Suzuki, “Enhanced modulation bandwidth for strain-compensated InGaAlAs-InGaAsP MQW lasers,” IEEE J. Quantum Electron. 34, 1970-1978 (1998).
[CrossRef]

Y. Matsui, H. Murai, S. Arahira, S. Kutsuzawa, and Y. Ogawa, “30-GHz bandwidth 1.55 μm strain-compensated InGaAlAs-InGaAsP MQW laser,” IEEE Photon. Technol. Lett. 9, 25-27 (1997).
[CrossRef]

Minch, J.

J. Minch, S. H. Park, T. Keating, and S. L. Chuang, “Theory and experiment of In1−xGaxAsyP1−y and In1−x−yGaxAlyAs long-wavelength strained quantum-well lasers,” IEEE J. Quantum Electron. 35, 771-782 (1999).
[CrossRef]

Minch, J. R.

C.-S. Chang, S. L. Chuang, J. R. Minch, W. W. Fang, Y. K. Chen, and T. Tanbun-Ek, “Amplified spontaneous emission spectroscopy in strained quantum-well lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 1100-1107 (1995).
[CrossRef]

Murai, H.

Y. Matsui, H. Murai, S. Arahira, Y. Ogawa, and A. Suzuki, “Enhanced modulation bandwidth for strain-compensated InGaAlAs-InGaAsP MQW lasers,” IEEE J. Quantum Electron. 34, 1970-1978 (1998).
[CrossRef]

Y. Matsui, H. Murai, S. Arahira, Y. Ogawa, and A. Suzuki, “Novel design scheme for high-speed MQW lasers with enhanced differential gain and reduced carrier transport effect,” IEEE J. Quantum Electron. 34, 2340-2349 (1998).
[CrossRef]

Y. Matsui, H. Murai, S. Arahira, S. Kutsuzawa, and Y. Ogawa, “30-GHz bandwidth 1.55 μm strain-compensated InGaAlAs-InGaAsP MQW laser,” IEEE Photon. Technol. Lett. 9, 25-27 (1997).
[CrossRef]

Nilsson, J.

J. Nilsson, “Measurement of wavelength and current dependence of gain, refractive index and internal loss in semiconductor lasers,” Tech. Rep. (Royal Institute of Technology, IMIT Department, Stockholm 16440, Sweden, 1996).

Nilsson, S.

O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, and B. S. L. Backbom, “30 Ghz direct modulation bandwidth in detuned loaded InGaAsP DBR lasers at 1.55 μm wavelength,” Electron. Lett. 33, 488-489 (1997).
[CrossRef]

O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, and B. Stålnacke, “Modulation response measurements and evaluation of MQW InGaAsP lasers of various designs,” High Speed Semiconductor Laser Sources 2684, 138-152 (1996).

Ogawa, Y.

Y. Matsui, H. Murai, S. Arahira, Y. Ogawa, and A. Suzuki, “Enhanced modulation bandwidth for strain-compensated InGaAlAs-InGaAsP MQW lasers,” IEEE J. Quantum Electron. 34, 1970-1978 (1998).
[CrossRef]

Y. Matsui, H. Murai, S. Arahira, Y. Ogawa, and A. Suzuki, “Novel design scheme for high-speed MQW lasers with enhanced differential gain and reduced carrier transport effect,” IEEE J. Quantum Electron. 34, 2340-2349 (1998).
[CrossRef]

Y. Matsui, H. Murai, S. Arahira, S. Kutsuzawa, and Y. Ogawa, “30-GHz bandwidth 1.55 μm strain-compensated InGaAlAs-InGaAsP MQW laser,” IEEE Photon. Technol. Lett. 9, 25-27 (1997).
[CrossRef]

Olsson, F.

M. N. Akram, O. Kjebon, S. Marcinkevicius, R. Schatz, J. Berggren, F. Olsson, and S. Lourdudoss, “The effect of barrier composition on the vertical carrier transport and lasing properties of 1.55 μm multiple quantum well structures,” IEEE J. Quantum Electron. 42, 713-724 (2006).
[CrossRef]

M. N. Akram, O. Kjebon, M. Chacinski, R. Schatz, J. Berggren, F. Olsson, S. Lourdudoss, and A. Berrier, “High speed performance of 1.55 μm buried hetero-structure lasers with 20 InGaAsP/InGaAlAs quantum wells,” in European Conference on Optical Communication, Vol. 1 (2006), pp. 35-36.

Paoli, T. L.

B. W. Hakki and T. L. Paoli, “Gain spectra in GaAs double heterostructure injection lasers,” J. Appl. Phys. 46, 3096-3099 (1975).
[CrossRef]

Park, S. H.

J. Minch, S. H. Park, T. Keating, and S. L. Chuang, “Theory and experiment of In1−xGaxAsyP1−y and In1−x−yGaxAlyAs long-wavelength strained quantum-well lasers,” IEEE J. Quantum Electron. 35, 771-782 (1999).
[CrossRef]

S. H. Park, “Barrier height effects on lasing characteristics of InGaAs/InGaAlAs strained quantum well lasers,” J. Korean Phys. Soc. 32, 713-717 (1998).

Pathak, B. N.

C.-E. Zah, R. Bhat, B. N. Pathak, F. Favire, W. Lin, M. C. Wang, N. C. Andreadakis, D. M. Hwang, M. A. Koza, T.-P. Lee, Z. Wang, D. Darby, D. Flanders, and J. J. Hsieh, “High-performance uncooled 1.3 μmAl(x)Ga(y)In(1-x-y)As/InP strained layer quantum-well lasers for subscriber loop applications,” IEEE J. Quantum Electron. 30, 511-523 (1994).
[CrossRef]

Piprek, J.

J. Piprek, P. Abraham, and J. E. Bowers, “Carrier non-uniformity effects on the internal efficiency of multiquantum well laser,” Appl. Phys. Lett. 74, 489-491 (1999).
[CrossRef]

Schatz, R.

M. N. Akram, O. Kjebon, S. Marcinkevicius, R. Schatz, J. Berggren, F. Olsson, and S. Lourdudoss, “The effect of barrier composition on the vertical carrier transport and lasing properties of 1.55 μm multiple quantum well structures,” IEEE J. Quantum Electron. 42, 713-724 (2006).
[CrossRef]

M. N. Akram, C. Silfvenius, O. Kjebon, and R. Schatz, “Design optimization of InGaAsP-InGaAlAs 1.55 μm strain compensated MQW lasers for direct modulation applications,” Semicond. Sci. Technol. 19, 615-625 (2004).
[CrossRef]

O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, and B. S. L. Backbom, “30 Ghz direct modulation bandwidth in detuned loaded InGaAsP DBR lasers at 1.55 μm wavelength,” Electron. Lett. 33, 488-489 (1997).
[CrossRef]

O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, and B. Stålnacke, “Modulation response measurements and evaluation of MQW InGaAsP lasers of various designs,” High Speed Semiconductor Laser Sources 2684, 138-152 (1996).

O. Kjebon, M. N. Akram, and R. Schatz, “40 Gb/s transmission experiment using directly modulated 1.55 μm DBR lasers,” in Indium Phosphide and Related Materials (IEEE, 2003), pp. 495-498.

M. N. Akram, O. Kjebon, M. Chacinski, R. Schatz, J. Berggren, F. Olsson, S. Lourdudoss, and A. Berrier, “High speed performance of 1.55 μm buried hetero-structure lasers with 20 InGaAsP/InGaAlAs quantum wells,” in European Conference on Optical Communication, Vol. 1 (2006), pp. 35-36.

Silfvenius, C.

M. N. Akram, C. Silfvenius, O. Kjebon, and R. Schatz, “Design optimization of InGaAsP-InGaAlAs 1.55 μm strain compensated MQW lasers for direct modulation applications,” Semicond. Sci. Technol. 19, 615-625 (2004).
[CrossRef]

C. Silfvenius, G. Landgren, and S. Marcinkevicius, “Hole distribution in InGaAsP 1.3 μm multiple quantum well laser structures with different hole confinement energies,” IEEE J. Quantum Electron. 35, 603-607 (1999).
[CrossRef]

Smith, R. K.

M. A. Alam, M. H. Hybertsen, R. K. Smith, and G. A. Baraff, “Simulation of semiconductor quantum well lasers,” IEEE Trans. Electron Devices 47, 1917-1925 (2000).
[CrossRef]

Stålnacke, B.

O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, and B. Stålnacke, “Modulation response measurements and evaluation of MQW InGaAsP lasers of various designs,” High Speed Semiconductor Laser Sources 2684, 138-152 (1996).

Suzuki, A.

Y. Matsui, H. Murai, S. Arahira, Y. Ogawa, and A. Suzuki, “Novel design scheme for high-speed MQW lasers with enhanced differential gain and reduced carrier transport effect,” IEEE J. Quantum Electron. 34, 2340-2349 (1998).
[CrossRef]

Y. Matsui, H. Murai, S. Arahira, Y. Ogawa, and A. Suzuki, “Enhanced modulation bandwidth for strain-compensated InGaAlAs-InGaAsP MQW lasers,” IEEE J. Quantum Electron. 34, 1970-1978 (1998).
[CrossRef]

Tanbun-Ek, T.

C.-S. Chang, S. L. Chuang, J. R. Minch, W. W. Fang, Y. K. Chen, and T. Tanbun-Ek, “Amplified spontaneous emission spectroscopy in strained quantum-well lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 1100-1107 (1995).
[CrossRef]

Wang, M. C.

C.-E. Zah, R. Bhat, B. N. Pathak, F. Favire, W. Lin, M. C. Wang, N. C. Andreadakis, D. M. Hwang, M. A. Koza, T.-P. Lee, Z. Wang, D. Darby, D. Flanders, and J. J. Hsieh, “High-performance uncooled 1.3 μmAl(x)Ga(y)In(1-x-y)As/InP strained layer quantum-well lasers for subscriber loop applications,” IEEE J. Quantum Electron. 30, 511-523 (1994).
[CrossRef]

Wang, Z.

C.-E. Zah, R. Bhat, B. N. Pathak, F. Favire, W. Lin, M. C. Wang, N. C. Andreadakis, D. M. Hwang, M. A. Koza, T.-P. Lee, Z. Wang, D. Darby, D. Flanders, and J. J. Hsieh, “High-performance uncooled 1.3 μmAl(x)Ga(y)In(1-x-y)As/InP strained layer quantum-well lasers for subscriber loop applications,” IEEE J. Quantum Electron. 30, 511-523 (1994).
[CrossRef]

Zah, C.-E.

C.-E. Zah, R. Bhat, B. N. Pathak, F. Favire, W. Lin, M. C. Wang, N. C. Andreadakis, D. M. Hwang, M. A. Koza, T.-P. Lee, Z. Wang, D. Darby, D. Flanders, and J. J. Hsieh, “High-performance uncooled 1.3 μmAl(x)Ga(y)In(1-x-y)As/InP strained layer quantum-well lasers for subscriber loop applications,” IEEE J. Quantum Electron. 30, 511-523 (1994).
[CrossRef]

Appl. Phys. Lett. (2)

J. Piprek, P. Abraham, and J. E. Bowers, “Carrier non-uniformity effects on the internal efficiency of multiquantum well laser,” Appl. Phys. Lett. 74, 489-491 (1999).
[CrossRef]

K. Fröjdh and S. Marcinkevicius, “Interwell carrier transport in InGaAsP multiple quantum well laser structures,” Appl. Phys. Lett. 69, 3695-3697 (1996).
[CrossRef]

Electron. Lett. (1)

O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, and B. S. L. Backbom, “30 Ghz direct modulation bandwidth in detuned loaded InGaAsP DBR lasers at 1.55 μm wavelength,” Electron. Lett. 33, 488-489 (1997).
[CrossRef]

High Speed Semiconductor Laser Sources (1)

O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, and B. Stålnacke, “Modulation response measurements and evaluation of MQW InGaAsP lasers of various designs,” High Speed Semiconductor Laser Sources 2684, 138-152 (1996).

IEEE J. Quantum Electron. (8)

E. Berglind and L. Gillner, “Optical quantum noise treated with classical electrical network theory,” IEEE J. Quantum Electron. 30, 846-853 (1994).
[CrossRef]

C. Silfvenius, G. Landgren, and S. Marcinkevicius, “Hole distribution in InGaAsP 1.3 μm multiple quantum well laser structures with different hole confinement energies,” IEEE J. Quantum Electron. 35, 603-607 (1999).
[CrossRef]

Y. Matsui, H. Murai, S. Arahira, Y. Ogawa, and A. Suzuki, “Enhanced modulation bandwidth for strain-compensated InGaAlAs-InGaAsP MQW lasers,” IEEE J. Quantum Electron. 34, 1970-1978 (1998).
[CrossRef]

Y. Matsui, H. Murai, S. Arahira, Y. Ogawa, and A. Suzuki, “Novel design scheme for high-speed MQW lasers with enhanced differential gain and reduced carrier transport effect,” IEEE J. Quantum Electron. 34, 2340-2349 (1998).
[CrossRef]

M. N. Akram, O. Kjebon, S. Marcinkevicius, R. Schatz, J. Berggren, F. Olsson, and S. Lourdudoss, “The effect of barrier composition on the vertical carrier transport and lasing properties of 1.55 μm multiple quantum well structures,” IEEE J. Quantum Electron. 42, 713-724 (2006).
[CrossRef]

T. Ishikawa and J. E. Bowers, “Band lineup and in-plane effective mass of InGaAsP or InGaAlAs on InP strained layer quantum well,” IEEE J. Quantum Electron. 30, 562-570 (1994).
[CrossRef]

C.-E. Zah, R. Bhat, B. N. Pathak, F. Favire, W. Lin, M. C. Wang, N. C. Andreadakis, D. M. Hwang, M. A. Koza, T.-P. Lee, Z. Wang, D. Darby, D. Flanders, and J. J. Hsieh, “High-performance uncooled 1.3 μmAl(x)Ga(y)In(1-x-y)As/InP strained layer quantum-well lasers for subscriber loop applications,” IEEE J. Quantum Electron. 30, 511-523 (1994).
[CrossRef]

J. Minch, S. H. Park, T. Keating, and S. L. Chuang, “Theory and experiment of In1−xGaxAsyP1−y and In1−x−yGaxAlyAs long-wavelength strained quantum-well lasers,” IEEE J. Quantum Electron. 35, 771-782 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

C.-S. Chang, S. L. Chuang, J. R. Minch, W. W. Fang, Y. K. Chen, and T. Tanbun-Ek, “Amplified spontaneous emission spectroscopy in strained quantum-well lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 1100-1107 (1995).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y. Matsui, H. Murai, S. Arahira, S. Kutsuzawa, and Y. Ogawa, “30-GHz bandwidth 1.55 μm strain-compensated InGaAlAs-InGaAsP MQW laser,” IEEE Photon. Technol. Lett. 9, 25-27 (1997).
[CrossRef]

IEEE Trans. Electron Devices (1)

M. A. Alam, M. H. Hybertsen, R. K. Smith, and G. A. Baraff, “Simulation of semiconductor quantum well lasers,” IEEE Trans. Electron Devices 47, 1917-1925 (2000).
[CrossRef]

J. Appl. Phys. (1)

B. W. Hakki and T. L. Paoli, “Gain spectra in GaAs double heterostructure injection lasers,” J. Appl. Phys. 46, 3096-3099 (1975).
[CrossRef]

J. Korean Phys. Soc. (1)

S. H. Park, “Barrier height effects on lasing characteristics of InGaAs/InGaAlAs strained quantum well lasers,” J. Korean Phys. Soc. 32, 713-717 (1998).

Semicond. Sci. Technol. (1)

M. N. Akram, C. Silfvenius, O. Kjebon, and R. Schatz, “Design optimization of InGaAsP-InGaAlAs 1.55 μm strain compensated MQW lasers for direct modulation applications,” Semicond. Sci. Technol. 19, 615-625 (2004).
[CrossRef]

Other (4)

L. A. Coldren and S. W. Corzine, “Diode Lasers and Photonic Integrated Circuits,” in Microwave and Optical Engineering (Wiley, 1995).

O. Kjebon, M. N. Akram, and R. Schatz, “40 Gb/s transmission experiment using directly modulated 1.55 μm DBR lasers,” in Indium Phosphide and Related Materials (IEEE, 2003), pp. 495-498.

M. N. Akram, O. Kjebon, M. Chacinski, R. Schatz, J. Berggren, F. Olsson, S. Lourdudoss, and A. Berrier, “High speed performance of 1.55 μm buried hetero-structure lasers with 20 InGaAsP/InGaAlAs quantum wells,” in European Conference on Optical Communication, Vol. 1 (2006), pp. 35-36.

J. Nilsson, “Measurement of wavelength and current dependence of gain, refractive index and internal loss in semiconductor lasers,” Tech. Rep. (Royal Institute of Technology, IMIT Department, Stockholm 16440, Sweden, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (21)

Fig. 1
Fig. 1

Epitaxial structure XRD measurement.

Fig. 2
Fig. 2

Epitaxial structure PL measurements.

Fig. 3
Fig. 3

Epitaxial structure SIMS depth profile.

Fig. 4
Fig. 4

FP-laser (B20) epitaxial structure.

Fig. 5
Fig. 5

FP-laser (B20) stain-etched scanning-electron microscope cross-section image.

Fig. 6
Fig. 6

QW band diagram.

Fig. 7
Fig. 7

Different FP-laser DC L-I-V measurements.

Fig. 8
Fig. 8

FP-laser (B20) external differential efficiency η d 1 vs cavity length L plot.

Fig. 9
Fig. 9

FP-laser (B20-A, 200 μ m cavity length) ASE spectrum.

Fig. 10
Fig. 10

FP-laser (B20-A, 200 μ m cavity length) optical gain spectrum extraction at 20 ° C .

Fig. 11
Fig. 11

FP-laser (B20-A, 200 μ m cavity length) optical gain spectrum extraction at 80 ° C .

Fig. 12
Fig. 12

FP-laser (B20-A, 200 μ m cavity length) optical gain spectrum at varying temperature from 20 ° C to 80 ° C .

Fig. 13
Fig. 13

FP-laser (B20-A, 200 μ m cavity length), peak modal gain Γ g max .

Fig. 14
Fig. 14

FP-laser (B20-A, 200 μ m cavity length), differential modal gain Γ d g d J .

Fig. 15
Fig. 15

FP-laser (B20-A, 200 μ m cavity length) chirp-factor α H measurements.

Fig. 16
Fig. 16

FP-laser (B20-D, 150 μ m cavity length) modulation response measurements.

Fig. 17
Fig. 17

FP-laser (B20-D, 150 μ m cavity length) RIN response at 20 ° C .

Fig. 18
Fig. 18

FP-laser (B20-D and B-20E (etched P-contact), 150 μ m cavity length) K-factor extraction

Fig. 19
Fig. 19

FP-laser (B20-D and B-20E (etched P-contact), 150 μ m cavity length) D-factor extraction.

Fig. 20
Fig. 20

Equivalent circuit of the diode laser.

Fig. 21
Fig. 21

FP-laser (B20-E, 150 μ m cavity length) differential carrier lifetime τ d and carrier density N extraction.

Tables (3)

Tables Icon

Table 1 FP-Laser DC Characterization Results

Tables Icon

Table 2 FP-Lasers AC Characterization Results

Tables Icon

Table 3 FP-Laser B20-E Impedance Characterization below Threshold

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ASE ( f ) = ( 1 r 1 2 ) ( e g L 1 ) ( 1 + r 2 2 e g L ) ( 1 r 1 r 2 e g L ) 2 + 4 r 1 r 2 e g L sin 2 ( k L ) η s p η i h f 2 ,
δ f = α H 4 π Γ υ g a δ N ,
α H = δ n r δ N δ n i δ N = 4 π n g c δ f δ I δ ( Γ g α i ) δ I ,
H ( f ) = A ( f 2 + j f 2 π γ + f r 2 ) ( j f + f p ) .
K = 4 π 2 ( τ p + ϵ υ g a )
D = 1 2 π η i Γ υ g a q V a ,
N ( I bias ) = η i q V a 0 I bias τ d d I .

Metrics